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Motivated by situations with temporal evolution and spatial symmetries both singled out, we develop a
new 2þ 1þ 1 decomposition of spacetime, based on a nonorthogonal double foliation. Time evolution
proceeds along the leaves of the spatial foliation. We identify the gravitational variables in the velocity
phase-space as the 2-metric (induced on the intersection Σtχ of the hypersurfaces of the foliations), the
2þ 1 components of the spatial shift vector, together with the extrinsic curvature, normal fundamental
form and normal fundamental scalar of Σtχ , all constructed with the normal to the temporal foliation. This
work generalizes a previous decomposition based on orthogonal foliations, a formalism lacking one metric
variable, now reintroduced. The new metric variable is related to (i) the angle of a Lorentz-rotation between
the nonorthogonal bases adapted to the foliations, and (ii) to the vorticity of these basis vectors. As a first
application of the formalism, we work out the Hamiltonian dynamics of general relativity in terms of the
variables identified as canonical, generalizing previous work. As a second application we present the
unambiguous gauge-fixing suitable to discuss the even sector scalar-type perturbations of spherically
symmetric and static spacetimes in generic scalar-tensor gravitational theories, which has been obstructed
in the formalism of orthogonal double foliation.
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I. INTRODUCTION

The modern theory of gravitation, general relativity
(GR), has been successfully tested multiple times on the
Solar Sytem scale. When confronted with observations
on both galactic scales and beyond, agreement with
predictions can however be reached only at the price of
introducing dark matter and dark energy, neither of them
identified or detected by other means than gravitational.
Lacking indications on manifestations of these forms of
matter in the Standard Model interactions, they could be
included in the gravitational sector, either as geometric
modifications arising from possible higher-order dynam-
ics or as an excess of fields representing gravity beyond
the metric tensor, possibly including scalars, vectors,
2-form fields or even a second metric. As a rule, the
physical metric couples to these in a nonminimal way,
opposed to dark matter/dark energy models, which are
coupled minimally. The simplest such model, of a single
scalar field complementing the metric, has been studied
extensively, both from the desire to explain dark matter/
dark energy or in order to study inflation.
The most generic single scalar-tensor model described

by second order differential equations (hence avoiding
Ostrogradski instabilities) for both the metric and the
scalar field has been proposed by Horndeski [1] and
rediscovered in a modern context in connection with
generalized galileons [2].

While allowing for higher order than two, certain beyond
Horndeski models could guarantee that the propagating
degrees of freedom (d.o.f.) still evolve according to a
second order dynamics. Indeed, an effective field theory
(EFT) of cosmological perturbations has been worked out
by Gleyzes et al. [3,4], based on (a) a Lagrangian depend-
ing on the lapse function and some geometrical scalar
quantities emerging in the Arnowitt-Deser-Misner (ADM)
decomposition on the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) background and (b) the unitary gauge,
allowing to absorb the scalar field perturbation by an
adequate time coordinate choice (the lapse is then asso-
ciated with the corresponding constant scalar-field hyper-
surfaces). The linear perturbation equations contain time
derivatives at second order, although spatial derivatives
could be of higher order (in the Horndeski subclass the
latter are also of second order). A generalization for two
scalar fields representing dark matter and dark energy
has been advanced in Ref. [5]. Another generalization
has been discussed in Ref. [6], referring to perturbations of
a spherically symmetric and static background, treated
similarly.
These theories should obey the requirements of
(A) stability, guaranteed by the avoidance of both scalar

ghosts (no negative kinetic term in the second order
Lagrangian governing the evolution of linear per-
turbations) and Laplacian instabilities (no negative
sound speed squared),
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(B) agreement with Solar System tests, notably the
Vainshtein mechanism suppressing the propagation
of the fifth force inside the Solar System (no L5

contribution to the Horndeski Lagrangian) [7–9],
(C) agreement with weak lensing observations (con-

straints from deviations from the Newtonian law
and light bending by simultaneous fitting of x-ray
and lensing profiles of galaxy clusters) [10].

The recent detections of gravitational waves from
10 coalescing binary black holes and one neutron star
merger by the LIGO Scientific Collaboration and Virgo
Collaboration [11–17] have added new constraints. On the
one hand, the mass of the graviton has been severely
constrained by testing a massive dispersion relation [18].
Then a wide family of dispersion relations [19] were tested,
disruling [13] Lorentz-violation, Hořava-Lifsic theories,
certain extra dimensional, multifractal theories, doubly
special relativity and setting an even harder constraint on
the graviton mass at 5.0 × 10−23 eV=c2 [20]. On the other
hand the small difference in the arrival time of the
gravitational waves from a neutron star coalescence [16]
and accompanying γ-radiation confirmed that the tensorial
gravitational modes propagate with the speed of light
within −3 × 10−15 and þ7 × 10−16 accuracy [21]. By
exploring previously existing analyses on the Laplacian
stability and ghost avoidance in Horndeski theories [22,23],
from these constraints the L5 contribution has been disruled
once again, together with the kinetic term dependence of L4

[24–26]. A slightly less restrictive condition emerged for
the beyond Horndeski models. Further, three of the five
parameters appearing in the effective theory of dark energy
were severely constrained by combining the gravity wave
results with galaxy cluster observations [27].
The stability of spherically symmetric, static spacetimes

has been discussed for both the odd [28] and even modes
[29] of the perturbations in Horndeski theories, also for the
odd modes in the beyond Horndeski theories [6]. The latter
relied on a double foliation of spacetime along orthogonal
spatial and temporal leaves, developed in Refs. [30,31].
Three independent background dynamical equations were
identified and the conditions for avoidance of ghosts
and Laplacian instabilities of the odd mode perturbations
established.
The formalism of the orthogonal double foliation relies

on the extensive use of adapted metric variables, which bear
the role of canonical coordinates and on embedding
variables (extrinsic curvatures, normal fundamental forms,
and normal fundamental scalars of the 2-surfaces generated
by the intersection of the foliations), some of them
emerging as canonical momenta, others as pure spatial
derivatives of the coordinates. The odd sector of perturba-
tions of spherically symmetric, static spacetimes has been
analyzed in terms of these quantities [6].
Spacetime perturbations can also be discussed through

other decomposition techniques, including: (I) the first

order system of 70 coupled differential equations for 50
independent variables of the black hole perturbation for-
malism à la Chandrasekhar [32], based on the Newman-
Penrose formalism (an 1þ 1þ 1þ 1 decomposition); (II)
the formalism based on the numerous variables arising
from a 2þ 1þ 1 decomposition based on kinematical
quantities (optical scalars), supplemented by the electric
and magnetic projection of the Weyl tensor [33,34]; (III)
a ð2þ 1Þ þ 1 decomposition based on the introduction of
the quotient space defined by the orbits of a rotational
Killing vector [35,36]; (IV) a temporal foliation followed
by a further 2þ 1 slicing to deal with axisymmetric and
stationary configurations [37], generalized later on for a
2þ 1 foliation of a hypersurface with arbitrary causal
character [38,39], a technique also employed in
Ref. [40] for identifying a hyperbolic system in the
constraint structure, rewritten in terms of the 2þ 1 decom-
position of the extrinsic curvature of the hypersurfaces
explored previously in the orthogonal double foliation
formalism of Ref. [30]; (V) the standard metric perturbation
formalism, explored in a spherically symmetric, static setup
in Refs. [28,29]. The advantage of the orthogonal double
foliation formalism over the first two consist in its sub-
stantially reduced number of variables. A comparison with
the third and fourth has been presented in [30]. The third
relies heavily on the use of a Killing vector, which is not a
necessity for the orthogonal double foliation. Although the
fourth approach contains the same number of metric
variables (9), it does not employ all geometric quantities
playing an essential role in Refs. [30,31]. In particular,
Ref. [38] introduces a second fundamental form combining
a set of dynamical and nondynamical variables explored in
Refs. [30,31], a normal fundamental form but no normal
fundamental scalar. Finally, the advantage over the metric
perturbation formalism is the canonical (geometrodynam-
ical) interpretation of the variables.1

The simplicity of the orthogonal double foliation of
Refs. [30,31] however required to waste one gauge d.o.f.
for imposing the orthogonality requirement after the
perturbation. This hampered the discussion of the even

1Other spacetime decomposition techniques are also known.
Applying the formalism developed in the seminal monograph
[41], a 2þ 2 breakup of the field equations was advanced in
Ref. [42] with the aim of identifying the gravitational d.o.f. in the
so-called conformal two-structure (the latter representing the
information on how the family of selected 2-surfaces is embedded
in a 3-surface). For the discussion of the initial value problem
Ref. [43] developed the 2þ 2 decomposition of spacetime in
detail, based on space-like 2-surfaces fSg rigged by a dyad basis
given by their two mutually orthogonal normals (and the
respective orthogonal 3-foliations). Then the covariant deriva-
tives of these normals were decomposed in terms of the extrinsic
curvatures of fSg, the induced connection of the timelike
2-surface fTg spanned by the dyad basis and the curvature tensor
of fTg. The Einstein equations were decomposed accordingly.
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modes, carrying an arbitrary function of time, hence losing
their physical interpretation [6].
It is the purpose of the present paper to lift the condition

of orthogonality of the two foliations in order to recover the
full power of gauge fixing and open the way for the
discussion of the even mode perturbations in generic scalar-
tensor theories on a spherically symmetric, static back-
ground, complementing the similar discussion of the odd
sector.
The paper is organized as follows. In Sec. II we develop

the new 2þ 1þ 1 decomposition of the spacetime B based
on two nonorthogonal foliations, one of them temporal
(St, characterized by constant t), the other one spatial
(Mχ , with constant χ). This generalizes the formalism of
the orthogonal double foliation of spacetime, developed
in Refs. [30,31], by allowing for a 10th metric function N .
We adapt suitable bases to both foliations, then give the
evolutions along the ∂=∂t and ∂=∂χ congruences (tangent
to Mχ and St, respectively) in both bases. Two of the basis
vectors (tangent to the intersection Σtχ of St and Mχ) are
common in both bases, while the other two pairs are related
by a Lorentz rotation with angle ϕ ¼ tanh−1 ðN =NÞ, where
N is the lapse function. Another geometric interpretation of
the 10th metric function arises as the vorticity of the basis
vectors orthogonal to both the hypersurface normals (of the
same basis) and to Σtχ . This is shown here through the
discussion of the algebras of each basis vectors and in the
discussion of the vorticities in the two Appendices.
In Sec. III we characterize the embedding in terms of

extrinsic curvatures, normal fundamental forms and normal
fundamental scalars of the hypersurface normals, also
introduce the 2þ 1 decomposed form of the curvature
of their congruences (their nongravitational accelerations).
For the basis vectors orthogonal to them we introduce
similar quantities. We establish the interconnections among
all those geometric quantities. In Sec. IV we also derive
their connection with the time- and χ-derivatives of the
metric functions. This enables us to select those geometric
variables, which bear a dynamical role, e.g., connected to
canonical momenta.
As a first application, we present the Hamiltonian

formalism of general relativity in the 2þ 1þ 1 decom-
posed form in Sec. V. We derive the canonical momenta,
then the Hamiltonian and diffeomorphism constraints and
the boundary terms of the action, all in terms of canonical
data defined on Σtχ . We recover previous results of
Ref. [31] applying for the orthogonal double foliation in
the vanishing N limit. The nonorthogonality of the folia-
tions also generates new terms.
Then, in Sec. VI we explore the diffeomorphism gauge

freedom for fixing the perturbations on the static and
spherically symmetric background of beyond Horndeski
theories in an unambiguous way. This result opens up the
possibility for the discussion of the even sector of the
perturbations. Although the unambiguous gauge fixing is

different from the one employed for the odd sector in
Ref. [6], the results of the stability analysis presented there
are unaffected, as the two sectors decouple.
In Sec. VII we present our conclusions. Two Appendices

are devoted to discuss the consequences of the hypersurface
orthogonality of the normal basis vectors and the inter-
pretation of the vorticities of the complementary basis
vectors in terms of the geometric quantities introduced in
the main body of the paper.
We use the abstract index notation throughout the paper.

Latin and greek indices, respectively, denote 4-dimensional
spacetime and 3-dimensional spatial abstract indices.
Boldface lower- and uppercase indices differentiate among
2-dimensional and 4-dimensional basis vectors, respec-
tively. 4-dimensional quantities will carry a distinguishing
tilde sign, while 3-dimensional quantities a overhat (or
reversed overhat) sign. Tensors defined both on the full
spacetime and on lower-dimensional (hyper)surfaces carry
Latin indices, the latter obeying the required projection
conditions. Quantities defined on the background in a
perturbational setup carry an overbar. Gauge transformed
quantities carry a wide overhat sign. Round or square
brackets on indices denote symmetrization or antisymmet-
rization, respectively.

II. THE NONORTHOGONAL 2+ 1+ 1
DECOMPOSITION OF SPACETIME

Let B be a 4-dimensional manifold with metric g̃ab of
Lorentzian signature. We assume the manifold admits both
a timelike and a spacelike foliation. In this section we
generalize the formalism of [30,31] by dropping the
orthogonality requirement of the foliations St (with con-
stant time coordinate t) and Mχ (with constant space
coordinate χ).
On the tangent space of the doubly-foliable spacetime B

we introduce the bases eA ¼ f∂=∂t; ∂=∂χ; Eig (with Ei
some basis elements of the tangent space of Σtχ) and its
dual eB ¼ fdt; dχ; Ejg on the respective cotangent space.
Let na be the (timelike) unit normal to St, while ma the

(spacelike) unit normal to both na and Σtχ . With them we
introduce the basis fA ¼ fn;m; Fig adapted to St (with Fi
basis elements of the tangent space of Σtχ) and its dual
fB ¼ fn̄; m̄; Fjg. The (spacelike) unit normal to Mχ is la,
while ka denotes the (timelike) unit normal to both la and
Σtχ . The basis adapted to Mχ is gA ¼ fk; l; Gig (where Gi

are basis elements of the tangent space of Σtχ), with gB ¼
fk̄; l̄; Gjg its dual.
For simplicity one can chose coordinate basis vectors

Ei ¼ Fi ¼ Gi ¼ ∂=∂yi. From the causal character of the
basis vectors and from the duality relations we get

n̄a ¼ −na; m̄a ¼ ma;

k̄a ¼ −ka; l̄a ¼ la:
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A. The induced metric

The 4-metric g̃ab can be decomposed in two equivalent
ways

g̃ab ¼ −nanb þmamb þ gab; ð1Þ

g̃ab ¼ −kakb þ lalb þ gab: ð2Þ

As usual g̃ba ≡ δba, while the mixed form of the induced
metric gab projects to Σtχ . With this projection, both
covariant derivatives and Lie derivatives along a congru-
ence Va of any 4-dimensional tensor T̃a1…ar

b1…br
could be

projected onto Σtχ :

DaT̃
a1…ar
b1…bq

≡ gcag
a1
c1…garcr g

d1
b1
…g

dq
bq
∇̃cT̃

c1…cr
d1…dq

; ð3Þ

LVT̃
a1…ar
b1…bq

≡ ga1c1…garcr g
d1
b1
…g

dq
bq
L̃VT̃

c1…cr
d1…dq

: ð4Þ

We note that whenever T̃a1…ar
b1…bq

is a projected object

onto Σtχ , the expression DaT̃
a1…ar
b1…bq

is exactly the covariant

derivative in Σtχ (which annihilates gab), while LVT̃
a1…ar
b1…bq

describes an evolution along the congruence Va (it repre-
sents the partial derivative with respect to the adapted
coordinate v, thus V ¼ ∂=∂v, where v could be either
t or χ). Otherwise they become but notations, as they fail to
obey the Leibniz rule [30]).

B. Evolutions in the fA basis

The first two elements of the coordinate basis eA,
representing evolution vectors can be generically decom-
posed in the fA basis as

� ∂
∂t
�

a
¼ Nna þ Na þNma; ð5Þ

� ∂
∂χ

�
a
¼ Mma þMa þMna: ð6Þ

Here Na and Ma (N and M) are the components of the
3-dimensional shift vectors along (orthogonal to) Σtχ , while
N and M represent lapse type functions of the respective
evolutions. Together with the 3 independent components of
gab there seem to be 11 gravitational variables at this stage,
but their number will be reduced to 10. Indeed, the duality
relation hdt; ∂=∂χi ¼ 0 implies M ¼ 0, which in turn
implies through Eq. (6) that ∂=∂χ is tangent to St, see
also Fig. 1.
From the rest of the duality relations heB; eAi ¼ δBA

one gets

n̄ ¼ Ndt;

m̄ ¼ N dtþMdχ;

Fj ¼ NjdtþMjdχ þ Ej: ð7Þ
As ∂=∂t is timelike and Na spacelike, the inequalities

N2 −N 2 > gabNaNb ≥ 0

hold, while ∂=∂t lying in the future light cone implies
N > 0.
We conclude this subsection by giving in Table I the

algebra of the basis vectors fA. As expected from the
Frobenius theorem, the basis vectors fm;Fig span
the tangent space of St, while from the dual form of the
Frobenius theorem the fourth basis vector na turns out
vorticity-free (also shown explicitly in Appendix A). The
same type of reasoning yields that ma has vorticity (as the
component alongma of the ½n; Fj� bracket is nonvanishing,
hence the vectors fn; Fig do not span a hypersurface). This
vorticity is given in Appendix B and disappears together
with N in the orthogonal foliation limit employed in
Refs. [30,31]. Hence the vorticity of the basis vector ma

is generated by the nonorthogonality of the two foliations.

C. The role of the 10th metric variable

The new element in the formalism as compared with that
of Refs. [30,31] is the shift component N , which reestab-
lishes the number of gravitational variables as 10, equiv-
alent to the 4-metric variables.
Straightforward calculations employing also the rest of

the duality relations hfB; fAi ¼ δBA ¼ hgB; gAi and Eqs. (7)
lead to the relation between the two adapted bases

FIG. 1. The decomposition of the temporal and radial evolution
vectors in the fA basis. (For visualization purposes a negative N
was chosen).
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�
k̄

l̄

�
¼

�
c −s
−s c

��
n̄

m̄

�
;

(where s ¼ sinhϕ, c ¼ coshϕ) and�
ka

la

�
¼

�
c s

s c

��
na

ma

�
; ð8Þ

thus in the form of a Lorentz-rotation. Its angle is defined by

N ¼ N tanhϕ: ð9Þ
This represents the second geometric interpretation of the
10th metric variable (beyond the vorticity of m).

D. Evolutions in the gA basis

With the Lorentz rotations given in the previous sub-
section it is easy to express the evolution vectors in the gA
basis: � ∂

∂t
�

a
¼ N

c
ka þ Na; ð10Þ

� ∂
∂χ

�
a
¼ Mð−ska þ claÞ þMa: ð11Þ

Remarkably, the evolution vector ∂=∂t has no component
along l, hence it is tangent to Mχ , see also Fig. 2.
Further exploring the duality relations one gets

k̄ ¼ −Msdχ þ N
c
dt;

l̄ ¼ Mcdχ;

Gj ¼ NjdtþMjdχ þ Ej ¼ Fj: ð12Þ

The algebra of the basis vectors gA is presented in Table II.
Again, from the Frobenius theorem, the basis vectors
fk; Gig span the tangent space of Mχ and from its dual
form the fourth basis vector la turns out vorticityfree. The
vector ka however has vorticity (as the component along ka

of the ½l; Gj� bracket is nonvanishing). This vorticity is
given in Appendix B and again disappears with N in the
orthogonal foliation limit employed in Refs. [30,31]. Hence
the vorticity of the basis vector ka is also generated by the
nonorthogonality of the two foliations. Finally we note that

in the orthogonal foliation limit N → 0 the algebras given
in Tables I–II coincide and the vorticities of the basis
vectors disappear.

III. CODIMENSION-2 EMBEDDING OF Σtχ

In this section we introduce a series of geometrical
quantities characterizing the embedding of Σtχ and we
analyze their relationship with various coordinate deriva-
tives of the metric variables.
We have defined a total of four normals to the surface Σtχ ,

two pairs taken from the bases fA and gA, respectively.With
each of them we define an extrinsic curvature, as follows:

Kab ≡Danb ¼
1

2
Lngab;

Lab ≡Dalb ¼
1

2
Llgab;

K�
ab ≡Dakb ¼

1

2
Lkgab;

L�
ab ≡Damb ¼

1

2
Lmgab: ð13Þ

TABLE I. The algebra of the basis vectors fA. The components of the brackets enlisted in the first line along the vectors in the first
column are given.

½n;m�a ½n; Fj�a ½m;Fj�a
na 1

M ½∂χðlnNÞ − 1
MMj∂jðlnNÞ� ∂jðlnNÞ 0

ma 1
MN ½−∂tM þ ∂χN þ Nj∂jM −Mj∂jN � M

N ∂jðNMÞ ∂jðlnMÞ
Fa
i

1
MN ð−∂tMi þ ∂χNi þ Nj∂jMi −Mj∂jNiÞ 1

N ½∂jNi − N
M ∂jMi� ∂jMi

M

FIG. 2. The decomposition of the temporal and radial evolution
vectors in the gA basis. (For visualization purposes a negative s
was chosen).
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All these tensors are symmetric, as shown in the
Appendices A and B.
With the two normals to the hypersurfaces we define the

normal fundamental forms of Σtχ as follows:

Ka ≡ gcamd∇̃cnd ¼ gcamd∇̃dnc;

La ≡ −gcakd∇̃cld ¼ −gcakd∇̃dlc: ð14Þ

Their second expressions arise from the hypersurface-
orthogonality of the basis vectors na and la, as proven
in Appendix A. It is easy to prove that they are related as

La ¼ Ka þDaϕ: ð15Þ

By contrast, for the vectors ka and ma (which have
vorticity) the similarly defined quantities

K�
a ≡ gdalc∇̃ckd;

L�
a ≡ −gdanc∇̃cmd ð16Þ

do not share this interchangeability property. Similarly, one
can prove

L�
a ¼ K�

a þDaϕ: ð17Þ

The differences K�
a − La and L�

a −Ka give the non-
vanishing components of the vorticities of ka and ma,
respectively, as demonstrated in Appendix B.
For the hypersurface-orthogonal vectors na and la

normal fundamental scalars

K≡mdmc∇̃cnd;

L≡ kdkc∇̃cld ð18Þ

can be defined. The corresponding quantities for the basis
vectors ka and ma are

K� ≡ ldlc∇̃ckd;

L� ≡ ncnd∇̃cmd: ð19Þ

Finally the two timelike vector congruences have the
curvatures (nongravitational 3-dimensional accelerations):

α̂a ≡ nb∇̃bna ¼ aa −maL�; ð20Þ

α̂�a ≡ kb∇̃bka ¼ a�a − laL; ð21Þ

the second set of expressions representing their 2þ 1
decomposed form with the 2-dimensional acceleration
components:

aa ≡ gcanb∇̃bnc;

a�a ≡ gcakb∇̃bkc: ð22Þ

Similarly, the spacelike congruences la and ma have the 3-
dimensional curvatures:

β̌a ≡ lb∇̃bla ¼ ba þ kaK�; ð23Þ

β̌�a ≡mb∇̃bma ¼ b�a þ naK; ð24Þ

with the 2-dimensional “acceleration” components:

ba ≡ gdalc∇̃cld;

b�a ≡ giamb∇̃bmi: ð25Þ

With the above-introduced quantities the 2þ 1þ 1
decomposition of the covariant derivatives of the normals
to Σtχ in the bases they belong is

∇̃anb¼Kabþ2mðaKbÞ þmambKþnambL�−naab; ð26Þ

∇̃alb¼Labþ2kðaLbÞ þkakbLþ lakbK� þ labb; ð27Þ

∇̃akb¼K�
abþ laK�

bþ lbLaþ lalbK� þkalbL−kaa�b; ð28Þ

∇̃amb ¼ L�
ab þ naL�

b þ nbKa þ nanbL�

þmanbKþmab�b: ð29Þ

For deriving Eqs. (26) and (27) we have also employed the
second equalities (14). The structure of Eqs. (28) and (29) is
slightly different due to the vorticities of the vectors ka

and la.
The geometric quantities defined in this subsection are

not all independent. This should be obvious as the two

TABLE II. The algebra of the basis vectors gA. The components of the brackets enlisted in the first line along the vectors in the first
column are given.

½k; l�a ½k; Gj�a ½l; Gj�a

ka f∂tðsNÞ − Nj∂jðsNÞ þ s
N ½∂t ln ðMNÞ − Nj∂j ln ðMNÞ�

þ 1
cM ½∂χ lnðNc Þ −Mj∂j lnðNc Þ�g

∂jðln N
c Þ − N

c2M ∂jðscMN Þ

la 1
MN ½−∂tðcMÞ þ Nj∂jðcMÞ� 0 ∂j ln ðcMÞ

Ga
i

1
MN ½−∂tMi þ ∂χNi −Mj∂jNi þ Nj∂jMi� c

N ð∂jNiÞ s
N ∂jNi þ 1

cM ∂jMi
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bases are related by a Lorentz-rotation. By tedious but
straightforward algebra we expressed all starry quantities in
terms of unstarred ones and ϕ (or N ). For example the
extrinsic curvatures defined with the basis vectors of the
two bases are related by a rotation matrix with angle ψ ¼
arccos ð1= coshϕÞ as:

�
K�

ab

L�
ab

�
¼

�
1=c s=c

−s=c 1=c

��
Kab

Lab

�
: ð30Þ

The geometric quantities characterizing the embedding
are summarized on Fig. 3 while the full set of interdepen-
dencies are given them in Table III.
Note that the notations were introduced such that in the

particular case N ¼ 0 all starry quantities transform into
the corresponding unstarred ones (e.g., K�

ab becomes Kab).
Further, as in that case the vorticities of the basis vectors ka

and ma vanish, La ¼ Ka (as explored in Refs. [30,31])
follows.

IV. KINEMATICS AND GEOMETRIC
EMBEDDING

In this section we establish the relations of the temporal
and spatial derivatives of the metric variables fgab;Ma;Mg
to the geometric quantities fKab;Ka;Kg, fLab;La;Lg,

fK�ab;K�
a;K�g, and fL�ab;L�

a;L�g characterizing the
embedding. These will be used later in the derivation of
the Hamiltonian formulation of GR from the Einstein-
Hilbert action.
Bearing in mind that both the coordinate derivatives

along time and χ and the extrinsic curvatures are projected
Lie derivatives, we find for the extrinsic curvature in the
two bases

Kab ¼
1

N

�
1

2
∂tgab −DðaNbÞ

�
−

s
Mc

�
1

2
∂χgab −DðaMbÞ

�
;

L�
ab ¼

1

M

�
1

2
∂χgab −DðaMbÞ

�
ð31Þ

and

Lab ¼
s
N

�
1

2
∂tgab −DðaNbÞ

�
þ 1

Mc

�
1

2
∂χgab −DðaMbÞ

�
;

K�
ab ¼

c
N

�
1

2
∂tgab −DðaNbÞ

�
; ð32Þ

respectively. Only L�
ab is free from time derivatives of the

induced metric, hence nondynamical.
In order to establish the relation of the rest of the

geometric variables with time- and χ-derivatives of the
metric variables we employ the following identity holding
for all vectors VI for which g̃ðVI; VJÞ ¼ constant:

g̃ðVA;∇̃VB
VCÞ¼ g̃ð½VA;VB�;VCÞ− g̃ðVC;∇̃VA

VBÞ: ð33Þ

First we apply this identity for the case VB ¼ VC, such
that the last term vanishes. Then for the basis vectors fA
and gA perpendicular to Σtχ the left-hand sides are the

accelerations α̂a ¼ g̃ðfA; ∇̃nnÞfAa , α̂�a ¼ g̃ðgA; ∇̃kkÞgAa ,
β̌a ¼ g̃ðgA; ∇̃llÞgAa and β̌�a ¼ g̃ðfA; ∇̃mmÞfAa . Calculating
the right-hand sides by exploring the specific compo-
nents of the Lie brackets given in Tables I and II and
comparing the resulting expressions with the decompo-
sitions given in Eqs. (20), (21), (23), and (24) we obtain
the 2-dimensional accelerations as projected covariant
derivatives

FIG. 3. The geometric embedding variables.

TABLE III. The relations among starred and unstarred geometric quantities characterizing the embedding of Σtχ .

K�
ab ¼ 1

c ðKab þ sLabÞ L�
ab ¼ 1

c ðLab − sKabÞ
K�

a ¼ Ka þ s
c ðaa þ baÞ L�

a ¼ La þ s
c ðaa þ baÞ

K� ¼ 1
c ðK − sLÞ þ 1

c2 ðla − snaÞ∇̃aϕ L� ¼ 1
c ðsKþ LÞ þ 1

c2 ðsla þ naÞ∇̃aϕ

a�a ¼ aa þ s
c ðKa − LaÞ ¼ aa − s

c Daϕ b�a ¼ ba þ s
c ðLa −KaÞ ¼ ba þ s

c Daϕ
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aa ¼ DaðlnNÞ;
b�a ¼ −DaðlnMÞ;
ba ¼ −Da ln ðcMÞ;

a�a ¼ Da

�
ln
N
c

�
; ð34Þ

while the normal fundamental scalars emerge as

K ¼ 1

MN
½∂tM − ∂χN − NaDaM þMaDaN �;

L� ¼ −
1

M
½∂χðlnNÞ −MaDaðlnNÞ�;

L ¼ −J −
1

cM

�
∂χ ln

�
N
c

�
−MaDa ln

�
N
c

��
;

K� ¼ 1

MN
½∂tðcMÞ − NaDaðcMÞ�; ð35Þ

with

J ¼∂t

�
s
N

�
−NaDa

�
s
N

�
þ s
N
½∂t lnðMNÞ−NaDa lnðMNÞ�

ð36Þ

(an expression which vanishes for orthogonal foliations).
Next we apply the identity (33) for nb∇̃bma ¼

g̃ðfA; ∇̃nmÞfAa and lb∇̃bka ¼ g̃ðgA; ∇̃lkÞgAa , respectively,
obtaining for the Σtχ projections

L�
a ¼ Ka þ

M
N
Da

�
N
M

�
; ð37Þ

K�
a ¼ La −

N
c2M

Da

�
scM
N

�
: ð38Þ

These can be also derived from the expressions given in
Table III together with Eqs. (15) and (34). Now we have
everything at hand to derive the relation of the normal
fundamental forms and metric derivatives. For this we
rewrite

Ka ¼ −gab½m; n�b − L�
a;

La ¼ −gab½k; l�b −K�
a; ð39Þ

employ the algebras of the basis vectors fA and gA given in
Tables I and II, respectively, together with Eqs. (37) and
(38), to obtain

Ka ¼ 1

2MN
ð∂tMa − ∂χNa − NbDbMa þMbDbNaÞ

−
M
2N

Da

�
N
M

�
;

La ¼ 1

2MN
ð∂tMa − ∂χNa − NbDbMa þMbDbNaÞ

þ N
2c2M

Da

�
scM
N

�
;

K�a ¼ 1

2MN
ð∂tMa − ∂χNa − NbDbMa þMbDbNaÞ

−
N

2c2M
Da

�
scM
N

�
;

L�a ¼ 1

2MN
ð∂tMa − ∂χNa − NbDbMa þMbDbNaÞ

þ M
2N

Da

�
N
M

�
: ð40Þ

Note that the metric derivatives are related to the normal
fundamental vectors, rather then forms.
From the results of this and of the previous section we

can conclude that the independent metric variables with
dynamical role are fgab;Ma;Mg while the embedding
variables fKab;Ka;Kg carry information about their tem-
poral evolution. The extrinsic curvature L�

ab being the only
one, which contains no time derivatives, it plays a non-
dynamical role. Hence we chose the variables emerging in
the fA basis as independent, fKab;Ka;Kg representing
momenta, while fL�ab;L�g merely spatial derivatives. All
other embedding variables can be expressed in terms of
this set.

V. HAMILTONIAN FORMALISM
IN GENERAL RELATIVITY

In this section we present the 2þ 1þ 1 decomposed
Hamiltonian formalism in general relativity. As discussed
earlier, we employ the fA basis in the decomposition.

A. The 2 + 1 + 1 decomposition of the
Einstein-Hilbert action

We define the 2-dimensional Riemann tensor Rabcd of
the metric induced in Σtχ as

RabcdVb ¼ ðDcDd −DdDcÞVa; ð41Þ

which written in terms of the geometric quantities arising in
the 2þ 1þ 1 decomposition and of the 4-dimensional
Riemann tensor leads to the following Gauss-type identity:

Rabcd ¼ giag
j
bg

k
cgldR̃ijkl þ 2ðL�

a½cL
�
d�b − Ka½cKd�bÞ: ð42Þ

The extrinsic curvatures are those appearing in the fA basis.
Twice contracting this leads to
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R¼ gikgjlR̃ijklþðL�Þ2−K2−L�
abL

�abþKabKab: ð43Þ

The first term on the right-hand side is decomposed as

gikgjlR̃ijkl ¼ R̃þ 2ðnjnl −mjmlÞR̃jl

− 2nimjnkmlR̃ijkl; ð44Þ

where

minjnkmlR̃ijkl ¼ Kkð2L�
k þKkÞ − ðL�Þ2 þ ðKÞ2

þ L̃mL� þ L̃nK −
DiNDiM

NM
;

njnlR̃jl ¼ −KlbKbl − L�L� − 2KbKb − ðKÞ2
þ ðL�Þ2 − L̃nK − L̃nK − L̃mL�

þDbDbN
N

þDbNDbM
NM

;

mjmlR̃jl ¼ −L�lbL�
bl þ 2KlL�l − ðL�Þ2 þ ðKÞ2

þKK þ L̃nK − L̃mL� þ L̃mL�

−
�
DbDbM

M
þDbMDbN

NM

�
: ð45Þ

In order to prove the above expressions we have explored
the useful identities

∇̃aaa ¼
DaDaN

N
þDaNDaM

NM
; ð46Þ

∇̃ab�a ¼ −
�
DaDaM

M
þDaMDaN

NM

�
; ð47Þ

and

∇̃ana ¼ K þK; ∇̃ama ¼ L� − L�: ð48Þ

With these the twice contracted Gauss relation becomes2

R ¼ R̃ − K2 − KabKab þ ðL�Þ2 þ L�
abL

�ab − 2KbKb

− 2KðK þKÞ þ 2L�ðL� − L�Þ
− 2L̃nðK þKÞ þ 2L̃mðL� − L�Þ

þ 2

�
DaDaN

N
þDaDaM

M
þDaMDaN

NM

�
: ð49Þ

Noting that
ffiffiffiffiffiffi
−g̃

p ¼ NM
ffiffiffi
g

p
the Einstein-Hilbert action

SEH ¼
Z

dt
Z

dχ
Z
Σtχ

d2xLG;

LG ¼
ffiffiffiffiffiffi
−g̃

p
R̃ ð50Þ

can be 2þ 1þ 1 decomposed as follows:

LG½fgab;Ma;Mg; fKab;Ka;Kg; fL�ab;L�g; fN;Na;N g�
¼ NM

ffiffiffi
g

p fRþ KabKab þ K2 − ðL�Þ2 − L�
abL

�ab

þ 2KaKa þ 2KðK þKÞ − 2L�ðL� − L�Þ
þ 2L̃nðK þKÞ − 2L̃mðL� − L�Þ − 2½N−1DaDaN

þM−1DaDaM þ ðNMÞ−1DaMDaN�g: ð51Þ

This form of the action is ready to be employed in the
Legendre transformation.

B. The Legendre transformation

The action (51) has to be further transformed in order to
derive the canonical momenta. By employing

L̃nðK þKÞ ¼ ∇̃a½naðK þKÞ� − ðK þKÞ2;
L̃mðL� − L�Þ ¼ ∇̃a½maðL� − L�Þ� − ðL� − L�Þ2;

we rewrite it in a form explicitly containing all boundary
terms (total divergences):

LG ¼ NM
ffiffiffi
g

p fRþ KabKab − K2 − 2KKþ 2KaKa

− L�
abL

�ab þ L�2 − 2L�L� þ 2ðNMÞ−1DaMDaN

− 2∇̃a½α̂a − β̌�a − naK þmaL��g: ð52Þ

This contains expressions of the metric variables
fgab;Ma;Mg, geometric quantities fKab;Ka;Kg contain-
ing their time derivatives, purely spatial derivatives
fL�ab;L�g [see Eqs. (31), (32)]; the lapse and shift compo-
nents fN;Na;N g and total divergences. The latter do not
contribute to the dynamics, hence can be omitted when
calculating the canonical momenta:

πab ¼ ∂LG

∂ _gab ¼
ffiffiffi
g

p
M½Kab − gabðK þKÞ�;

pa ¼
∂LG

∂ _Ma ¼ 2
ffiffiffi
g

p
Ka;

p ¼ ∂LG

∂ _M
¼ −2

ffiffiffi
g

p
K: ð53Þ

With them we rewrite the Lagrangian density once
again with the aim to manifestly obtain the Liouville-form.
This is achieved by transforming (the double of) the terms
quadratic in the set fKab;Ka;Kg in the Lagrangian density
into expressions linear in the time derivatives of
fgab;Ma;Mg. After extensive calculations we obtain

2By suitably transforming the Lie derivatives this expression
becomes identical with the one obtained for orthogonal double
foliations, Eq. (A1) of Ref. [31], after correcting the coefficient of
ðL�

abL
�ab − KabKabÞ from −3 to þ1 in the latter.
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LG ¼ πab _gab þ pa
_Ma þ p _M −HG

þ LG
t þ LG

χ þ LG
D; ð54Þ

where

HG ¼ NHG⊥ þ NaHG
a þNHG

N ð55Þ

is the vacuum gravitational Hamiltonian density in GR, a
linear combination of the products of the Lagrange multi-
pliers fN;Na;N g with the Hamiltonian constraint3:

HG⊥ ¼ ffiffiffi
g

p fMð−R − 3L�abL�
ab þ L�2 þ KabKab

þ 2KaKa − K2 − 2KKÞ þ 2gab∂χL�
ab

− 2MaDaL� − 4L�
abD

aMb þ 2DaDaMg; ð56Þ

(“angular”) diffeomorphism constraints along Σtχ :

HG
a ¼ −2

ffiffiffi
g

p fDb½Kb
aM −MgbaðK þKÞ� þ KDaM

þKaML� þ ∂χKa −MbDbKa −KbDaMbg; ð57Þ
and along ma (“radial" diffeomorphism constraint):

HG
N ¼ −2

ffiffiffi
g

p ½MðL�K − L�
abK

abÞ þMDaKa

þ2KaDaM − ∂χK þMaDaK�; ð58Þ

respectively, finally the terms

LG
t ¼ 2∂t½

ffiffiffi
g

p
MðK þKÞ�;

LG
χ ¼ 2∂χ ½

ffiffiffi
g

p ðNL� − NaKa −NKÞ�;
LG
D ¼ −2

ffiffiffi
g

p
Da½MDaN þ NbðMKa

b −MaKbÞ
þ NMaL� þN ðMKa −MaKÞ� ð59Þ

are boundary contributions. Employing the inverses

Kab ¼ 1

M
ffiffiffi
g

p
�
πab −

π

2
gab

�
−

p
4

ffiffiffi
g

p gab;

Ka ¼
1

2
ffiffiffi
g

p pa;

K ¼ 1

4
ffiffiffi
g

p
�
p −

2π

M

�
; ð60Þ

of Eqs. (53) and introducing Lie derivatives by remembering
that the momenta are tensor densities,4 all expressions
can be rewritten in terms of the set of canonical coordinates
fgab;Ma;Mg and canonical momenta fπab; pa; pg as
follows:

HG⊥ ¼ ffiffiffi
g

p ½−MðRþ 3L�abL�
ab − L�2Þ þ 2DaDaM

þ 2gabð∂χ − LMÞL�
ab� þ

1

M
ffiffiffi
g

p
�
πabπ

ab −
π2

2

�

þ Mffiffiffi
g

p
�
1

2
papa þ 1

8
p2 −

πp
2M

�
; ð61Þ

HG
a ¼ −2Dbπ

b
a þ pDaM − ð∂χ − LMÞpa; ð62Þ

HG
N ¼ 2L�

abπ
ab − 2paDaM −MDapa − ð∂χ − LMÞp:

ð63Þ

The constraints (61) and (62) fully agree with the respective
ones of Ref. [31], while the last constraint (63) is new,
emerging only in the nonorthogonal double foliation.
Similarly, the boundary terms emerge as:

LG
t ¼ −∂t

�
π þMp

2

�
;

LG
χ ¼ ∂χ

�
2

ffiffiffi
g

p
NL� − Napa þN

�
π

M
−
p
2

��
;

LG
D ¼ −Da

�
2

ffiffiffi
g

p ðMDaN þ NMaL�Þ

þ Nb

�
2πab −

�
π þMp

2

�
gab −Mapb

�

þN
�
Mpa þMa

�
π

M
−
p
2

���
: ð64Þ

Unlike the constraints, the boundary terms on the spatial
infinity are modified by new terms proportional to N .
Following the same steps, the time derivatives of the

canonical coordinates can be expressed from Eqs. (31),
(35), and (40) as follows:

_gab ¼
N

M
ffiffiffi
g

p
�
2πab −

�
π þMp

2

�
gab

�

þ LNgab þ
N
M

ð∂χ − LMÞgab;

_Ma ¼ MNffiffiffi
g

p pa þ ð∂χ − LMÞNa þMDaN −NDaM;

_M ¼ MN
4

ffiffiffi
g

p
�
p −

2π

M

�
þ LNM þ ð∂χ − LMÞN : ð65Þ

These are but the evolution equations of the canonical
coordinates, thus half of the canonical equations. Note that
all of them contain terms with N , the rest of the terms
agreeing with those derived for the orthogonal case
in Ref. [31].

3This expression reproduces Eq. (13a) of Ref. [31] after
correcting the misprints in the signs of the second and third term.

4For an arbitrary tensor density F ¼ f
ffiffiffi
g

p
(where f is a tensor)

its Lie derivative along Ma is LMF ¼ DaðFMaÞ.
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C. Canonical equations

In order to simplify the presentation, we introduce the
notations gA ≡ fgab;Ma;Mg for the set of canonical
coordinates, πA ≡ fπab; pa; pg for the canonical momenta,
and y ¼ fy1; y2g for the coordinates adapted to Σtχ . The
2þ 1þ 1 decomposed Hamiltonian identified in the pre-
vious subsection is

HG ¼
Z

dχ
Z

dyHGðχ; yÞ: ð66Þ

Time derivatives of the canonical variables emerge as
functional derivatives of the Hamiltonian:

_gA ¼ δHG

δπAðχ; yÞ
; ð67Þ

_πA ¼ −
δHG

δgAðχ; yÞ : ð68Þ

It can be verified that Eq. (67) reproduces the set of
equations of motion (65). Next we calculate Eq. (68) in
detail. Lengthy but straightforward computations lead to
the second set of canonical equations:

_πab ¼ NSab þ NVab − NM
ffiffiffi
g

p
L�ðL�ab − L�gabÞ

þ ffiffiffi
g

p ½MDaDbN − gabMDcDcN

− gabðDcNÞðDcMÞ þ gabð∂χ − LMÞðNL�Þ�

þ LNπ
ab −

�
N πab

M2
ð∂χ − LMÞ þNpðaDbÞ

�
M

þ
�
πab

M
ð∂χ − LMÞ þMpðaDbÞ

�
N

þN
M

ð∂χ − LMÞπab; ð69Þ

_pa ¼ NVa − 2
ffiffiffi
g

p ½L�
baD

bN þDaðNL�Þ� þ LNpa

−
2N
M

Dbπba þ
2N
M2

πbaDbM

þ
�
pgab −

2

M
πab

�
DbN ; ð70Þ

_p ¼ NS þ NV − 2
ffiffiffi
g

p ðL�L� þDaDaNÞ þ LNp

þN
�
2

M
πabL�

ab −Dapa

�
− 2paDaN : ð71Þ

Here Sab and S are

Sab ¼ −
2

M
ffiffiffi
g

p
�
πacπ

bc −
π

2
πab

�

þ 1

2M
ffiffiffi
g

p
�
πcdπ

cd −
π2

2

�
gab

−
M
4

ffiffiffi
g

p gab
�
πp
M

− pcpc −
p2

4

�

þ 1

2
ffiffiffi
g

p ðpπab þMpapbÞ; ð72Þ

S ¼ 1ffiffiffi
g

p
M2

�
πabπ

ab −
π2

2

�
−

1

2
ffiffiffi
g

p
�
papa þ p2

4

�
; ð73Þ

while Vab, Va, and V represent the tensorial, vectorial,
and scalar projections of the force term of the (sþ 1)-
dimensional scalar curvature potential, given in Ref. [31]:

Vab ¼ −M
ffiffiffi
g

p ðGab þ 2L�acL�b
c − L�L�abÞ

þM
2

ffiffiffi
g

p ð3L�cdL�
cd − L�2Þgab

þ ffiffiffi
g

p ðgacgbd − gabgcdÞð∂=∂χ − LNÞL�
cd

þ ffiffiffi
g

p ðDaDbM − gabDcDcMÞ; ð74Þ

Va ¼ −2
ffiffiffi
g

p ðDbL�
ba −DaL�Þ; ð75Þ

V ¼ ffiffiffi
g

p ðRþ L�
abL

�ab − L�2Þ: ð76Þ

The canonical equations given by Eqs. (65) and (69)–(71)
are the generalizations of Eqs. (29a-30c) of Ref. [31]
for the case of nonorthogonal double foliation of the
4-dimensional spacetime.

VI. GAUGE TRANSFORMATIONS AND FIXING IN
PERTURBATIONS OF SPHERICALLY

SYMMETRIC, STATIC BLACK HOLES IN
GENERIC SCALAR-TENSOR THEORIES

In GR the perturbations of the spherically symmetric,
static spacetime have been discussed both for the odd [44]
and for the even parity sectors [45]. The 10 metric functions
were analyzed by employing a 2þ 1þ 1 decomposition
based on the temporal and radial direction and a further
decomposition of the metric perturbation into spherical
harmonics and its derivatives. As result of the choice of
polar coordinates, 8 metric perturbations survived, however
suitably adapting the remaining diffeomorphism freedom,
the odd sector has been expressed in terms of 2, the even
sector in terms of 4, respectively [44].
When we consider generic scalar perturbations of

spherically symmetric, static black holes in those scalar-
tensor gravitational theories, which avoid Ostrogradsky
instabilities, an additional scalar variable pops in, further
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complicating the gauge choice. We address this problem in
this section.
All background quantities will be denoted by an

overbar and the respective perturbed quantities will be
written as N ¼ N̄ þ δN, etc. Due to the high degree of
symmetry of the background we could assume both the
temporal and spatial evolutions perpendicular to Σtχ (hence

N̄a ¼ M̄a ¼ 0), the foliations perpendicular (N̄ ¼ 0) and
radial unitary gauge (ϕ̄ ¼ ϕ̄ðχÞ), thus the scalar depending
only on the radial coordinate χ. Hence the perturbed metric
to first order becomes

ds2 ¼ −ðN̄2 þ 2N̄δNÞdt2 þ 2M̄δN dtdχ

þ 2δNadtdxa þ ðḡab þ δgabÞdxadxb
þ 2δMadxadχ þ ðM̄2 þ 2M̄δMÞdχ2; ð77Þ

while the scalar field changes as

ϕ ¼ ϕ̄ðχÞ þ δϕ: ð78Þ

Helmholtz-like decompositions on spherically symmet-
ric background hold for both vectors:

Va ¼ D̄aVrotfree þ Eb
aD̄bVdivfree; ð79Þ

where Eab ¼
ffiffiffī
g

p
εab is the 2-dimensional Levi-Civita

tensor (having zero projections outside the surfaces
of transitivity of the SO(3) symmetry), with εab the
2-dimensional alternating symbol (with the sign convention
εθφ ¼ 1 when polar coordinates are adapted). A similar
decomposition holds for any symmetric tensor on spheri-
cally symmetric background into scalar, rotationfree and
divergencefree parts:

Sab ¼ Sba ¼ ḡabSscalar þ D̄aD̄bSrotfree

þ 1

2
ðEc

aD̄cD̄b þ Ec
bD̄cD̄aÞSdivfree: ð80Þ

The scalar and rotationfree parts in the above decomposi-
tions compose the even sector under parity transformations,
while the divergencefree parts form the odd sector. These
sectors decouple. We decompose all metric perturbations as
follows

δNa ¼ D̄aPþ Eb
aD̄bQ; ð81aÞ

δMa ¼ D̄aV þ Eb
aD̄bW; ð81bÞ

δgab ¼ ḡabAþ D̄aD̄bBþ 1

2
ðEc

aD̄cD̄b þ Ec
bD̄cD̄aÞC:

ð81cÞ

In consequence the odd sector contains the variables:

Q;W;C; ð82Þ

while the even sector is composed of the variables:

P;V; A; B; δN; δN ; δM; δϕ: ð83Þ

Next we proceed to fix the gauge in an unambiguous
manner. For this we need the transformation of the metric
and scalar perturbations under diffeomorphisms. The trans-
formed quantities will carry a wide overhat and they arise as

Lξg̃ab ¼ δg̃ab − dδg̃ab; Lξϕ ¼ δϕ − cδϕ; ð84Þ

where the vector ξa is also decomposed into even and odd
contributions

ðξt; ξχ ; ξa ¼ D̄aξþ EbaD̄bηÞ; ða ¼ θ;φÞ: ð85Þ

The transformed quantities were given in Ref. [6] as:

cδN ¼ δN − N̄ _ξt −N̄0ξχ ; ð86aÞ

dδN ¼ δN −
N̄2

2M̄
ξt0 þ M̄

2
_ξχ ; ð86bÞ

cδM ¼ δM þ M̄0ξχ þ M̄ξχ 0; ð86cÞ

bP ¼ P − N̄2ξt þ _ξ; ð86dÞ

bQ ¼ Qþ _η; ð86eÞ

bV ¼ V þ M̄2ξχ þ ξ0 −
2

χ
ξ; ð86fÞ

bW ¼ W þ η0 −
2

χ
η; ð86gÞ

bA ¼ Aþ 2

χ
ξχ ; ð86hÞ

bB ¼ Bþ 2ξ; ð86iÞ

bC ¼ Cþ 2η; ð86jÞ

cδϕ ¼ δϕ − ϕ̄0ξχ : ð86kÞ

Here an overdot and a comma denote time derivative
and χ-derivative, respectively. It is immediate to consume
the radial diffeomorphism d.o.f. for maintaining the radial
unitary gauge after the perturbation kicks in, hencecδϕ ¼ 0 (e.g., we chose the χ coordinate on the perturbed
spacetime such that constant χ-hypersurfaces and constantbϕ-hypersurfaces coincide) and
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ξχ ¼ δϕ

ϕ̄0 : ð87Þ

Then we consume the angular diffeomorphisms by render-
ing the transformation of the 2-metric to a conformal
transformation, hence bB ¼ 0 ¼ bC. This is achieved by
the choices

ξ ¼ −
B
2
; η ¼ −

C
2
: ð88Þ

The last, temporal diffeomorphism was employed in
Ref. [6] to reinforce the perpendicularity of the two

foliations, hence dδN ¼ 0 and

ξt ¼
Z

dχ
2M̄
N̄2

�
δN þ M̄

2
_ξχ
�
þ Fðt; θ;φÞ; ð89Þ

which introduced there an arbitrary function depending on
all variables, but the radial one. This did not affect the
analysis of the odd sector, as the function F emerged only
in the even sector variables cδN and bP, hampering the
physical interpretation of the perturbations. By exploring
the freedom of the nonorthogonality of the two foliations
however we do not have to chose ξt in this inconvenient
way. Indeed, we could fix bP ¼ 0, achieved by

ξt ¼ Pþ _ξ

N̄2
: ð90Þ

Therefore the analysis of the even sector perturbations can
be carried out unambiguously. In summary, with the gauge
choice advanced in this section, the remaining odd sector
variables

bQ; bW ð91Þ

are identical with the ones employed in Ref. [6], while the
dynamics of the even sector perturbations is described in
terms of the variables

bV; bA; cδN;dδN ; cδM: ð92Þ
Note that another unambiguous gauge fixing for spheri-

cally symmetric, static black hole perturbations in
Horndeski theories (based on a decomposition into spheri-
cal harmonics) has been advanced in Ref. [29], however
that choice prefers to cancel the perturbation of the 2-metric
rather than preserving the radial unitary gauge. We sum-
marize the various available gauge choices in Table IV. The
closest to the Regge-Wheeler gauge is the one developed
here, which also ensures the radial unitary gauge.

VII. CONCLUDING REMARKS

Supplementing existing spacetime decomposition tech-
niques, in this paper we have developed the decomposition
along nonorthogonal double foliations. Suppressing the
orthogonality requirement of the formalism of Ref. [30],
applied successfully in Ref. [6] for the analysis of the odd
sector perturbations of beyond-Horndeski theories, but
making impossible the similar discussion of the even
sector, the latter restriction is lifted. The development of
the 2þ 1þ 1 nonorthogonal decomposition formalism
followed closely its orthogonal counterpart. The metric
has tensorial, vectorial and scalar contributions respective
to the intersections of the leaves Σtχ . The 2-metric gab,
radial shift Ma and radial lapse M are canonical coordi-
nates, supplemented by the 2-projection Na, radial projec-
tionN of the temporal shift, and the temporal lapseN. With

TABLE IV. Comparison of the various gauge choices from the literature for the odd and even sector perturbations (all transcribed in
the notations of this paper). In the absence of the scalar field and employing a decomposition into spherical harmonics and their
derivatives, Regge and Wheeler (RW) have adopted a unanimous gauge choice leaving 2 odd and 4 even sector metric perturbations
[44]. Their approach has been generalized for Horndeski theories by Kobayashi, Motohashi, and Suyama (KMS), resulting in the same
2 variables for the odd sector [28] and 5 for the even sector (these include the scalar field perturbation) [29]. Only 3 out of 4 metric
perturbation variables correspond to those of the Regge-Wheeler choice. In the orthogonal double foliation formalism, Kase, Gergely,
and Tsujikawa (KGT) have employed the Regge-Wheeler gauge for the odd sector and additionally the radial unitary gauge [6]. The
price to pay for the orthogonality of the foliations was an arbitrary function of time appearing in 3 of the even sector metric perturbation
variables (nevertheless the even sector was beyond the scope of that paper). In our paper (GKG) we advance another unambiguous gauge
choice for scalar-tensor gravity, containing the Regge-Wheeler gauge for the odd sector and all variables corresponding to the even
sector analysis of Regge and Wheeler, with an additional one (the even sector part of the metric perturbation δMa). This resulted from
imposing the radial unitary gauge, which adapts the χ-coordinate to absorb the scalar field perturbation.

Odd perturbations Even perturbations

Vanishing Physical Vanishing physical Nonvanishing, nonphysical

RW bC ¼ 0 bQ; bW bB ¼ bP ¼ bV ¼ 0 cδN;dδN ; cδM; bA
KMS bC ¼ 0 bQ; bW bB ¼ bP ¼ bA ¼ 0 cδN;dδN ; cδM; bV;cδϕ
KGT bC ¼ 0 bQ; bW bB ¼ cδϕ ¼ 0 cδM; bA; bV cδN;dδN ; bP
GKG bC ¼ 0 bQ; bW bB ¼ bP ¼ cδϕ ¼ 0 cδN;dδN ; cδM; bA; bV
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two nonorthogonal foliations, there are two different
adapted bases. We gave the temporal and radial evolutions
in terms of the bases associated with both foliations.
The metric variable N , absent in the orthogonal double

foliation formalism, has been found as being related to (i) the
Lorentz rotation with angle ϕ ¼ tanh−1 ðN =NÞ, among
these bases, and (ii) the vorticity of the basis vectors
orthogonal to both the hypersurface normals (of the same
basis) and to Σtχ . In the orthogonal limit of vanishingN , the
bases coincide and all basis vectors become hypersurface-
orthogonal. The 10th metric variable N has been reintro-
duced as a nonorthogonality measure of the formalism.
Then the codimension-2 embedding of Σtχ has been

characterized in terms of extrinsic curvatures, normal
fundamental forms and normal fundamental scalars defined
for its normals for both bases and their network of
interrelations established. The study of the kinematics of
the canonical data indicated that the basis containing the
normal to the spatial hypersurfaces is more advantageous,
as the embedding variables contain fewer time derivatives.
Hence we explored the quantities related to this basis in the
remaining part of the paper.
As a first application of the spacetime decomposition

along a nonorthogonal double foliation we derived the
general relativistic vacuum Hamiltonian dynamics in a
fashion similar to Ref. [31], first 2þ 1þ 1 decomposing
the curvature scalar in this formalism (and correcting the
coefficients in the respective previous result), then giving
both the canonical coordinates gA and the canonical
momenta πA in terms of the introduced geometrical
quantities. Their dynamics has been worked out as canoni-
cal equations involving the Hamiltonian and diffeomor-
phism constraints. The expressions derived reproduced all
terms emerging in the orthogonal double foliation formal-
ism, supplemented by new terms containing N .
In Appendix C of Ref. [31] it has been shown that the

further 2þ 1 decomposition employed in the canonical
3þ 1 ADM formalism leads to the 2þ 1þ 1 Hamiltonian
formalism with orthogonal double foliation presented there.
By relaxing the orthogonality of the foliations, with a
similar technique, the Hamiltonian formalism presented
here can also be derived. Notably exploring the 2þ 1
decompositions of the 3-dimensional shift

N̂a ¼ Na þNma ð93Þ

and of the diffeomorphism constraint

ĤG
a ¼ HG

a þHG
Nma ð94Þ

the vacuum GR gravitational Hamiltonian density (55)
emerges. Similarly with the 2þ 1 decomposition of the
induced 3-metric (A1) and of the 3-dimensional canonical
momentum

π̂ab ¼ πab þMpðambÞ þM
2
pmamb ð95Þ

inserted in the respective equations of the standard ADM
approach the 2þ 1þ 1 decomposed action (54)–(59) and
Hamiltonian equations of motion (65) and (69)–(71) of this
paper follow. Hence the 2þ 1þ 1 decomposition and the
variational principle commute.
As compared to the treatment of Ref. [31] a new

constraint emerged due to nonorthogonality, the radial
diffeomorphism constraint. With this we reestablished
the full constraint structure of general relativity, adapted
to the nonorthogonal double foliation. In a canonical
quantum gravity theory the diffeomorphism constraints
must annihilate the physical states. Singling out the radial
diffeomorphism constraint through the 2þ 1 decomposi-
tion of the 3-dimensional diffeomorphism constraint may
turn useful in midisuperspace models [46–48], where
integration over the angular sector is carried out and the
relevant diffeomorphism constraint is exactly HG

N .
In the last section we proceeded with the second

application of our newly developed formalism, the gauge
fixing of generic scalar-tensor gravitational theories. As
compared to Ref. [6] an unambiguous gauge fixing has
been achieved. This includes restricting the perturbation of
the 2-metric to a conformal transformation, freezing the
evolution of the scalar field by ensuring the radial unitary
gauge both before and after the perturbation, and sup-
pressing the even modes of the 2-dimensional shift per-
turbation. This last step was not possible with the previous
assumption of orthogonal double foliation, explored in
Ref. [6].
Our work opens up the perspective for discussion of

the perturbations of spherically symmetric, static black
holes in the effective field theory approach of scalar-tensor
gravitational theories in the radial unitary gauge, with the
inclusion of both the even and odd sectors.
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APPENDIX A: CONSEQUENCES OF THE
HYPERSURFACE ORTHOGONALITY

OF THE BASIS VECTORS fn; lg
We denote the spatial and Lorentzian 3-metrics induced

on the St and Mχ hypersurfaces, respectively as

ĝab ¼ mamb þ gab; ðA1Þ

ǧab ¼ −kakb þ gab: ðA2Þ

The basis vectors na (la) being orthogonal to the St (Mχ)
hypersurfaces, the dual form of the Frobenius theorem
guarantees the vanishing of their 3-dimensional vorticities:

ω̂ðnÞ
ab ≡ ĝc½aĝ

d
b�∇̃cnd ¼ 0; ðA3Þ

ω̌ðlÞ
ab ≡ ǧc½aǧ

d
b�∇̃cld ¼ 0: ðA4Þ

These can be further 2þ 1 decomposed as

0 ¼ D½anb� þm½agdb�m
cð∇̃cnd − ∇̃dncÞ; ðA5Þ

0 ¼ D½alb� þ kcgd½akb�ð∇̃cld − ∇̃dlcÞ; ðA6Þ

the contraction of which with ma and ka, respectively
leading to the second type of expressions of the normal
fundamental forms, given in Eqs. (14).
Projecting Eqs. (A5) and (A6) to Σtχ confirms the

vanishing of the 2-dimensional vorticities:

ωðnÞ
ab ≡D½anb� ¼ 0; ðA7Þ

ωðlÞ
ab ≡D½alb� ¼ 0; ðA8Þ

and symmetry of the extrinsic curvatures

Kab ≡Danb ¼ DðanbÞ ¼ Kba;

Lab ≡Dalb ¼ DðalbÞ ¼ Lba; ðA9Þ

which could also be directly checked from the first Eq. (7)
and the second Eq. (12), giving the normals

na ¼ −N∇̃at;

la ¼ Mc∇̃aχ: ðA10Þ

Inserting these into the definitions (A9) manifestly sym-
metric expressions arise.

APPENDIX B: CONSEQUENCES OF THE
VORTICITY OF THE BASIS VECTORS fk;mg
We introduce 3-dimensional metrics, which are orthogo-

nal to the basis vectors ka and ma, respectively:

ĥab ¼ lalb þ gab; ðB1Þ

ȟab ¼ −nanb þ gab: ðB2Þ

These metrics are defined on 3-manifolds which are not
hypersurfaces, but rather the manifolds formed by the
integral curves of the vector fields ka and ma. The 3-
dimensional vorticity tensors of ka andma do not vanish, as
they are not hypersurface-orthogonal:

ω̂ðkÞ
ab ≡ ĥc½aĥ

d
b�∇̃ckd ≠ 0; ðB3Þ

ω̌ðmÞ
ab ≡ ȟc½aȟ

d
b�∇̃cmd ≠ 0: ðB4Þ

Their 2þ 1 decomposition leads to

ω̂ðkÞ
ab ¼ gc½ag

d
b�∇̃ckd þ l½agdb�l

cð∇̃ckd − ∇̃dkcÞ; ðB5Þ

ω̌ðmÞ
ab ¼ gc½ag

d
b�∇̃cmd þ gd½anb�n

cð∇̃cmd − ∇̃dmcÞ: ðB6Þ

Projecting Eqs. (B5) and (B6) to the Σtχ surfaces leads to
the 2-dimensional vorticities:

ωðkÞ
ab ≡D½akb� ¼ 0; ðB7Þ

ωðmÞ
ab ≡D½amb� ¼ 0; ðB8Þ

which (as both ka and ma are orthogonal to the surface Σtχ)
vanish due to the dual form of the Frobenius theorem.
Alternatively, these can be proved directly through the
relations

FIG. 4. The nonvanishing vorticity components of the basis
vectors.
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ka ¼ Ms∇̃aχ −
N
c
∇̃at;

ma ¼ N
s
c
∇̃atþM∇̃aχ; ðB9Þ

emerging from the second Eq. (7) and the first Eq. (12).
With them the symmetry of the extrinsic curvatures K�

ab
and L�

ab can be readily checked.
Hence the 3-dimensional vorticities reduce to:

ω̂ðkÞ
ab ¼ l½agdb�l

cð∇̃ckd − ∇̃dkcÞ;
ω̌ðmÞ
ab ¼ −n½agdb�n

cð∇̃cmd − ∇̃dmcÞ; ðB10Þ

having nonvanishing components only along the normals
of the two hypersurface families. These nonvanishing
vorticity components of the basis vectors are also indicated
on Fig. 4.
By exploring the definitions (14) and (16) we get the

expressions of the starry quantities K�
a and L�

a in terms of

normal fundamental forms and nonvanishing 3-dimensional
vorticity components:

K�
a ¼ La − 2ω̂ðkÞ

ab l
b;

L�
a ¼ Ka þ 2ω̌ðmÞ

ab nb: ðB11Þ

By exploring the results given in Table III, by straight-
forward algebra we can express the 3-dimensional vortic-
ities in terms of the 10th metric variable, as given in
Table V.
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