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Anisotropic stresses are ubiquitous in nature, but their modeling in general relativity is poorly
understood and frame dependent. We introduce the first study on the dynamical properties of anisotropic
self-gravitating fluids in a covariant framework. Our description is particularly useful in the context of tests
of the black hole paradigm, wherein ultracompact objects are used as black hole mimickers but otherwise
lack a proper theoretical framework. We show the following: (i) anisotropic stars can be as compact and as
massive as black holes, even for very small anisotropy parameters; (ii) the nonlinear dynamics of the 1þ 1

system is in good agreement with linearized calculations, and shows that configurations below the
maximum mass are nonlinearly stable; (iii) strongly anisotropic stars have vanishing tidal Love numbers in
the black-hole limit; and (iv) their formation will usually be accompanied by gravitational-wave echoes at
late times.
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I. INTRODUCTION

A foundational result in general relativity (GR) states
that the maximum compactness of a self-gravitating,
isotropic, spherically symmetric object of mass M and
radius R is M=R ¼ 4=9, if the object is composed of a
perfect fluid [1] (we use G ¼ c ¼ 1 units). As a corollary,
under the assumptions above, the existence of exotic
compact objects (ECOs) of compactness arbitrarily close
to that of a Schwarzschild black hole (BH, with
M=R ¼ 1=2) is ruled out. Thus, tests of the BH para-
digm—are the dark and massive objects that we see
really BHs?—are challenging to devise, impacting our
ability to quantify statements about evidence for BHs [2–6],
or to discover new species of compact objects.
It has been realized that Buchdahl’s bound above relies

strongly on the hypothesis of isotropy. Anisotropies in
matter fields arise naturally at high densities [7–9] and may
play an important role in the interior of compact objects.
The simplest known example is that of a scalar field
minimally coupled to gravity, which indeed gives rise to

anisotropic pressure in boson stars [10]. Other examples
include electromagnetic fields, fermionic fields, pion-
condensed phase configurations in neutron stars [11],
superfluidity [12], solid cores [7], etc. In the real
world, anisotropic pressures are the rule rather than the
exception.
Surprisingly, anisotropic stars in GR are poorly studied.

While various solutions have been obtained, both in closed
form [13–20] and numerically [21–27], none arise from a
consistent covariant model (see Ref. [28] for some
progress). The lack of a proper framework prevents the
exploration of outstanding questions associated with these
objects, such as their stability, dynamical formation, and
phenomenology. This is in stark contrast with the excellent
knowledge on the dynamics of BHs and neutron stars,
and is also the most important limitation in the study of
ECOs [2,3,6] (the only exception being boson stars which,
however, are even less compact than Buchdahl’s bound
[10] and do not belong to the ClePhOs category introduced
in Refs. [2,3,6]).
Here we introduce a covariant and self-consistent model

for anisotropic fluids in GR, admitting stable and well-
behaved ultracompact solutions which we term C-stars.
For the sake of simplicity, we will mostly restrict our

analysis to the spherically symmetric case; a covariant
extension to the general case (without spherical symmetry)
is provided in Appendix A.
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II. COVARIANT APPROACH
TO ANISOTROPIES

Consider an anisotropic fluid with radial pressure Pr,
tangential pressure Pt, and total energy density ρ, described
by the stress-energy tensor [13,22]

Tμν ¼ ρuμuν þ Prkμkν þ PtΠμν; ð1Þ
where uμ is the fluid four-velocity and kμ is a unit space-
like vector orthogonal to uμ, i.e., kμkμ ¼ 1 ¼ −uμuμ,
uμkμ ¼ 0. Here, Πμν ¼ gμν þ uμuν − kμkν is a projection
operator onto a two-surface orthogonal to uμ and kμ, i.e.,
uμΠμνVν ¼ kμΠμνVν ¼ 0 for any vector Vμ.
At the center of symmetry of the fluid the anisotropy

Pr − Pt must vanish [13]. There is a certain degree of
arbitrariness to satisfy this condition in a covariant fashion:
the simplest possibility is

Pt ¼ Pr − CfðρÞkμ∇μPr; ð2Þ
where fðρÞ is a generic function of the density and the
free constant C is a parameter that measures the deviation
from isotropy. For example, for the case fðρÞ ¼ ρ consid-
ered below, C has dimensions length cubed and Eq. (2)
shows that the density scale at which Pt − Pr ≫ Pr is
ρ ≫ ρanis with

ρanis ∼
R
C
∼ 6 × 1015

�
104

C̄

��
R
M

��
M
M⊙

�
g

cm3
; ð3Þ

where C̄ ¼ C=M3
⊙ and we have identified a typical length

scale with the radius R. By construction, Pt ¼ Pr at the
center of static and spherically symmetric objects, since
∂rPrjr¼0 ¼ 0.
By defining σ ≔ fðρÞkμ∇μPr, we can write Eq. (1) as

the stress-energy tensor of an isotropic perfect fluid plus an
anisotropic contribution,

Tμ
ν ¼ ðρþ PrÞuμuν þ Prg

μ
ν − CσΠμ

ν : ð4Þ
In the spherically symmetric case, uμ ¼ ðu0; u1; 0; 0Þ,
kμ ¼ ðk0; k1; 0; 0Þ, and all dynamical variables are func-
tions of ðt; rÞ only. The orthogonality conditions provide
two constraints on kμ, which is therefore completely fixed
in terms of uμ. It is straightforward to show that Πμ

ν ¼
diagð0; 0; 1; 1Þ, which simplifies some of the computations
presented below.

III. C-STARS: EQUILIBRIUM CONFIGURATIONS

For static solutions, the metric can be written as ds2¼
−eνðrÞdt2þð1−2mðrÞ=rÞ−1dr2þr2ðdθ2þsin2θdφ2Þ. The
metric variables satisfy the standard relation, m0ðrÞ ¼
4πr2ρ and ν0ðrÞ¼2ðmþ4πr3PrÞ=ðrðr−2mÞÞ, whereas the
radial pressure satisfies a modified Tolman-Oppenheimer-
Volkoff equation,

P0
rðrÞ ¼ −

ðPr þ ρÞ
rðr − 2mÞ

ðmþ 4πr3PrÞ
1þ 2

r CfðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q ; ð5Þ

which reduces to the isotropic case when C ¼ 0.
Two equations of state for Pr and fðρÞ are necessary to

close the system. The simplest choice for the function f
would be fðρÞ ¼ 1, but in this model P0

t is discontinuous at
the stellar radius since P0

tðRÞ ≠ 0; see Eq. (2). The simplest
model that ensures the continuity of Pt and its derivative at
the radius is fðρÞ ¼ ρ. We focus on this case here, although
other models [e.g., fðρÞ ¼ ρn, n > 0] give similar results.
With this choice, Eqs. (5) and (2) guarantee that Pr ¼
P0
r ¼ Pt ¼ P0

t ¼ 0 at r ¼ R.
Remarkably, Eq. (5) can be solved in closed form for a

toy model of an incompressible fluid [ρðrÞ ¼ const],
although the solution is cumbersome. We focus instead
on a standard polytropic equation of state Pr ¼ Kργ0 with
adiabatic index γ ¼ 2, where ρ0 ¼ ρ − Pr=ðγ − 1Þ is the
rest-mass density. Our results are qualitatively the same for
other standard equations of state.
The mass-radius diagram and fluid profiles of C-stars are

shown respectively in Figs. 1 and 2, for different values of

FIG. 1. Mass-radius and compactness diagrams for C-stars with
various values of the (dimensionless) anisotropy parameter C̄.
Note that when C̄ is small the M − R diagram shows peculiar
turning points, which “open up” in the large-C̄ limit. The inset
shows the deviation 1=2 −M=R from the compactness of a
Schwarzschild BH on a logarithmic scale. C-stars exist across the
various categories (UCOs, ClePhOs) introduced in Refs. [2,3].
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C, related to the density scale of strong anisotropies by
Eq. (3). There are several features worth highlighting.
(i) Overall, C-stars can be much more compact and massive
than isotropic stars and their maximum compactness
always approaches that of a Schwarzschild BH in some
region, when ρ ≫ ρanis. (ii) More importantly, C-stars exist
across a wide range of masses, evading one of the out-
standing issues with BH mimickers: in most theories giving
rise to ECOs, these approach the BH compactness in a very
limited range of masses, thus being unable to describe both
stellar-mass and supermassive BH candidates across sev-
eral orders of magnitude in mass. On the other hand, C-stars
can do so when C=M3 ≫ 1. (iii) As shown in the inset of
Fig. 1, compact configurations exceed Buchdahl’s limit and
can even be classified as ClePhOs in the classification of

Refs. [2,3]. (iv) In general, the qualitative behavior of the
equilibrium solutions depends only mildly on C, while it
depends strongly on the compactness of the star. This is
shown in Fig. 2. Configurations with moderately low
compactness display fluid profiles qualitatively similar to
the isotropic case. However, as the compactness increases
and approaches the black-hole compactness, the radial
pressure and density profiles tend to constant values in
the stellar interior, while the anisotropy Pt − Pr vanishes in
the core and displays a very sharp peak close to the radius
of the star. In the M=R → 0.5 limit this peak becomes
infinitesimally thin and approaches the radius of the star, in
a way reminiscent of gravastars with a thin layer of strongly
anisotropic pressure [29–32]. For comparison, in Table I we
present data for different representative configurations.
(v)When C ≥ 0 the fluid hasPt > 0 everywhere inside the

star, and satisfies the weak and strong energy conditions [33]
(ρþPrþ2Pt≥0, ρþPr≥0, and ρþPt≥0), whereas very
compact configurations violate the dominant energy condi-
tion (ρ ≥ Pr and ρ ≥ Pt) near the radius, where Pt attains a
maximum and Pt > ρ, for very compact configurations.

IV. RADIAL STABILITY

For any C > 0 the compactness and the anisotropy grow
in the high-density region, eventually reaching the BH
compactness (see inset of Fig. 1). Thus, even a vanishingly
small value of the anisotropy parameter C can give rise to
strongly anisotropic quasi-Schwarzschild equilibrium sol-
utions. When C is small, standard analysis of the turning
points in the mass-radius diagram [34] suggests that these
configurations are unstable. On the other hand, in the
strong-anisotropy regime, the mass-radius relation of a
C-star approaches that of a BH already on the stable branch.
To test these issues, we perform a linear stability analysis
of C-stars under radial perturbations. The spacetime metric

is written as gμν ¼ gð0Þμν þ hμν, where g
ð0Þ
μν is the metric of a

background C-star solution and hμν ¼ diagðH0ðrÞ;
H2ðrÞ; 0; 0Þe−iωt is a small perturbation in Fourier space.
Likewise, we expand the fluid density, pressure, and vector

FIG. 2. Energy density (top panel), radial pressure (middle
panel), and tangential pressure (bottom panel) profiles for differ-
ent configurations of C-stars with different anisotropy parameters
and compactness. The density and radial pressure are normalized
by the corresponding values at the center, while the tangential
pressure is normalized with the radial pressure at the same radius.
The black solid line represents an isotropic configuration with
M=R ¼ 0.14, the dashed thin (thick) red lines correspond to
anisotropic configurations with C̄ ¼ 103 for M=R ¼ 0.35
(M=R ¼ 0.49), and the dot-dashed thin (thick) yellow lines
correspond to anisotropic configurations with C̄ ¼ 104 for
M=R ¼ 0.35 (M=R ¼ 0.49). The results indicate that the quali-
tative behavior of the fluid variables in this model is roughly
independent of C̄ but depends on the compactness of the
configuration. AsM=R → 0.5, the star tends to a constant-density
configuration, while the tangential pressure profile tends to have a
very sharp peak near the radius of the star.

TABLE I. Properties of some representative C-star solutions.
The last column presents the values of σ̄max ≔ max fðPt − PrÞ=
Prg, which gives a measurement of the maximum anisotropy in
the interior of the star. Anisotropies are moderate for mildly
compact configurations, whereas more compact configurations
exhibit larger anisotropies, as also shown in the bottom panel
of Fig. 2.

C̄ ρcð×1015 gcm3Þ R=M⊙ M=M⊙ σ̄max

103 2.42 5.97 2.09 2.04
103 3.70 4.46 1.80 4.66
103 17.0 1.11 0.54 682
104 0.90 9.28 3.25 6.90
104 1.20 8.04 3.24 11.4
104 3.50 3.84 1.88 110
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components u0;1 and k0;1 as X ¼ X0 þ δXe−iωt, where X0

collectively denotes the background quantities and δX is
the corresponding radial perturbation. The orthogonality
conditions on uμ and kμ can be used to relate δu0, δk0, and
δk1 to the remaining functions. Radial fluid perturbations
propagate at the speed cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂Pr=∂ρ
p

, which is always
real and subluminal for these configurations. On the other
hand, the tangential speed of sound cannot be computed in
our framework since it requires nonspherical perturbations.
The linear system can be reduced to a second-order

differential equation for the fluid displacement, ξðrÞ ¼
i u

r

ω eν=2. The eigenvalue problem is solved by requiring
ξð0Þ ¼ 0 and ΔPrðRÞ ¼ 0, where ΔPr ¼ δpþ ξ∂rPr is
the Lagrangian variation of the pressure [35]. This selects a
discrete set of frequencies ω2, with ω2 > 0 (ω2 < 0)
defining stable (unstable) modes.
Our results are summarized in Fig. 3, where we show the

fundamental modes as a function of the compactness for
representative values of C. All of the expectations based on
the mass-radius diagrams are confirmed: configurations
with central densities below (above) that corresponding to
the maximum mass are linearly stable (unstable). Strongly
anisotropic configurations are linearly stable for M=R≲
0.42, while they become linearly unstable for higher values
of the compactness.

V. EVOLUTION EQUATIONS OF
ANISOTROPIC FLUIDS

We now discuss the full nonlinear theory. The conser-
vation of stress-energy momentum and the conservation of
baryonic current,

∇μTμν ¼ 0; ∇μðρ0uμÞ ¼ 0; ð6Þ

imply, respectively, the conservation of energy and momen-
tum density and the conservation of mass that govern the
fluid equations.
To write this covariant conservation law as an evolution

system in spherical symmetry, one needs to split the
spacetime tensors and equations into their space and time
components by means of the 1þ 1 decomposition. The line
element can be decomposed as

ds2 ¼ −α2ðt; rÞdt2 þ grrðt; rÞdr2 þ gθθðt; rÞdΩ2; ð7Þ

where α is the lapse function, grr and gθθ are positive metric
functions, and dΩ2 ¼ dθ2 þ sin2 θdφ2 is the solid angle
element. These quantities are defined on each spatial
foliation Σt with normal na ¼ ð−α; 0Þ and extrinsic curva-
ture Kij ≡ − 1

2
Lnγij, where Ln is the Lie derivative

along na.
Notice that, since Πμ

ν ¼ diagð0; 0; 1; 1Þ in spherical
symmetry, the anisotropy function σ enters only in Tθ

θ

and Tϕ
ϕ, while the rest of T

μ
ν is formally the same as for an

isotropic fluid. The projections of this tensor and the
baryonic current, in spherical symmetry, are given by

D ¼ ρ0W; U ¼ hW2 − Pr; Sr ¼ hW2vr; ð8Þ

Srr ¼ hW2vrvr þ Pr; Sθθ ¼ Pr − Cσ; ð9Þ

where we have defined the enthalpy h ¼ ρþ p ¼ ρ0ð1þ
ϵÞ þ p in terms of the rest-mass density ρ0 and the internal
energy ϵ. Furthermore, we have defined

σ ¼ ρð1þ ϵÞ Wffiffiffiffiffiffi
grr

p
�
vr
α
∂tPr þ ∂rPr

�
; ð10Þ

∂tPr ¼ fðα; grr; ur; ∂ur; ∂rPr; ∂rρ; σ; C̄Þ; ð11Þ

ur ≡Wvr; W ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vrvr

p : ð12Þ

It is straightforward to obtain generic evolution equa-
tions (in the sense that they do not depend on the specific
form of the stress-energy tensor) for these projected
quantities by projecting the conserved equations (6). The
evolved conserved quantities fD;U; Srg are not modified
by the anisotropies. Therefore, the algorithm to convert
fromconserved to primitiveor physical fieldsfρ0; ϵ; Pr; vrg,
given an equation of state Pr ¼ Prðρ0; ϵÞ, is the same as for
isotropic fluids.
Einstein’s equations can be written by using the Z3

formulation in spherical symmetry [36]. This formulation
introduces independent variables in order to form a first-
order evolution system. The final system must be com-
plemented with gauge conditions for the lapse. We use the

FIG. 3. The time scale τ ¼ 1=jωj for C-stars as a function of the
compactness for various values of C̄ (continuous curves). Con-
figurations on the left of the cusps (corresponding to the zero
crossing of ω2) are linearly stable, whereas those on the right are
linearly unstable. The threshold corresponds to the maximum
mass of the object shown in Fig. 1. We also show the echo delay
time (15) for these configurations (dashed curves). The markers
refer to the time scale extracted from the nonlinear evolutions,
which systematically predict more stable configurations.
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harmonic slicing condition ∂t ln α ¼ −αtrK, where
trK ¼ Kr

r þ 2Kθ
θ.

Finally, the evolution system is written in balance law
form [37],

∂tUþ ∂iFiðUÞ ¼ GðUÞ; ð13Þ

where U ¼ fα; grr; gθθ; Kr
r; Kθ

θ; Ar; Dr
rr; Dr

rθ; Zr; D;U; Srg
is a vector containing the final set of evolution fields.
Further details on the numerical procedure and code
validation are provided in Appendix B.
Thus, one of our main results is that the system of partial

differential equations describing the anisotropic fluid and
the dynamical spacetime (which are detailed above) is well
behaved, and fully nonlinear simulations can be performed.
Our simulations confirm the stability properties of the
equilibrium configurations found in the previous section.
Figure 4 displays the evolution of the central value of the
rest-mass density of both stable and unstable equilibrium
configurations, for different values of the parameter C, as a
function of time. Clearly, small numerical perturbations
drive unstable solutions away from their original configu-
ration, whereas they remain bound for solutions in the
stable branch.
The full nonlinear results for the time scale τ are

compared with the linear analysis in Fig. 3. We find good
agreement for stable configurations at moderately small
compactness. While our code agrees very well with the
linearized analysis for C ¼ 0, for large compactness and
large values of C̄, the nonlinear evolution shows that the
threshold for stability is pushed to larger compactness, as
compared to linear analysis. Furthermore, although not
shown in Fig. 3, we find indication that unstable configu-
rations typically have a lifetime longer than the one
predicted solely by linearized studies. We do not have a
solid explanation for this discrepancy; it could be due to

nonlinearities driving the energy to higher modes, or to
other effects. We postpone a detailed analysis for the future,
but we point out that such nonlinear results are potentially
exciting: the merger of two C-stars might form an ultra-
compact configuration which lies on the unstable branch,
but with a long lifetime and therefore with the potential to
impart unique signatures to the postmerger gravitational-
wave (GW) signal, some of which are described below. In
addition, C-stars with compactness M=R ≈ 0.4 are non-
linearly stable. To the best of our knowledge, this is the first
model of stable ultracompact objects featuring a clear
photon sphere (at R ¼ 3M) and which are dynamically
well behaved.

VI. PHENOMENOLOGY OF C-STARS

We have just shown that C-stars can be radially stable and
as compact as BHs. Thus, they can essentially mimic all of
the geodesic properties of a BH [6]. Some smoking-gun
signature will however appear in dynamical situations, as
we now describe.

A. Tidal Love numbers

The tidal Love numbers (TLNs) define the deformability
of a star immersed in an external field, such as the one
produced by a companion in a binary [38]. These quantities
are particularly useful for GW astronomy, since they affect
the late-inspiral GW signal from a coalescence and contain
information about the nature of the merging objects [39].
The prime motivation to measure TLNs is to constrain the
neutron-star equation of state [39,40] and to convey
information on the nature of compact objects [41–44]: in
GR, the TLNs of a BH are precisely zero [45–50], but they
are nonvanishing for ECOs [41,51–53], being thus a
smoking gun for ultracompact horizonless objects.
The TLNs can be computed with standard techniques

[38,41–43,54] by studying small nonspherical (quadrupo-
lar) deformations of a compact object. As a proof of prin-
ciple, we focus on the quadrupolar scalar TLNs, which are
qualitatively similar to the gravitational case and provide
the same phenomenology [41]. In the large-compactness
limit, our results are consistent with the relation

kscalar2 ∼ aC̄p
�
Δ
M

�
n
; ð14Þ

where kscalar2 is the scalar TLN as defined in Ref. [41], Δ is
the proper distance [55] between R and the Schwarzschild
radius 2M, and a ∼Oð1Þ, p ≈ 1.2, and n ≈ ð3–3.5Þ mildly
depend on C. Remarkably, this behavior is markedly
different from that of other ECO models, for which the
TLNs vanish logarithmically, k2 ∼ 1= logðΔ=MÞ, in the BH
limit [41,43], and shows that the TLNs of C-stars are very
small as M=R → 1=2. As a reference, for a neutron star
kscalar2 ≈ kgravitational2 ≈ 200 or larger [40].

FIG. 4. Central density ρ0 as a function of time for various
configurations in the stable (continuous curves) and in the
unstable (dotted curves) branch.
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B. GW echoes

GW echoes in the postmerger GW signal from a binary
coalescence are a smoking gun for structure at the horizon
scale [56–59]. Our scope here is to simply show that
perturbed C-stars produce echoes when sufficiently com-
pact: a more detailed analysis is left for the future. We
consider a test free scalar field on the background of a
C-star. Standard spherical-harmonic and Fourier decom-
position lead to ð∂xx − ∂tt − VÞψðx; tÞ ¼ 0, where x is the
tortoise coordinate defined by dr=dx ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g00g11

p
, and

the effective potential reads VðrÞ ¼ −g00ðlðlþ1Þ
r2 − g0

11

2rg2rr
þ

g0
00

2rg11g00
Þ, where l ¼ 0; 1; 2;… is the harmonic index and

0 ≡ d=dr. Figure 5 shows the linear response of a C-star
with initial condition ∂tψðx; 0Þ ¼ expð−ðx − x0Þ2=σ2Þ and
ψðx; 0Þ ¼ 0. Echoes are associated with radiation that
bounces back and forth between the object and the photon
sphere [61], slowly leaking to infinity through wave
tunneling [56,57]. Thus, the time delay between echoes
roughly corresponds to twice the light crossing time from
the center of the star to the photon sphere [56,57,59],

τecho ¼
Z

3M

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eνð1 − 2m=rÞp : ð15Þ

Interestingly, this delay time is typically dominated by the
travel time within the star, not by the Shapiro delay factor
∼ logð1 − 2M=RÞ near the surface [57]. This property is
akin to (isotropic) ultracompact stars near Buchdahl’s limit
[3,59] and to certain phenomenological models [62] con-
sidered in the past.

VII. DISCUSSION

To summarize, we introduced a covariant framework to
study anisotropic stars in GR, whose resulting evolution
system is well posed. Thus, relativistic anisotropic fluids
can be explored in full-blown nonlinear evolutions, as we
hope to do in the near future.
Our results are exciting: C-stars provide a prototypical

model for ultracompact objects, which is of immense utility
in the quest to quantify the evidence for BHs and in
identifying possible smoking guns for new physics [2,3,5].
Such configurations can be metastable and display the
whole phenomenology recently predicted for ultracompact
horizonless objects. In particular, they can be as massive
and compact as BHs, have vanishingly small TLNs [41],
and produce GW echoes [56,57] when perturbed (evading
recent results [63], due to anisotropy).
It is intriguing to notice that C-stars share many key

properties with gravastars [29,31], although the dynamics
of the latter lacks a solid theoretical framework (see
Ref. [64] for recent progress). Thus, C-stars might serve
as an effective model for semiclassical corrections near the
horizon, as predicted in other contexts [32,65]. Some of
these models are nonperturbative in the Planck length lP,
and they would predict C=M3∼M=lP∼1038 for M ¼ M⊙,
which motivates the strong-anisotropy regime explored
here. It is also likely that the magnitude of anisotropies
grows with the compactness of the object. Anisotropic
effects might become stronger during the merger and an
ordinary neutron star might “anisotropize” dynamically.
We have worked with a very crude toy model.

Generalizations include, for example, models with
fðρÞ ¼ ρn; preliminary results for n > 1 show that stars
in the stable branch are even more compact than the
models presented here. We are tempted to conclude that
there are very generic models of anisotropy which lead to
the same phenomenology as the one we report.
Finally, we focused on the nonlinear dynamics in the

spherically symmetric case; extensions of our covariant
formalism to less symmetric configurations and simulations
of binary C-stars are ongoing, based on the general
covariant framework presented in Appendix A. This is
particularly interesting in light of our results: the mass-
radius diagram of C-stars suggests that, for (say) C̄ ¼ 108,
two merging C-stars with equal mass M ≈ 11 M⊙ (com-
pactnessM=R ≈ 0.18) might give rise to a stable C-star near
the maximum mass Mf ≈ 21 M⊙ and with compactness
Mf=R ≈ 0.43, being thus a viable candidate for an ECOþ
ECO → ECO coalescence.
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APPENDIX A: GENERAL COVARIANT
FRAMEWORK BEYOND
SPHERICAL SYMMETRY

In this appendix we generalize the covariant framework
for anisotropic fluids in GR without any special symmetry.
In the most general case, the pressure can be different
along three generic spatial directions, identified by a triad
of unit space-like vectors: kμ, ξμ, and ημ. The anisotropies
can be defined in terms of deviations σ1, σ2, and σ3 from a
reference isotropic pressure function, PISO. The stress-
energy tensor describing the resulting anisotropic fluid can
be written as

Tμν ¼ TISO
μν þ σ1kμkν þ σ2ξμξν þ σ3ημην; ðA1Þ

where we have defined the stress-energy tensor of an
ordinary isotropic fluid as

TISO
μν ¼ ðρþ PISOÞuμuν þ gμνPISO; ðA2Þ

with uμ being the usual fluid four-velocity.
The unit vectors kμ, ξμ, and ημ are orthogonal to each

other and to uμ, i.e., they are constrained by the nine
conditions kμkμ ¼ ξμξμ ¼ ημημ ¼ 1 and uμkμ ¼ uμξμ ¼
kμξμ ¼ kμημ ¼ ξμημ ¼ uμημ ¼ 0. These conditions can
be used to fix nine out of the 3 × 4 components of kμ,
ξμ, and ημ. The remaining three components can be
arbitrarily fixed without loss of generality, since they are
associated with the translation of the origin of the frame
identified by the triad of pressure vectors.
Using the above conditions, we can define the

projections

uμTμν ¼ ρuν; ðA3Þ

kμTμν ¼ ðPISO þ σ1Þkν ¼ P1kν; ðA4Þ

ξμTμν ¼ ðPISO þ σ2Þξν ¼ P2ξν; ðA5Þ

ημTμν ¼ ðPISO þ σ3Þην ¼ P3ην; ðA6Þ

where we defined Pi ≔ PISO þ σi. Thus, in this notation
each vector is related with a specific direction of anisotropy.
When σ1 ¼ σ2 ¼ σ3 ¼ 0 the stress-energy tensor above
reduces to the usual stress-energy tensor for an isotropic
perfect fluid.
In analogy to the spherically symmetric case, we provide

three equations of state for P1, P2, and P3 of the form

σ1 ¼ P1 − PISO ¼ C1f1ðρÞkμ∇μρ; ðA7Þ

σ2 ¼ P2 − PISO ¼ C2f2ðρÞξμ∇μρ; ðA8Þ

σ3 ¼ P3 − PISO ¼ C3f3ðρÞημ∇μρ; ðA9Þ

where the free constants C1, C2, and C3 are generically
dimensionful. At variance with the main text, we have
defined the equations of state in terms of covariant
derivatives of the density, since the latter is unique.
Let us now show that the general framework reduces to

the spherically symmetric case considered in the main text.
In spherical symmetry, the angular components of the
vectors must vanish. In this case, kμ ¼ ðk0; k1; 0; 0Þ and the
other two vectors are identically zero, ξμ ¼ 0 and ημ ¼ 0.
Equations (A7)–(A9) then take the form

P1 ¼ PISO þ C1f1ðρÞkμ∇μρ; ðA10Þ

P2 ¼ PISO; ðA11Þ

P3 ¼ PISO; ðA12Þ

ANISOTROPIC STARS AS ULTRACOMPACT OBJECTS IN … PHYS. REV. D 99, 104072 (2019)

104072-7



and therefore σ2 ¼ σ3 ¼ 0. The spherically symmetric
case is recovered by defining Pt ¼ PISO, Pt ¼ Pr −
C1f1ðρÞkμ∇μρ, and f1ðρÞ ¼ fðρÞ∂Pr=∂ρ to account for
the different definition in the equation of state.

APPENDIX B: CODE VALIDATION

The numerical code used in this work is a simple exten-
sion of the one presented in Ref. [37] to study fermion-
boson stars. The spatial discretization of spacetime fields
is performed using a third-order accurate finite volume
method [66], which can be viewed as a fourth-order finite-
difference scheme plus third-order adaptive dissipation.
The dissipation coefficient is given by the maximum
propagation speed in each grid point. For the fluid matter
fields, we use a high-resolution shock capturing method
with monotonic-centered limiter. The time evolution is
performed through the method of lines using a third-order
accurate strong stability-preserving Runge-Kutta integra-
tion scheme, with a Courant factor of Δt=Δr ¼ 0.2 so that
the Courant-Friedrichs-Levy condition dictated by the
principal part of the equations is satisfied. Most of the
simulations presented in this work have been done with a
spatial resolution of Δr ¼ 0.00625 M⊙, in a domain with
outer boundary situated at r ¼ 100 M⊙. We have verified,
by changing the position of the outer boundary, that the
results do not vary significantly with different choices of
the boundary. We use maximally dissipative boundary
conditions for the spacetime variables, and outflow boun-
daries for the fluid matter fields.
This nonlinear code has passed a large set of stringent

tests. First, as it was shown in Fig. 9 of Ref. [37], it already
recovered the well-known frequencies of a neutron star
with mass M ¼ 1.4 M⊙ (as calculated, for instance, in
Ref. [67]). Furthermore, we have extensively compared our
nonlinear and linear codes for C̄ ¼ 0, finding an excellent
agreement on the quasinormal frequencies, as shown in
Table II.
Finally, we always performed convergence tests, espe-

cially for the extreme cases with C̄ ≫ 1. Indeed, in the latter
cases passing convergence tests requires unusually high
spatial/time resolutions to resolve steep structures near the
radius of the star (see below). For all stable cases we found

that the results converge as expected. The frequencies
reported in the main text are obtained with the highest
resolution and we checked that they are almost insensitive
to the time/spatial resolution.
We display the central density of the star for one of these

convergence tests in Fig. 6, corresponding to a configura-
tion with M=R ¼ 0.306 with C̄ ¼ 1000. We use Δr ¼
f0.00625; 0.003125; 0.0015625gM⊙ for this test. The star
is initially in equilibrium, only perturbed by numerical
discretization errors, and oscillates with its associated
normal frequencies. In addition, there is a deviation from
the constant stationary value due to numerical errors, which
decreases as the resolution is increased. The solution shows
almost a second convergence. Notice that, although this
value is below the third-order convergence expected for
smooth solutions, it is higher than the linear convergence
expected in the presence of strong shocks.

TABLE II. Characteristic oscillation times for C̄ ¼ 0 and
different compactness. We compare the result of the nonlinear
simulations (second column) with those of the linear analysis
(third column).

M=R τnonlinear τlinear

0.12 22.3 22.5
0.14 22.4 22.3
0.16 23.06 22.9
0.18 24.94 25.2
0.20 34.75 34.6

FIG. 6. Convergence test for C̄ ¼ 1000 and M=R ≈ 0.306.
(Top) Central density ρ0 as a function of time for three resolutions
Δr ¼ f0.00625; 0.003125; 0.0015625gM⊙. (Bottom) Fourier
transform of the central density. The first peak is centered at
the same frequency (i.e., corresponding to the fundamental mode
of the characteristic oscillation) for the three resolutions.
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