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We study the instability of a Reissner-Nordström-AdS (RNAdS) black hole under perturbations of a
massive scalar field coupled to Einstein tensor. Calculating the potential of the scalar perturbations we find
that as the strength of the coupling of the scalar to Einstein tensor is increasing, the potential develops a
negative well outside the black hole horizon, indicating an instability of the background RNAdS. We then
investigate the effect of this coupling on the quasinormal modes. We find that there exists a critical value of
the coupling that triggers the instability of the RNAdS. We also find that as the charge of the RNAdS is
increased towards its extremal value, the critical value of the derivative coupling is decreased.
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I. INTRODUCTION

Recently, there has been an intense interest in the study of
gravitational theories that modify Einstein’s theory of
gravity. One class of these theories concerns the scalar-
tensor theories. The most well-studied scalar-tensor models
are those described by the Horndeski Lagrangian [1], which
gives second order field equations in four dimensions [2–4].
One important term appearing in the Horndeski Lagrangian
is the kinetic coupling of a scalar field to curvature. This
derivative coupling of matter to gravity has interesting
cosmological implications, acting as a friction term in
the early inflationary cosmological evolution [5–9].
Observational tests of inflation with a field coupled to
Einstein tensor were presented in [10]. It has also been
shown that the derivative coupling to gravity provides a
natural mechanism to suppress the overproduction of heavy
particles after inflation [11]. Particle production after the end
of inflation in the presence of the derivative coupling was
also discussed in [12].

This interesting cosmological behavior of the coupling
of the scalar field to Einstein tensor is a consequence of the
fact that this term introduces a scale in the theory and
effectively acts as a cosmological constant [6]. Thus, the
presence of the cosmological constant alters the local
properties of the spacetime, allowing in this way the
generation of hairy black hole solutions. However, in
[13] it was shown that in Galileon theories there are
stringent constraints that these solutions have to respect
in order for the scalar field to have nontrivial profile and to
be finite on the horizon.
One of the first black hole solutions with derivative

coupling [14] failed to evade singular behavior and the
scalar field blows up on the horizon. There are ways to
evade this problem and one of them is to break the shift
symmetry of the scalar field by introducing a mass term for
the scalar field [15,16]. Another way is to allow the scalar
field to be time dependent, while keeping the shift
symmetry [17]. This permits asymptotically flat (or de
Sitter) solutions and it gives regular hairy black hole
solutions. Then, various black hole solutions appeared in
the literature [18–22].
The stability of gravity theories in the presence of the

derivative coupling has been studied as well. Calculating
the quasinormal spectrum of scalar perturbations in a
gravity model with a scalar field coupled to Einstein
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tensor, an instability was found outside the horizon of a
Reissner-Nordström black hole [23]. It was shown that for
higher angular momentum and for large values of the
derivative coupling, the effective potential develops a
negative gap near the black hole horizon. This can be
interpreted as a signal that a phase transition has occurred to
a hairy black hole configuration.
This effect was further investigated in [15]. Keeping a

vanishing cosmological constant and no derivative cou-
pling, introducing an electromagnetic field, we do not have
the so-called “geometrical” breaking of the Abelian sym-
metry near the black hole horizon [24]. However, turning
on the derivative coupling, it was shown in [15] that there is
a critical temperature below which there is a phase
transition to a hairy black hole configuration. This is
happening because the space is asymptotically quasi-
anti–de Sitter (AdS), due to the presence of the derivative
coupling, and a new hairy black hole configuration is
generated as the result of the breaking of an Abelian gauge
symmetry by curvature effects. It was also found that this
hairy black hole configuration is spherically symmetric and
it is thermodynamically stable, having larger temperature
than the corresponding Reissner-Nordström black hole.
The quasinormal modes (QNMs) of a test massless scalar

field coupled to Einstein tensor were calculated in [25].
Also the QNMs were studied in [26] for various static and
spherically symmetric black holes in the presence of the
derivative coupling. It was found that the oscillation of
QNMs becomes slower and slower and the decay of QNMs
becomes faster and faster with the increasing of the
derivative coupling, confirming in this way the findings
that the coupling of the scalar field to curvature changes the
kinetic properties of the scalar field influencing the decay
of the QNMs. Calculations of QNMs for a massive scalar
field with the derivative coupling in the background of the
Reissner-Nordström black hole were performed in [27].
The vectorial and spinorial perturbations were performed

in Galileon black holes and the QNMs were calculated in
the presence of the derivative coupling [28]. The effect of
the derivative coupling in the quasinormal spectrum has
been analyzed and evaluated. No instability was found
under both vectorial and spinorial perturbations. Also the
superradiant instability of Galileon black holes was studied
in [29,30]. A massive charged scalar wave coupled to
curvature was scattered off the horizon of a Horndeski
black hole. It was found that a trapping potential is formed
outside the horizon of a Horndeski black hole, leading to
the instability of the Horndeski black hole, and the super-
radiance condition was calculated. Also the bound states
trapped in the potential well or penetrating the horizon of
the Galileon black hole leading to its instability were
calculated in [31]. We also found quasiresonant modes,
that is, long-lived modes, for fermionic perturbations.
In the present work we study possible instabilities of a

Reissner-Nordström-AdS black hole by calculating the
QNMs of scalar perturbations of a scalar field coupled

to Einstein tensor. In an AdS space there is a natural
boundary defined by its length L on which the scalar wave
is scattered back. As we already discussed, the derivative
coupling introduces another scale and one of the aims of
this work is to study the interplay of these scales and their
effects on the stability of the background Reissner-
Nordström-AdS black hole. We also investigate the reso-
nant transfer of energy from low to high frequencies
because we expect that at these regimes this transfer of
energy results in the instability of the Reissner-Nordström-
AdS black hole and we find the critical value of the
derivative coupling at which this behavior occurs. Finally,
we investigate what the effect is of the behavior of the
derivative coupling on the QNMs to alter the kinetic
properties of the scalar field.
The work is organized as follows. In Sec. II we consider

a massive scalar field coupled to the Einstein tensor
propagating on a fixed AdS background. In Sec. III we
study the potential formed outside the event horizon of
Reissner-Nordström-AdS black holes and possible insta-
bilities. In Sec. IV we calculate the QNMs and finally in
Sec. V we discuss our conclusions.

II. MASSIVE SCALAR FIELD COUPLED
TO THE EINSTEIN TENSOR

We consider the evolution of a massive scalar field Φ
coupled to the Einstein tensor propagating in AdS geom-
etries. We consider a massive scalar field interacting with
the Einstein tensor Gμν [5,6] as

Lpert ¼ −
ffiffiffiffiffiffi−gp
2

½ðgμν − ηGμνÞ∂μΦ∂νΦþm2Φ2�; ð1Þ

where η is the nonminimally derivative coupling parameter
and m is the scalar field mass. More specifically, we
investigate the propagation of this scalar field in spherically
symmetric background black hole solutions, that is,

ds2 ¼ −FðrÞdt2 þ FðrÞ−1dr2 þ r2dΩ2; ð2Þ

where dΩ2¼dθ2þsin2θdφ2 is the two-sphere line element.
The equation of motion for the scalar field Φ derived

from the Lagrangian (1) can be put in the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
hμν∂νΦÞ −m2Φ ¼ 0; ð3Þ

where g is the determinant of the metric given by the
line element (2) and hμν acts as an effective metric, and is
given by

hμν ¼ gμν − ηGμν: ð4Þ

Using the spherically symmetric background given by
Eq. (2) we can rewrite Eq. (3) as
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−Φ̈þ FðrÞ2Φ00 þ SðrÞΦ0 − ϑðrÞΦ ¼ 0; ð5Þ

where the dot corresponds to a time derivative, prime
corresponds to a radial derivative, and

ϑðrÞ ¼ F
ð1þ ηAÞ

�
lðlþ 1Þ

r2
ð1 − ηBÞ þm2

�
; ð6Þ

SðrÞ ¼ F2

�
ηA0

1þ ηA
þ F0

F
þ 2

r

�
; ð7Þ

with functions AðrÞ and BðrÞ given by

AðrÞ ¼
�
−
F0

r
þ 1 − F

r2

�
; ð8Þ

BðrÞ ¼ AðrÞ − 1

2
R; ð9Þ

where R is the Ricci scalar corresponding to metric (2).
Introducing the tortoise coordinate dr� ¼ 1

F dr and con-
sidering the separation of variables for the scalar field as
given by

Φðt; r; θ;φÞ ¼
X
l;m

Zðr; tÞ
rð1þ ηAÞ1=2 Yl;mðθ;φÞ; ð10Þ

where Yl;mðθ;φÞ are the well-known spherical harmonics,
the scalar field equation (5) becomes

−
∂2Z
∂t2 þ ∂2Z

∂r2� − VsðrÞZ ¼ 0; ð11Þ

where

VsðrÞ ¼
F

ð1þ ηAÞ
�
lðlþ 1Þ

r2
ð1 − ηBÞ þm2 þ F0

r
ð1þ ηAÞ

�
þ F2VηðrÞ; ð12Þ

VηðrÞ¼
η

1þηA

�
A00

2
þA0F0

2F
þA0

r

�
−
1

4

�
ηA0

1þηA

�
2

; ð13Þ

with l standing for the scalar field multipole number.

III. FIXING THE BACKGROUND:
ADS BLACK HOLES

In this section we mainly study the propagation of the
scalar field in the Reissner-Nordström-AdS black hole
background and we comment for the case of
Schwarzschild-AdS in the presence of the derivative
coupling, as discussed in the previous section. The equation
of motion follows exactly the form of Eqs. (5), (12), and
(13), where the line-element function F is given by

F ¼ 1 −
2M
r

þQ2

r2
þ r2

L2
; ð14Þ

and the potential functions A and B become

A ¼ −
3

L2
þQ2

r4
; B ¼ 3

L2
þQ2

r4
; ð15Þ

for black holes with mass M, charge Q, and AdS radius L.
In the Schwarzschild-AdS black hole case the Klein-
Gordon potential is not be affected by the derivative
coupling η except for the case of massive scalar field.
For the Reissner-Nordström AdS black hole, we choose

M, Q, and L such that two horizons are present, the event
horizon rh and the Cauchy horizon rc, in order to prevent
naked singularities. This condition in general represents,
given the values of M and L, a maximum value for the
charge of the black hole,Qext, which is the positive real root
of the equation

36M2Q2−27M4−8Q4

M2−Q2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
729M8−1944M6Q2þ1728M4Q4−512M2Q6

ðM2−Q2Þ2

s
¼2L2:

ð16Þ

The field transformation introduced in Eq. (10) results in a
drawback for its numerical evolution. No matter which
method is used, for a certain range of parameters of the
black hole and coupling, we have a discontinuity in the
potential at a specific value of r≡ rd, defined as

rd ¼
�

ηQ2

3η
L2 − 1

�
1=4

: ð17Þ

By limiting our investigation to the region beyond the event
horizon and spatial infinity, however, we can prevent such
instability occurring in the field equation, choosing the
range of parameters for which rd < rh.
The potential presented in Sec. II depends on four

different parameters, the multipole number l, the derivative
coupling parameter η, the perturbations mass m, and the
black hole charge Q.1 We discuss the behavior of this
potential outside the event horizon and possible instabilities
generated by the incident wave depending on the range of
accepted parameters.
Graphically analyzing the potential in Eq. (12) we notice

some general features. For Q ≠ 0 (Reissner-Nordström-
AdS case) the potential develops a negative well whose
width, depth, and position depend on the black hole and

1The parameters we choose to fix are the black hole mass M
and the AdS radius L. Thus, the event horizon only depends on
the charge value.
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perturbation parameters. After this well the potential
becomes positive definite; it develops a local maximum
(peak) and goes to infinity for large r, as expected. Because
of the appearance of a negative potential in a certain region
we can foresee the possibility of finding instabilities for
some range of parameters.
Let us first discuss the massless perturbation case. As can

be seen in Figs. 1 and 2 regarding the multipole number, its
effect is related to the potential’s peak or well size; i.e., as l
grows, the well becomes deeper and the local peak becomes
higher. However, the most interesting changes in the
potential occur when we turn on the derivative coupling
η. As η grows the potential develops a negative well that
initially stays completely inside the event horizon for small
values of η. At intermediate values of this parameter the
well is gradually shifted outside the horizon, thus making
the potential negative in that region. In other words η
triggers the well emergence that can eventually lead to
instabilities in the background metric.

In fact, this well becomes deeper as η approaches a critical
value, ηc, that signals the precise moment when instabilities
arise. This value can be numerically computed as we see in
the next section. As for the black hole charge, it deepens the
well as long as the derivative coupling parameter η is less
than its critical value, around which the wells attain an
almost uniform depth. The right panel in Fig. 1 also contains
the Schwarzschild case (Q ¼ 0) for reference. In addition, in
all figureswe show the corresponding event horizon position
to indicate the region of interest. In this way we can identify
potentials becoming negative at some regions after this
horizon, which can lead to possible instabilities.
Concerning the massive perturbation case, the effect of

the multipole number l and the derivative coupling param-
eter η remains the same as in the massless case. In addition,
the black hole charge makes the well shift outside the event
horizon more quickly. Moreover, we observe that as the
perturbation mass increases, the well gets shallow and the
potential grows faster as can be seen in Fig. 2.

FIG. 1. Effective scalar potential with parametersM ¼ L=10 ¼ 1 andm ¼ 0. Left panel: different values of ηwith l ¼ 1 andQ ¼ 0.2.
Right panel: different values of charge Q, with l ¼ 0 and η ¼ 30.

FIG. 2. Effective scalar potential with parameters M ¼ L=10 ¼ 1. Left panel: different values of scalar field mass m with l ¼ 0,
Q ¼ 0.5, and η ¼ 30. Right panel: different values of multipole number l, Q ¼ 0.5, η ¼ 19, and m ¼ 0.
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IV. QNMs OF A MASSIVE SCALAR FIELD
COUPLED TO EINSTEIN TENSOR

Based on the Klein-Gordon equation displayed in Sec. II,
we use the well-known characteristic integration in null-
coordinates method to obtain the field propagation along
with the prony method to extract the quasinormal frequen-
cies. Both techniques were used many times in specific
literature in recent years and can be found in multiple
references, e.g., in [32].
The integration procedure takes place in null coordinates

du ¼ dt − dr� and dv ¼ dtþ dr� and the boundary con-
dition is the usual Zjfrontier → 0. The complementar con-
dition we take is the evolution of a Gaussian wave package
in the u × t diagram, with which we can analyze the field
profile evolution. In cases where the field evolution goes as
a damped oscillation we can extract the quasinormal modes
with the prony method.
In order to check the quasifrequencies obtained we use as

a second tool a Frobenius-like method, based on the
expansion of the wave function around the event horizon
(developed by Horowitz and Hubeny in [33]).

A. Field propagation and QNMs

The characteristic integration in a Reissner-Nordström
geometry for the Klein-Gordon field has been obtained for
multiple ranges of parameters. The general behavior of a
quasinormal oscillation takes place for the geometry with-
out coupling as exemplified in the cases l ¼ 0 and l ¼ 1,
and for various values of η. The results we obtained with
the combination of both methods are quite similar to those
seen in the literature. For large black holes and cosmo-
logical constant we obtained ωl¼0 ¼ 184.99–266.33I and
ωl¼3 ¼ 185.04–266.32I with a difference smaller than
0.03% as compared with the results given in [34].2 In

Fig. 3, left and right panels, we see typical evolutions of the
scalar field obtained in the AdS charged geometry. The
field evolution in the massless case is stable and performing
a damped oscillation profile for every η when the wave has
no angular momentum. This is also the case for other
geometry parameters: the field is stable whenever l ¼ 0,
decaying as a quasinormal signal or exponentially.
Otherwise, for a scalar field with l > 0 there is always a
maximum value for η for which the evolution remains
bounded. In the above-mentioned figures, for instance, if
η > 32.7 (and < 100=3) when l > 0, the evolution will be
unstable. In this case the geometry of the spacetime is
expected to evolve as well and such a change has to be
investigated with the full nonlinear Einstein equations,
which is beyond the scope of this work. For high values of η
the evolution of the scalar field is almost the same as we
vary η, which we can see in Fig. 3, right panel. Moreover,
the quasinormal modes remain unaffected in this case; i.e.,
the coupling does not influence the spectra of the black
hole, as we show in the next subsection.
In Fig. 4, we can see typical evolutions of the scalar field

profiles in charged black holes. They are qualitatively the
same evolution obtained in the Reissner-Nordström-AdS
case (η ¼ 0), except near (and after) a threshold charge. In
that case, Q ∼ 0.765. Whenever Q < 0.766 the field
evolves stably, first with a ring-down signal and for charges
near the critical point, as an exponential decay. On the other
hand, if Q > 0.766, the field destabilizes and the geometry
must change.
The critical value of η for which the scalar field is not

stable depends on the parameters of the geometry, as
expected, and notably on the angular momentum of
the field.
In Table I we list some of these values for the Reissner-

Nordström-AdS black hole. We observe that the higher the
value of the charge in the geometry is, the smaller the value
of critical η will be, the same being true for other multipole
numbers. The transitional value of η in relation to the

FIG. 3. Scalar field behavior for an AdS charged black hole, with varying η. The parameters of the metric are M ¼ L=10 ¼ 5Q ¼ 1.

2In the reference, ωl¼0 ¼ 185.04–266.32I and ωl¼3 ¼
185.00–266.38I.
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stability of the scalar field achieves the highest gap from
l ¼ 1 to l ¼ 3 around Q ¼ 0.8Qext and decreases at the
extremal charge. For example, if Q ¼ 0.1Qext, the value
of transition in η varies slowly from l ¼ 1 to l ¼ 3
(circa 0.6%), while for Q ¼ 0.8Qext, from l ¼ 1 to l ¼ 3
the variation for η increases to 36.7% and for Q ¼
0.99999Qext, 34.3%. This means that accreting charge in
a Schwarzschild black hole (with a higher rate than the
accretion of mass) causes the reduction of the range of
stability in η for which the scalar field evolution decays
in time.
In Fig. 5 we plotted our results with l ¼ 3 and M ¼

L=10 ¼ 1 for critical values of η as a function of the black
hole charge (in units of Qext). We also show the corre-
sponding fitting chosen to be the simplest function of a
power of the charge with three parameters,

ηc ¼ 33.570 − 32.184ðQ=QextÞ1.779: ð18Þ

This fitting produces a factor R2 ¼ 0.99994, where we
define

R2 ≡ 1 −
P

iðyi − fiÞ2P
iðyi − ȳÞ2 ; ð19Þ

yi and ȳ being the data we numerically calculated and their
corresponding mean value and fi, the value produced by
the fitting function. Clearly, the value R2 ¼ 1 means a
perfect fitting. This shows the excellent correlation with the
points numerically calculated.
The instability of the scalar field increases for increasing

η up to L2=3. After this value the field transformation we
used generates a discontinuity in the potential for r > rh,
and we do not study the region of parameters for which
rd > rh until rd for high enough η becomes imaginary. At
this point the discontinuity disappears and the integration of
the scalar field equation produces only stable evolutions, in
as much as the potential is positive definite again.
In order to gain some insight about the critical value of η

let us analyze the behavior of the effective potential near
the horizon. In this region it can be rewritten as Vrh ∼
FðrÞΩðrhÞ where

ΩðrhÞ ¼
m2r2h þ lðlþ 1Þ

h
1 −

�
3
L2 þ Q2

r4h

�
η
i

r2h
h
1þ

�
− 3

L2 þ Q2

r4h

�
η
i þ F0ðrhÞ

rh

−
2Q2ηF0ðrhÞ

r5h
h
1þ

�
− 3

L2 þ Q2

r4h

�
η
i : ð20Þ

TABLE I. Critical value of η for the scalar field for different charges of the geometry (in unities ofQext) and angular momentum of the
field. For the geometry parameters, Qext ∼ 0.99518. The corresponding values of ηlim are also shown for reference.

10M ¼ L ¼ 10

l Q ¼ 0.1 Q ¼ 0.2 Q ¼ 0.4 Q ¼ 0.6 Q ¼ 0.8 Q ¼ 0.95 Q ¼ 0.99517

1 33.15�0.05 32.75�0.05 30.65�0.05 26.35�0.05 18.25�0.05 7.95�0.05 1.75�0.05

2 33.05�0.05 32.15�0.05 28.65�0.05 22.35�0.05 13.45�0.05 5.25�0.05 1.25�0.05

3 32.95�0.05 31.85�0.05 27.45�0.05 20.35�0.05 11.55�0.05 4.35�0.05 1.15�0.05

Lowest limit of stability for large l using Eq. (22)
∞ 32.54 30.29 22.91 14.44 7.10 2.63 0.92

FIG. 4. Scalar field behavior for an AdS charged black hole
with different charges. The parameters of the metric are
M ¼ L=10 ¼ η=20 ¼ 1. There is a critical value of Q from
which the field destabilizes.

FIG. 5. Critical value of η as a function of the charge (in units of
Qext) in the Reissner-Nordström-AdS black hole. The parameters
of the metric are M ¼ L=10 ¼ 1 and for the field m ¼ 0 and
l ¼ 3.
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Since FðrÞ is a positive function, the change of sign in the
potential necessarily comes from ΩðrhÞ. In this way, if the
potential turns out to be negative at some regions, unstable
modes could in principle be turned on. Thus, we search for
the 0’s of ΩðrhÞ and find the value of η when this change of
sign happens,

η0 ∼
−3L2r8h þ L4r4h½Q2 − r2hð1þ lðlþ 1Þ þm2r2hÞ�

ðL2Q2 þ 3r4hÞf−3r4h þ L2½Q2 − r2hð1þ lðlþ 1ÞÞ�g :

ð21Þ

The first thing we notice is that when m ¼ 0, Eq. (21)
becomes independent of l and is reduced to the limit value,

ηlim ∼
L2r4h

L2Q2 þ 3r4h
; ð22Þ

whose dependence upon Q=Qext can be observed in Fig. 6
for five different values of AdS radius L. We notice from

Fig. 6 that as the black hole charge Q approximates to the
extremal limit Qext, the critical value of η becomes smaller
and seems to be independent of AdS radius L.
The same result shown in Eq. (22) also corresponds to

the limit when l → ∞, i.e., for large multipole numbers.
This independence can be seen in the right panel of Fig. 2.
For large l the zeros of the potential remain at the same
position and l only affects the well depth. Moreover, our
calculations show that as l increases, ηc approaches ηlim as
we can see in Table I. For instance, the numerical results for
large l resemble the approximation above listed in Table I.
If we take M ¼ 0.1L ¼ 5Q ¼ l=50 ¼ 1, then ηc ∼ 30.45,
only 0.5% away from the listed value for l → ∞. Thus, ηlim
can be considered the lowest limit of stability for large l.
We also found an alternative fitting for the numerical

data in Fig. 5, which resembles very much Eq. (21), given
by

ηc ¼
8.103 − 7.617ðQ=QextÞ2

½0.518þ 0.004ðQ=QextÞ�½0.469þ 0.091ðQ=QextÞ2�
;

ð23Þ

FIG. 6. Critical value ηc as a function ofQ=Qext with black hole
mass M ¼ 1. Each curve corresponds to a different value of AdS
radius L.

TABLE II. The quasinormal modes of the RNAdS black hole
with l ¼ 0.

M ¼ L=10 ¼ 5Q ¼ 1 rh ¼ 5Q ¼ 50L ¼ 50

η ReðωÞ −ImðωÞ η ReðωÞ −ImðωÞ
70 0.2443 0.033 71 0 92.548 133.17
100 0.2452 0.034 37 0.3 92.551 133.18
1000 0.2462 0.035 07 0.33 92.579 133.30
106 0.2463 0.035 11 0.333 92.891 134.50
1012 0.2463 0.035 11 0.3333 100.20 146.53
1040 0.2463 0.035 11 1 92.548 133.17

FIG. 7. Scalar field evolution for multiple values of η on the charged AdS black hole. The parameters of the metric are
M ¼ L=10 ¼ 2.5Q ¼ 1 and for the field l ¼ 1 (left) and l ¼ 2 (right). The threshold of stability for η is different for each l. In the left
panel we see a critical coupling constant ηc ∼ 30.65, and in the right panel ηc ∼ 28.65 (the blue points presenting a stable evolution and
the red one unstable).
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which has a similar R2 factor as Eq. (18) showing excellent
agreement with the numerical data.
In Fig. 7 we can see examples of this limiar of stability,

for l ¼ 1 and l ¼ 2. In the first case ηc ∼ 30.6 and for
η > 62 only stable evolutions are seen for every l. The same
behavior is seen in the right panel for l ¼ 2 in which
ηc ∼ 28.6, and again for η > 62 only stable profiles are
generated. In cases of very high η no difference is noticed in
the field evolution as shown in Fig. 3: for η ¼ 103 to 1040

all signals collapse to a single one.
The situation is qualitatively similar when we study the

coupling for large black holes and largeΛ. In such a case it is
not possible to verify qualitative changes in the quasinormal
spectra from that of an AdS black holewithout coupling and
the quasinormal modes are marginally affected except when
η ∼ L2

3
(we compute some examples in the next subsection).

This comes as no surprise if we look at Table I and Fig. 7:
whenever η > ηc, the field destabilizes more and more as η
approaches L2

3
. Thus, for black holes with high rh, a

discerning influence is generated in the field propagation
only for η ∼ Λ−1. As we may further see, the quasinormal
modes do not change in such cases.

B. The quasinormal frequencies

The quasinormal frequencies obtained for the Reissner-
Nordström-AdS black hole are mostly affected by the
scalar field coupling in the limit of small rh and L. In
the cases of high rh or η ≫ Λ−1, the effect of the coupling is
very mild. In Table II, the frequencies vary less than 0.2%
for every η > 30Λ−1 for small black holes. On the other
hand, in the limit of high rh, the scalar field spectrum
remains unaffected for the coupling except very near Λ−1:
the quasinormal mode is exactly the same (to the fifth
figure) for η ¼ 0 and every η > 1. A similar behavior is
obtained varying the parameters, maintaining rh high: if we
take, e.g., rh ¼ Q ¼ 100L ¼ 100 and l ¼ 0, the funda-
mental mode is ω ¼ 184.95–266.38I for η ¼ 0 and ω ¼
184.95–266.36I for every η ≥ 1, which also occurs for
other values of l.3

In Table III we can see the effect of η coupling in the
quasinormal spectra for a small black hole. The influence is
again more pronounced in the regions η ∼ Λ−1 especially for
high values of charge. In general the field profile rapidly
undergoes the exponential decay forη nearΛ−1. For example,
no oscillation forms for Q ¼ 0.95 and η ¼ 30. The oscil-
lation of the values of the quasinormalmodes (increasing and
decreasing with increasing charge) is an expected feature
already demonstrated in other references [35].
In addition, quasinormal frequencies were calculated

using another numerical approach, developed by Horowitz
and Hubeny [33], as a double-check. As is usually the case,
this method produces the best results for large rh, while for
small rh the convergence of the method is problematic. The
values we found are in good agreement with the previous
method and the difference between these values is around
0.05% for the real part and 0.03% for the imaginary part of
the frequencies when η is far from the critical value. Near ηc
the convergence of the Horowitz-Hubeny method shows to
be very poor.

V. FINAL REMARKS

In the present work we have investigated the influence of
a nonminimal derivative coupling η of a massive scalar field
coupled to the Einstein tensor on the propagation of this
field in the vicinity of a Reissner-Nordström-AdS black
hole. We carried out a detailed investigation of the regions
of instability of the background black hole that arise
depending upon the value of η and the parameters of the
theory, namely, the massM and the electric chargeQ of the
black hole, the AdS radius L, and also the scalar field
multipole number l and its mass m.
In the case of massless scalar perturbations the effective

potential develops a negative well, which can be shifted
from inside the event horizon to the exterior region as the
derivative coupling parameter η grows and can be made
deep enough depending on the region of parameters. The
development of a negative well indicates possible insta-
bilities of the background Reissner-Nordström-AdS black
hole and it is confirmed by the analysis of field propagation
through the computation of quasinormal modes and
frequencies. In the case of massive scalar perturbations

TABLE III. The quasinormal modes of the RNAdS black hole with M ¼ L=10 ¼ 1 and l ¼ 0.

Q ¼ 0.1 Q ¼ 0.2 Q ¼ 0.4 Q ¼ 0.6 Q ¼ 0.8 Q ¼ 0.95

η ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ ReðωÞ −ImðωÞ
0 0.2453 0.036 64 0.2483 0.036 41 0.2477 0.035 42 0.2464 0.033 72 0.2440 0.031 25 0.2407 0.029 62
5 0.2486 0.036 69 0.2487 0.036 61 0.2492 0.036 25 0.2505 0.035 51 0.2533 0.033 63 0.2559 0.029 59
10 0.2487 0.036 76 0.2492 0.036 89 0.2514 0.037 21 0.2556 0.036 88 0.2614 0.033 95 0.2645 0.029 05
15 0.2489 0.036 87 0.2500 0.037 30 0.2545 0.038 30 0.2616 0.037 60 0.2687 0.033 47 0.2716 0.028 80
20 0.2493 0.037 06 0.2513 0.037 94 0.2592 0.039 38 0.2688 0.037 54 0.2761 0.032 85 0.2786 0.028 96
25 0.2500 0.037 46 0.2541 0.039 05 0.2669 0.039 97 0.2779 0.036 73 0.2847 0.032 46 0.2872 0.029 66
30 0.2528 0.038 79 0.2632 0.041 01 0.2818 0.038 86 0.2925 0.035 90 0.2995 0.034 23 *** ***

3For l ¼ 2, ω ¼ 184.98–266.37I for η ¼ 0 and ω ¼
184.98–266.35I for every η ≥ 1.
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as the perturbation mass increases, the well gets shallow
and the potential grows faster.
In the case of zero angular momentum the massless

scalar field evolves stably whatever the value of η is.
However, for nonzero angular momentum we found a
critical value of the derivative coupling ηc above which the
scalar field propagates unstable modes. Looking at the
QNMs we observed that as we increase η above its critical
value ηc, the oscillations get slower and the QNMs decay
faster. This behavior is expected because as we already
discussed, the coupling of the scalar field to the Einstein
tensor strongly influences its kinetic energy.
Regarding the effect of the black hole charge Q, we

found that as the chargeQ is approaching its extremal value
Qext, the critical value ηc is decreasing. A similar behavior
was observed in a charged rotating black hole. It was found
that instabilities can appear when the angular momentum of
the black hole is small, as long as the charge is sufficiently
large [36,37].
Finally, as we already discussed, for values of η beyond

ηc the field develops instabilities. However, we observed
that stability is recovered after a certain value of η > ηc,
featuring two transitions of the scalar field propagation, one

from stability to instability and the other going back to
stable quasinormal oscillation [38].
This behavior may signal that the Reissner-Nordström-

AdS black hole is scalarized; i.e., it acquires hair and it gets
stabilized. Actually a similar behavior was found in [39] in
which the extended scalar-tensor-Gauss-Bonnet gravity was
studied and it was found that a scalar field, sourced by the
curvature of the spacetime via the Gauss-Bonnet invariant,
scalarized spontaneously the Reissner-Nordström-AdS black
hole. We intend to further study this effect in a fully
backreacting problem with the scalar field interacting with
the background metric in a future project.
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