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We investigate stationary, self-gravitating, magnetized disks (or tori) around black holes. The models are
obtained by numerically solving the coupled system of the Einstein equations and the equations of ideal
general-relativistic magnetohydrodynamics. The mathematical formulation and numerical aspects of our
approach are similar to those reported in previous works modeling stationary self-gravitating perfect-fluid
tori, but the inclusion of magnetic fields represents a new ingredient. Following previous studies of purely
hydrodynamical configurations, we construct our models assuming Keplerian rotation in the disks and both
spinning and spinless black holes. We focus on the case of a toroidal distribution of the magnetic field and
build a large set of models corresponding to a wide range of values of the magnetization parameter, starting
with weakly magnetized disks and ending at configurations in which the magnetic pressure dominates over
the thermal one. In all our models, the magnetic field affects the equilibrium structure of the torus mainly
due to the magnetic pressure. In particular, an increasing contribution of the magnetic field shifts the
location of the maximum of the rest-mass density towards inner regions of the disk. The total mass of
the system and the angular momentum are affected by the magnetic field in a complex way, that depends on
the black hole spin and the location of the inner radius of the disk. The nonlinear dynamical stability
analysis of the solutions presented in this paper will be reported elsewhere.

DOI: 10.1103/PhysRevD.99.104063

I. INTRODUCTION

Compact accretion disks (or tori) around black holes are
astrophysical transient systems that can form in a number of
situations. Examples include the core-collapse of massive
stars [1], the merger of compact binaries consisting of either
two neutron stars or a black hole and a neutron star (see e.g.,
[2] and references therein), and the gravitational collapse
of a supermassive star [3,4]. Observations of the formation
and evolution of black hole–torus systems are challenging,
either using neutrino, electromagnetic or gravitational-wave
approaches. Since the recent breakthrough observation of
gravitationalwaves froma binary neutron star (BNS)merger
by Advanced LIGO and Virgo [5,6] one may hope that this
cosmic messenger may offer the best possibility of observ-
ing black hole–torus systems in the near future.
Numerical relativity is the best approach to study the

dynamical formation of black hole–torus systems from
ab initio simulations. Long-term simulations of BNS merg-
ers that include the late inspiral of the two neutron stars and
account for the relevant physics [i.e., relativistic gravity,
general-relativistic magnetohydrodynamics (GRMHD), and
neutrino transport] are in general fairly expensive. Therefore,
building equilibrium initial data of black hole–torus systems

is highly motivated, as it allows one to carry out follow-up
studies of the last stages of themerger in a less expensiveway
and in a more controlled environment, sidestepping the
computation of the late inspiral and early merger phase.
Equilibrium models must therefore be as faithful as possible
to the end products of the numerical evolutions, increasing
their realism as new physical ingredients are incorporated
(see [7] and references therein). Numerical works have
shown that the mass of the tori may be large enough to
render necessary to account for the disk self-gravity in order
to properly describe its dynamics. This is particularly true for
the case of unequal-mass BNS mergers [2,8]. Motivated by
these results, we present in this paper new families of self-
gravitating disks around black holes.
A few authors have previously investigated this issue

[9–12]. In their seminal work, Nishida and Eriguchi [9]
computed self-gravitating toroids around stars and black
holes using Komatsu-Eriguchi-Hachisu’s (KEH) self-
consistent-field method [13]. Elliptic-type field equations
were converted into integral equations using Green’s
functions. Later on, Ansorg and Petroff [10] built solutions
of black holes surrounded by uniformly rotating rings of
constant density using the same approach as [9], but solving
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the equations with a highly accurate multidomain, pseudo-
spectral method. A similar strategy was followed by
Stergioulas [12] to construct general-relativistic models of
self-gravitating, constant angular momentum tori around
black holes with KEH’s self-consistent-field method. An
important ingredient of this approach was the use of a
compactified radial coordinate, which improved the
enforcement of the boundary conditions asymptotically.
Very recently, Tsokaros, Uryū and Shapiro presented a
new scheme for constructing general initial data for the
Einstein equations, including solutions representing self-
gravitating perfect-fluid tori around black holes [14].
Among all previous studies, the most relevant one for our
work is that of Shibata [11], sincewe follow very closely his
procedure. Shibata’s work departs from the other three
approaches in that it builds self-gravitating tori around
rotating black holes adopting the so-called puncture frame-
work to describe the spacetime of a rotating black hole, and
hence avoiding potential numerical issues when dealing
with the curvature singularity at the origin. The models
reported by [11] are purely hydrodynamical (i.e., with no
magnetic field), and they are characterized by the constant
angular momentum. (Nonconstant angular momentum tori
were considered in [15], albeit around nonrotating black
holes.) On the contrary, the models presented in this paper
incorporate a toroidal distribution of the magnetic field, a
physically motivated Keplerian rotation law [16,17] and
rotating black holes.
In addition to self-gravity, our disks also incorporate

magnetic fields, within the ideal GRMHD approach. To
the best of our knowledge, equilibrium sequences of
self-gravitating and magnetized disks around black holes
in general relativity have not yet been reported in the
literature. (Notice, however, that Appendix A of [11]
outlines the procedure to build a self-gravitating magnet-
ized disk with a toroidal magnetic field, but no examples
are provided.) There exist a number of previous works
where equilibrium solutions of magnetized disks around
black holes have been built [18–21], but, to the best of
our knowledge, all of them are restricted to the test-fluid
approximation (i.e., neglecting self-gravity). Komissarov
[18] first presented a general procedure to build magnetized
“Polish doughnuts” (constant angular momentum tori)
using a barotropic equation of state and the assumption
that the specific enthalpy of the fluid is close to unity. This
restrictive condition on the thermodynamics was relaxed in
the work of Montero et al. [19], who also performed
dynamical evolutions of those tori. More recently, Gimeno-
Soler and Font [20] built new sequences of equilibrium
magnetized tori around Kerr black holes assuming a form
of the angular momentum distribution proposed in [22] that
departs from the constant case of [18] and from which the
equipotential surfaces can be easily computed.
The study of the stability of equilibrium solutions of

accretion tori under perturbations has received considerable

numerical attention (see [7] for a review). In particular,
constant angular momentum disks have been found to be
generically unstable. On the other hand, in most BNS
merger simulations the final black hole–torus system does
not manifest signs of dynamical instabilities on short
dynamical timescales (see [2] and references therein).
Specifically, the simulations of [8] indicate that the angular
velocity Ω of tori formed from unequal-mass BNS mergers
follows Keplerian profiles, Ω ∝ r−3=2, where r denotes the
distance from the rotation axis, which explains the scaling
of the specific angular momentum as r1=2. This provides
firm evidence that tori produced self-consistently are
dynamically stable. However, despite their nonconstant
angular momentum profiles make them stable against the
development of the so-called runaway instability [23–25],
on longer timescales nonaxisymmetric instabilities (e.g.,
the Papaloizou-Pringle instability (PPI) [26]) set in [15,
27–29]. Recently Bugli et al. [30] studied the development
of the PPI in tori threaded by weak toroidal magnetic fields
and how this instability may be affected by the concurrent
development of the magnetorotational instability (MRI).
Their simulations, within the test-fluid limit, showed that
the magnetic fields provide local viscous stresses through
turbulence and global angular momentum transport, lead-
ing to the suppression of large-scale PPI modes. The self-
gravitating, magnetized tori we built in the present work
may thus be used in the future to investigate the generality
of the findings of [30] beyond the test-fluid limit.
The paper is organised as follows: in Sec. II we discuss

the mathematical aspects of our procedure, presenting the
Euler-Bernoulli equations, the Einstein equations, and the
Keplerian rotation law. The masses and angular momentum
of the black hole–torus spacetime are discussed in Sec. III.
Section IV briefly describes our numerical method, and the
results are discussed in Sec. V. Finally, Sec. VI gives a
summary of this work. In the Appendix we provide
expressions for the Kerr metric in quasi-isotropic coordi-
nates. We use geometric units with G ¼ c ¼ 1, where G is
Newton’s constant and c is the speed of light, and assume
the signature of the metric ð−;þ;þ;þÞ. Spacetime dimen-
sions are labeled with Greek indices, μ ¼ 0, 1, 2, 3,
while Latin indices are used to denote spatial dimensions,
i ¼ 1, 2, 3.

II. EQUATIONS

We start by deriving the equations describing stationary,
axially symmetric, self-gravitating, magnetized toroids
rotating around black holes. The black hole (which can
be spinning) is included in the system using the puncture
method. The torus is described in terms of ideal GRMHD;
we restrict ourselves to toroidal magnetic fields and
barotropic equations of state. In specific numerical exam-
ples discussed in Sec. V we assume polytropic fluids and a
Keplerian rotation law introduced recently in [16,17].
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As mentioned in the introduction the formulation pre-
sented in this paper is based on the approach to modeling
stationary perfect-fluid disks around black holes derived
originally in [11] for the case with no magnetic fields.
In particular, in the derivation of the equations we follow
closely the steps taken in [11]. Because the terms connected
with the magnetic field appear irregularly in many of the
equations, we repeat the corresponding calculations also
in this paper. The magnetic field enters the description of
stationary disks in two places: in the stationary Euler
equation and in the “source terms” of the Einstein equations.
Within the framework of ideal GRMHD the energy-

momentum tensor has the form

Tμν ¼ ðρhþ b2Þuμuν þ
�
pþ 1

2
b2
�
gμν − bμbν; ð1Þ

where ρ is the baryonic (rest-mass) density, h is the specific
enthalpy, p is the (thermal) pressure, uμ denotes compo-
nents of the four-velocity of the fluid, and bμ is the four-
vector of the magnetic field. We denote b2 ¼ bμbμ. Note
that the quantity pmag ¼ 1

2
b2 plays the role of a magnetic

pressure. It is assumed that

bμuμ ¼ 0: ð2Þ

In this case the dual of the Faraday tensor relative to an
observer with four-velocity uμ, �Fμν ¼ bμuν − bνuμ, satis-
fies ∇μ

�Fμν ¼ 0.
We will work in spherical coordinates ðt; r; θ;φÞ. It is

convenient to start with a general, stationary and axially
symmetric metric of the form

g ¼ gttdt2 þ 2gtφdtdφþ grrdr2 þ gθθdθ2 þ gφφdφ2; ð3Þ

where the metric potentials gtt, gtφ, grr, gθθ, gφφ depend on r
and θ only. We consider an axially symmetric, stationary
configuration with ur ¼ uθ ¼ br ¼ bθ ¼ 0. It follows from
Eq. (2) that

bt ¼ −
uφ

ut
bφ ¼ −Ωbφ; ð4Þ

where Ω ¼ uφ=ut. Note that the normalization of the four-
velocity uμuμ ¼ −1 yields

gtt þ 2gtφΩþ gφφΩ2 ¼ −
1

ðutÞ2 : ð5Þ

It can be easily shown that

b2φ ¼ −ðutÞ2Lb2; ð6Þ

where L ¼ gφφgtt − g2tφ.

A. Euler-Bernoulli equation

The way of deriving the Euler-Bernoulli equation (or the
first integral of the Euler equations) for the ideal GRMHD
energy-momentum tensor is described in Appendix A of
[11]. The computation of the four-divergence

∇μTμ
ν ¼

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Tμ

νÞ −
1

2
ð∂νgαβÞTαβ ¼ 0 ð7Þ

yields

∂ν

�
pþ 1

2
b2
�
−
1

2
ð∂νgαβÞ½ðρhþ b2Þuαuβ − bαbβ� ¼ 0:

ð8Þ

The above equation is trivially satisfied for ν ¼ t and
ν ¼ φ. Nontrivial information is contained in Eq. (8) for
ν ¼ r, θ. Following [11], one can show that

1

2
uαuβ∂νgαβ ¼

∂νut

ut
− utuφ∂νΩ ð9Þ

and

1

2
bαbβ∂νgαβ ¼ b2

�∂νut

ut
þ ∂νL

2L
− utuφ∂νΩ

�
: ð10Þ

Combining the above expressions one gets

ρh

�
utuφ∂νΩ −

∂νut

ut

�
þ ∂νpþ ∂νðb2LÞ

2L
¼ 0; ð11Þ

or, dividing by ρh,

utuφ∂νΩ −
∂νut

ut
þ ∂νh

h
þ ∂νðb2LÞ

2ρhL
¼ 0; ð12Þ

where we have used the fact that dh ¼ dp=ρ. Therefore, it
is possible to search for a solution in the form

Z
utuφdΩþ ln

�
h
ut

�
þ
Z

dðb2LÞ
2ρhL

¼ C; ð13Þ

which is Eq. (A11) of [11] (note a misprint in the last term
of the equation given in [11]). The above equation is also
equivalent to Eq. (11) of [20]. We define the angular
momentum per unit of inertial mass ρh as j ¼ utuφ and
write

Z
jðΩÞdΩþ ln

�
h
ut

�
þ
Z

dðb2LÞ
2ρhL

¼ C: ð14Þ

This stays in agreement with the purely hydrodynamical
case, where a functional relation j ¼ jðΩÞ (the rotation
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law) is an integrability condition of the Euler equations.
Here we assume that j ¼ jðΩÞ. It follows that also b2L
must be a function of ρhL. Further details of the Euler-
Bernoulli equation, as well as the specific choices regarding
the equation of state, the rotation law, and the prescription
of the magnetic field will be discussed in Sec. II C.

B. Einstein equations

Following [11] we derive the set of equations corre-
sponding to a stationary black hole–torus spacetime from
the standard 3þ 1 formulation of the Einstein equations.
The 3þ 1 metric reads

g ¼ ð−α2 þ βiβ
iÞdt2 þ 2βidxidtþ γijdxidxj; ð15Þ

where α is the lapse function, βi is the shift vector, and γij
denotes the components of the spatial metric. The vector
normal to a surface of constant time Σt is given by

nμ ¼ 1

α
ð1;−βr;−βθ;−βφÞ; nμ ¼ ð−α; 0; 0; 0Þ: ð16Þ

The Einstein constraint equations read

DjðKij − γijKÞ ¼ 8πji ð17Þ

and

1

2
ðRþ K2 − KijKijÞ ¼ 8πρH; ð18Þ

where Di and R denote, respectively, the covariant deriva-
tive and the scalar curvature with respect to the metric γij,
induced on the slices Σt. The extrinsic curvature Kij of a
slice Σt is defined by

Kij ¼ −
1

2α
ð∂tγij − LβγijÞ; ð19Þ

where the Lie derivative of the three-metric is given by

Lβγij ¼ βk∂kγij þ γik∂jβ
k þ γkj∂iβ

k: ð20Þ

We denote K ¼ γijKij and use a standard convention that
spatial indices are raised and lowered using the induced
metric γij. The source terms ρH and ji are defined as

ρH ¼ nμnνTμν; ji ¼ −Pα
inβTαβ; ð21Þ

where Pμ
ν ¼ δμν þ nμnν is the spatial projection operator.

The evolution equation for the extrinsic curvature Kij is

∂tKij − LβKij ¼ −DiDjαþ αðRij þ KKij − 2KikKk
jÞ

þ 4πα½γijðS − ρHÞ − 2Sij�: ð22Þ

Here Rij is the Ricci tensor with respect to the metric γij.
The tensor Sij is defined as

Sij ¼ Pμ
iPν

jTμν; ð23Þ

and S ¼ γijSij.
We start by computing the source terms ρH, ji, Sij and S.

Assuming the energy-momentum tensor (1), one gets

ρH ¼ α2ρhðutÞ2 − pþ 1

2
b2; ð24Þ

Sij ¼ ðρhþ b2Þuiuj þ
�
pþ 1

2
b2
�
γij − bibj; ð25Þ

S ¼ ρh½α2ðutÞ2 − 1� þ 3pþ 1

2
b2: ð26Þ

Finally, the only nonvanishing component of ji is

jφ ¼ αρhutuφ: ð27Þ

Note that there is no explicit magnetic contribution to jφ.
All these formulas can be obtained quite generally, assum-
ing the metric of the form (3) and the conditions
ur ¼ uθ ¼ br ¼ bθ ¼ 0.
As in [11] we assume from now on a metric in quasi-

isotropic form:

g¼−α2dt2þψ4e2qðdr2þ r2dθ2Þþψ4r2sin2θðβdtþdφÞ2:
ð28Þ

Thus, we need to provide equations for the four metric
potentials appearing in Eq. (28), α, β, ψ , and q, or, as we
shall see, suitable combinations of these quantities (as in
[11]). In Eq. (28) βφ ¼ ψ4r2β sin2 θ, β≡ βφ, and α denotes
the lapse function [as in Eq. (15)]. Since ∂tγij ¼ 0 and
βk∂kγij ¼ 0, we get

Kij ¼
1

2α
ðγik∂jβ

k þ γkj∂iβ
kÞ; ð29Þ

and K ¼ γikKik ¼ 0; i.e., we are in fact working in a
maximal slicing. Therefore, the momentum constraint (17)
can be written as

DjKj
l ¼ 8πjl: ð30Þ

The only nonvanishing components of Kij read

Kφr ¼ Krφ ¼ 1

2α
ψ4r2 sin2 θ∂rβ; ð31Þ

Kφθ ¼ Kθφ ¼ 1

2α
ψ4r2 sin2 θ∂θβ: ð32Þ
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To compute the momentum constraint we use a standard
formula for symmetric tensors Kij:

DjKj
l ¼

1ffiffiffi
γ

p ∂jð ffiffiffi
γ

p
Kj

lÞ −
1

2
ð∂lγikÞKik; ð33Þ

where γ ¼ detðγijÞ. Assuming the metric of the form (28)
one obtains

ffiffiffi
γ

p ¼ ψ6r2 sin θe2q. The only nontrivial com-
ponent of Eqs. (30) is obtained for l ¼ φ,

1

r2
∂rðψ2r2KrφÞ þ

1

r2 sin θ
∂θðψ2 sin θKθφÞ ¼ 8πψ6e2qjφ:

ð34Þ

Following [11] the shift vector β can be now split into
two parts, β ¼ βK þ βT, where subindex K indicates the
Kerr metric and subindex T the torus. We require that

Krφ ¼ Kφr ¼
HEsin2θ
ψ2r2

þ 1

2α
ψ4r2sin2θ∂rβT; ð35Þ

Kθφ ¼ Kφθ ¼
HF sin θ
ψ2r

þ 1

2α
ψ4r2sin2θ∂θβT; ð36Þ

and assume HE and HF corresponding to the Kerr metric
(see Appendix A). More precisely, we choose HE and HF
so that for the Kerr metric written in the form (28) one has

Krφ ¼ Kφr ¼
HEsin2θ
ψ2r2

; ð37Þ

Kθφ ¼ Kφθ ¼
HF sin θ
ψ2r

: ð38Þ

These functions satisfy the momentum constraint of the
form

r sin3 θ∂rHE þ ∂θðHF sin2 θÞ ¼ 0: ð39Þ

If a self-gravitating torus is present, we compute βK from
the relation

∂rβK ¼ 2HEα

r4ψ6
; ð40Þ

which does not yield the Kerr form, as the conformal factor
ψ contains a contribution from the torus.
Inserting the expressions for Krφ and Kθφ into Eq. (34)

we obtain, after some algebra, an elliptic-type equation
for βT

ΔβTþ
α

ψ6r2
ð∂rβTÞ∂r

�
ψ6r2

α

�

þ α

ψ6r2 sin2θ
ð∂θβTÞ∂θ

�
ψ6 sin2θ

α

�
¼16παe2qjφ

r2 sin2θ
; ð41Þ

where Δ denotes the flat Laplacian operator in spherical
coordinates. Again, as in [11] we replace the lapse function
α by the combination Φ ¼ αψ and rewrite the previous
equation as

ΔβT þ
�
2

r
þ 7∂rψ

ψ
−
∂rΦ
Φ

�
∂rβT

þ 1

r2

�
2 cot θ þ 7∂θψ

ψ
−
∂θΦ
Φ

�
∂θβT ¼ 16παe2qjφ

r2 sin2 θ
;

ð42Þ

which is the same as Eq. (20) of [11].
The equation for the conformal factor follows from the

Hamiltonian constraint, Eq. (18), which for metric (28)
reads

R − KijKij ¼ 16πρH: ð43Þ

It can be easily shown that

KijKij ¼ 2A2

ψ12e2q
; ð44Þ

where we use the short-hand notation

A2 ¼ ðψ2KrφÞ2
r2 sin2 θ

þ ðψ2KθφÞ2
r4 sin2 θ

: ð45Þ

The Ricci scalar can be computed as

R ¼ −
8

ψ5e2q
Δψ þ 1

ψ4
R̃; ð46Þ

where

R̃ ¼ −2e−2q
�
∂rrqþ 1

r
∂rqþ 1

r2
∂θθq

�
: ð47Þ

This allows us to write the Hamiltonian constraint (18) in
the form (Eq. (19) of [11])

Δψ ¼ 1

8
ψe2qR̃ −

1

4

A2

ψ7
− 2πψ5e2qρH: ð48Þ

The next equation follows from the general evolution
equation for K. It can be obtained by computing the trace
of Eq. (22):
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∂tK − LβK ¼ −γijDiDjαþ αðRþ K2Þ þ 4παðS − 3ρHÞ:
ð49Þ

Using the Hamiltonian constraint, this equation can also be
written as

∂tK−LβK¼−γijDiDjαþαKijKijþ4παðSþρHÞ: ð50Þ
Since

−γijDiDjα ¼ −
1

ψ5e2q
ΔΦþ Φ

ψ6e2q
Δψ ; ð51Þ

we obtain an elliptic-type equation for Φ

ΔΦ ¼ Φ
ψ
Δψ þ 2ΦA2

ψ8
þ 4πΦe2qψ4ðρH þ SÞ; ð52Þ

or, in terms of R̃,

ΔΦ ¼ 1

8
Φe2qR̃þ 7ΦA2

4ψ8
þ 2πΦe2qψ4ð2Sþ ρHÞ; ð53Þ

which is Eq. (18) of [11].
The last equation (for the potential q) is obtained from

Eq. (22). We define

Iij ¼ ∂tKij

¼ LβKij −DiDjαþ αðRij þ KKij − 2KikKk
jÞ

þ 4πα½γijðS − ρHÞ − 2Sij� ¼ 0: ð54Þ

Consider the equation

Irr þ
1

r2
Iθθ −

3e2q

r2 sin2 θ
Iφφ ¼ 0: ð55Þ

It yields, in particular, the term

−
4π

r2

�
r2Srr þ Sθθ −

3e2q

sin2 θ
Sφφ þ e2qr2ψ4S

�

¼ −8πe2qψ4

�
p −

ρhu2φ
ψ4r2 sin2 θ

þ 3

2
b2
�
; ð56Þ

and the equation�
∂rr þ

1

r
∂r þ

1

r2
∂θθ

�
q

¼ −8πe2qψ4

�
p −

ρhu2φ
ψ4r2 sin2 θ

þ 3

2
b2
�
þ 3A2

ψ8

þ 2

�
1

r
∂r þ

cot θ
r2

∂θ

�
lnðΦψÞ

þ 4

Φψ

�
∂rΦ∂rψ þ 1

r2
∂θΦ∂θψ

�
: ð57Þ

This allows us to compute R̃. The result can be combined
with Eq. (48), yielding a new form of the elliptic equation
for the conformal factor ψ

Δψ ¼ −2πe2qψ5

�
ρH − p −

3

2
b2 þ ρhu2φ

ψ4r2sin2θ

�
−
A2

ψ7

−
1

2
ψ

�
1

r
∂r þ

cot θ
r2

∂θ

�
lnðΦψÞ

−
1

Φ

�
∂rΦ∂rψ þ 1

r2
∂θΦ∂θψ

�
; ð58Þ

which corresponds to Eq. (30) of [11]. A direct calculation
then gives

�
Δþ 1

r
∂r þ

cot θ
r2

∂θ

�
ðΦψÞ ¼ 16πΦψ5e2q

�
pþ 1

2
b2
�
;

ð59Þ

which generalizes Eq. (31) of [11].
From the technical point of view, the black hole is

introduced by specifying suitable boundary conditions.
This can be done in an elegant manner by adapting the
above equation to the “puncture” form (see [31,32]).
Assuming that the puncture is located at r ¼ 0, we define

ψ ¼
�
1þ rs

r

�
eϕ; Φ ¼

�
1 −

rs
r

�
e−ϕB; ð60Þ

where rs ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
is a radius of a coordinate sphere

corresponding to the black hole horizon. Parameters m and
a are chosen in such a way that in the Kerr spacetime with
the asymptotic mass m and the spin parameter a the event
horizon would be located at r ¼ rs.
The above definitions lead to the following equations for

the functions ϕ, B, βT, and q:

�
∂rr þ

1

r
∂r þ

1

r2
∂θθ

�
q ¼ Sq; ð61aÞ

�
∂rr þ

2r
r2 − r2s

∂r þ
1

r2
∂θθ þ

cot θ
r2

∂θ

�
ϕ ¼ Sϕ; ð61bÞ

�
∂rr þ

3r2 þ r2s
rðr2 − r2s Þ

∂r þ
1

r2
∂θθ þ

2 cot θ
r2

∂θ

�
B ¼ SB; ð61cÞ

�
∂rr þ

4r2 − 8rsrþ 2r2s
rðr2 − r2s Þ

∂r þ
1

r2
∂θθ þ

3 cotθ
r2

∂θ

�
βT ¼ SβT ;

ð61dÞ

where
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Sq ¼ −8πe2q
�
ψ4p −

ρhu2ϕ
r2sin2θ

þ 3

2
ψ4b2

�

þ 3A2

ψ8
þ 2

�
r − rs

rðrþ rsÞ
∂r þ

cot θ
r2

∂θ

�
b̃

þ
�

8rs
r2 − r2s

þ 4∂rðb̃ − ϕÞ
�
∂rϕþ 4

r2
∂θϕ∂θðb̃ − ϕÞ;

ð62aÞ

Sϕ ¼ −2πe2qψ4

�
ρH − pþ ρhu2ϕ

ψ4r2sin2θ
−
3

2
b2
�
−
A2

ψ8

− ∂rϕ∂rb̃ −
1

r2
∂θϕ∂θb̃

−
1

2

�
r − rs

rðrþ rsÞ
∂rb̃þ cot θ

r2
∂θb̃

�
; ð62bÞ

SB ¼ 16πBe2qψ4

�
pþ 1

2
b2
�
; ð62cÞ

SβT ¼
16παe2qjφ
r2 sin2 θ

− 8∂rϕ∂rβT þ ∂rb̃∂rβT

− 8
∂θϕ∂θβT

r2
þ ∂θb̃∂θβT

r2
; ð62dÞ

which replace Eqs. (44–47) of [11] when a toroidal
magnetic field is present in the disk. In the above formulas
we denoted B ¼ eb̃. Equation (40) can be written as

∂rβK ¼ 2HEBe−8ϕ
ðr − rsÞr2
ðrþ rsÞ7

: ð63Þ

Notice that it does not yield the Kerr form, as there are
contributions from the torus in both B and ϕ.
In our numerical approach we assume equatorial sym-

metry and solve equations (61), (62) and (63) in the domain
defined by r ∈ ðrs; r∞Þ, θ ∈ ð0; π=2Þ. Here r∞ is large, but
finite.
The boundary conditions at r ¼ rs read

∂rq ¼ ∂rϕ ¼ ∂rB ¼ ∂rβT ¼ 0: ð64Þ

It can be shown that Eq. (61d) requires a more stringent
condition, which we set as βT ¼ O½ðr − rsÞ4�, or equiv-
alently, βT ¼ ∂rβT ¼ ∂rrβT ¼ ∂rrrβT ¼ 0 at r ¼ rs. In this
choice, reflecting a freedom of fixing the splitting
β ¼ βT þ βK, we follow [11]; this choice has consequences
in the definition of the angular momentum of the black hole
(cf. Sec. III).
With the above boundary conditions, the two-surface

r ¼ rs embedded in a hypersurface of constant time Σt
becomes a Marginally Outer Trapped Surface (MOTS) or
the so-called apparent horizon. This can be easily demon-
strated as follows. A MOTS is defined as a two-surface S

embedded in Σt on which the scalar expansion of the
outgoing null geodesics

θþ ¼ H − Kijmimj þ K ð65Þ

vanishes. Here H ¼ Dimi denotes the mean curvature of
the surface S, and mi is a unit vector tangent to Σt and
normal to S. For the two-surface r ¼ rs, the components of
the three-vector mi are given by mi ¼ ðmr;mθ; mφÞ ¼
ðψ−2e−q; 0; 0Þ. Consequently, at r ¼ rs,

θþ ¼ H ¼ 1

ψ6e2qr2
∂rðψ4eqr2Þ; ð66Þ

since both terms Kijmimj and K vanish. Using Eq. (60),
one can show that

θþ ¼ H ¼ 1

4
e−2ϕ−qð4∂rϕþ ∂rqÞ; ð67Þ

at r ¼ rs. It is now clear that the boundary conditions
assumed at r ¼ rs imply that θþ ¼ H ¼ 0. Note that the
surface r ¼ rs is not only an apparent horizon, but it is also
a minimal surface.
At the axis θ ¼ 0 we assume regularity conditions

∂θϕ ¼ ∂θB ¼ ∂θβT ¼ 0. Local flatness implies that
q ¼ 0 at θ ¼ 0. At the equator, we require symmetry
conditions ∂θq ¼ ∂θϕ ¼ ∂θB ¼ ∂θβT ¼ 0.
The asymptotic expansions of q, ϕ, B, and βT are

discussed in Sec. III. They are used to impose boundary
conditions at r ¼ r∞. Further details on the numerical
implementation of the boundary and asymptotic conditions
can be found in [17].

C. Details of the Euler-Bernoulli equation

We next discuss details of the Euler-Bernoulli equation,
Eq. (14). The following three components have to be
specified in order to obtain a solution: the equation of
state, the rotation law j ¼ jðΩÞ, and a prescription of the
distribution of the magnetic field.
We assume the Keplerian rotation law derived in [16,17],

i.e.,

jðΩÞ ¼ −
1

2

d
dΩ

ln f1 − ½a2Ω2 þ 3w
4
3Ω2

3ð1 − aΩÞ43�g: ð68Þ

This is an exact formula that characterizes the motion of
circular geodesics at the equatorial plane of the Kerr
spacetime, in which case w2 ¼ m, where m is the Kerr
mass. For self-gravitating tori w2 ≠ m, in general. In the
Newtonian limit rotation law (68) yields the standard
Keplerian prescription of the angular velocity Ω ¼ w=
ðr sin θÞ32. It also agrees (for a ¼ 0) with the post-
Newtonian Keplerian prescription proposed in [33]. The
advantage of using this rotation law is that it allows one to
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obtain numerical solutions in a wide range of the param-
eters describing the torus [16,17].
The angular velocity Ω can be obtained by solving the

relation jðΩÞ ¼ utuφ for Ω. In more explicit terms this
relation reads

jðΩÞð−gtt − 2gtφΩ − gφφΩ2Þ ¼ gφφΩþ gtφ ð69Þ

or

jðΩÞ½α2 − ψ4r2 sin2 θðΩþ βÞ2� ¼ ψ4r2 sin2 θðΩþ βÞ;
ð70Þ

where jðΩÞ is given by Eq. (68). We assume a convention
with Ω > 0. This can correspond both to a torus corotating
with the black hole, if a > 0, or counter-rotating, for a < 0.
The specification of the magnetic term

Z
dðb2LÞ
2ρhL

¼
Z

dðb2jLjÞ
2ρhjLj ; ð71Þ

with L ¼ −α2ψ4r2sin2θ, is somewhat more arbitrary, in the
sense that there seem to be no physical “hints” concerning
its prescription. Assuming a functional relation of the form
b2jLj ¼ fðxÞ, where x ¼ ρhjLj (note that this functional
relation fulfills the general relativistic version of the von
Zeipel condition for a purely toroidal magnetic field [34]),
we obtain

Z
dðb2jLjÞ
2ρhjLj ¼

Z
f0ðxÞdx

2x
: ð72Þ

Suppose that we would like to get

Z
f0ðxÞdx

2x
¼ lnð1þ C1xÞn; ð73Þ

where C1 and n are constants. This yields

f0ðxÞ ¼ 2nC1x
1þ C1x

; ð74Þ

and a solution of the form

fðxÞ ¼ 2n

�
x −

1

C1

lnð1þ C1xÞ
�
þ C2: ð75Þ

For x ¼ 0 we get fðx ¼ 0Þ ¼ C2. Consequently, we set
C2 ¼ 0. This ensures that the magnetic field vanishes for
vanishing ρ. We have, finally,

Z
dðb2LÞ
2ρhL

¼ ln½ð1þ C1α
2ψ4r2 sin2 θρhÞn�: ð76Þ

We assume the above prescription of the magnetic field in
this paper.
Equation (5) with the metric terms of Eq. (28) yields

1

ut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2 sin2 θðΩþ βÞ2

q
: ð77Þ

The Euler-Bernoulli Eq. (14) can be now written in the
form

hð1þ C1α
2ψ4r2sin2θρhÞn

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2sin2θðΩþ βÞ2

q
× f1 − ½a2Ω2 þ 3w

4
3Ω2

3ð1 − aΩÞ43�g−1
2 ¼ C0: ð78Þ

In this paper we work with the polytropic equation of
state of the form p ¼ Kργ . This yields the expression for
the specific enthalpy

h ¼ 1þ Kγ

γ − 1
ργ−1: ð79Þ

Note that the magnetic distribution was chosen in such a
way that in the limit ρ → 0, the Euler-Bernoulli equation
has the same form as in the absence of the magnetic field,
i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2sin2θðΩþ βÞ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½a2Ω2 þ 3w

4
3Ω2

3ð1 − aΩÞ43�
q ¼ C0: ð80Þ

In our numerical procedure this form is used to establish the
constants w and C0, assuming that the torus is characterized
by some fixed equatorial coordinate radii r1 and r2.
An important numerical aspect concerns the specifica-

tion of the polytropic constant K of the equation of state. It
is adjusted during the numerical iterative procedure so that
the maximum value of the density ρwithin the torus is fixed
at an a priori prescribed value (see Sec. IV for an exact
discussion of this point).
We note that another possibility of setting up the details

of the Euler-Bernoulli equation is to assume the rotation
law of the form j̃ ¼ huφ ¼ j̃ðΩÞ. This is, for instance, the
choice used in [11]. The Euler-Bernoulli equation is then
given by Eq. (A10) of [11]. Such a formulation would
suggest a different profile of b2, given for instance by
Eq. (A14) of [11].

III. MASSES AND ANGULAR MOMENTA

The asymptotic Arnowitt-Deser-Misner (ADM) mass
can be computed as [11]

MADM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
þM1; ð81Þ
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where

M1 ¼ −2
Z

∞

rs

dr
Z

π=2

0

dθðr2 − r2s Þ sin θSϕ; ð82Þ

andm is the Kerr mass. Defining the mass of the black hole
is less straightforward. The central black hole is surrounded
by a minimal two-surface located at r ¼ rs in the puncture
method, on a fixed hypersurface of constant time. There is a
collection of quantities that can be used to characterize the
geometry of the horizon r ¼ rs. The area of the horizon is
given by

AH ¼ 4π

Z
π=2

0

ψ4eqr2 sin θdθ; ð83Þ

where the integral is evaluated at r ¼ rs. One can also
define (at r ¼ rs) ΩH ¼ −β ¼ −βK ¼ const, and the sur-
face gravity κ ¼ ∂rαψ

−2e−q ¼ const. It can be easily
shown that κ ¼ Be−4ϕ−q=8rs. The angular momentum of
the black hole can be defined as (see below)

JH ¼ 1

4

Z
π=2

0

dθ

�
r4 sin3 θψ6∂rβ

α

�
r¼rs

: ð84Þ

A mass defined at r ¼ rs as

MH ¼
Z

π=2

0

ψ2r2∂rα sin θdθ þ 2ΩHJH; ð85Þ

obeys the Smarr formula

MH ¼ κ

4π
AH þ 2ΩHJH: ð86Þ

The mass of the black hole used in this paper is defined
differently. Following [11] we adopt Christodoulou’s for-
mula [35]. We define first the so-called irreducible mass

Mirr ¼
ffiffiffiffiffiffiffiffi
AH

16π

r
: ð87Þ

Then the mass of the black hole is defined as

MBH ¼ Mirr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J2H

4M4
irr

s
: ð88Þ

From the ADM mass and the black hole mass we can
define the torus mass as MT ¼ MADM −MBH, as was done
in [16,17]. There is, however, another possibility for the
mass measure of the torus:

MT ¼ 8π

Z
∞

rs

dr
Z

π=2

0

dθr2 sin θαψ6e2q
�
−Tt

t þ
1

2
Tμ

μ

�
:

ð89Þ

It satisfies the relation

MH þMT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
þM1 ¼ MADM: ð90Þ

We use this relation as a test of the accuracy of our
numerical solutions. A direct computation yields

−Tt
t þ

1

2
Tμ

μ ¼ −ρhutut −
1

2
ρhþ pþ 1

2
b2: ð91Þ

In the numerical code, we compute the above quantity as

−Tt
t þ

1

2
Tμ

μ ¼ −
1

2
ρhþ 2pþ ρH − βρhutuφ: ð92Þ

Correspondingly, the angular momentum of the torus is
defined as

J1 ¼
Z ffiffiffiffiffiffi

−g
p

Tt
φd3x

¼ 4π

Z
∞

rs

dr
Z

π=2

0

dθr2 sin θαψ6e2qρhutuφ: ð93Þ

This is a standard definition corresponding to the Killing
vector ημ¼ð0;0;0;1Þ, and the conservation law ην∇μTμ

ν ¼
∇μðTμ

νη
νÞ ¼ 0 [36]. Note that Tt

φ ¼ ðρhþ b2Þutuφ−
btbφ ¼ ρhutuφ, i.e., the contributions from the magnetic
terms cancel. The total, asymptotic angular momentum
reads J ¼ JH þ J1.
The value of the angular momentum JH depends on the

assumed boundary conditions for βT. In our case
βT ¼ ∂rβT ¼ ∂rrβT ¼ ∂rrrβT ¼ 0 at r ¼ rs, and conse-
quently JH ¼ am.
The mass M1 and the angular momentum J1 are related

to the asymptotic behavior of the metric functions ϕ and βT,
namely,

ϕ ∼
M1

2r
; βT ∼ −

2J1
r3

; ð94Þ

as r → ∞. The asymptotic behavior of the two remaining
functions B and q is given by

B ∼ 1 −
B1

r2
; q ∼

q1sin2θ
r2

; ð95Þ

where

B1 ¼
2

π

Z
∞

rs

dr
ðr2 − r2s Þ2

r

Z
π=2

0

dθ sin2 θSB; ð96Þ
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and

q1 ¼
2

π

Z
∞

r2

drr3
Z

π=2

0

dθ cosð2θÞSq

−
4r2s
π

Z
π=2

0

dθ cosð2θÞqðrs; θÞ: ð97Þ

We use the above asymptotic expansions to set the
boundary conditions at the outer boundary of the numerical
grid, i.e., at r ¼ r∞.

IV. NUMERICAL METHOD

To construct our models of self-gravitating, magnetized
tori around rotating black holes we need to solve numeri-
cally the equations derived in Sec. II. The metric functions
are described by Eqs. (63) and (61) with the source terms
given by Eqs. (62). The angular velocity Ω must satisfy
Eq. (70) with jðΩÞ given by Eq. (68). The distribution of

the enthalpy h, rest-mass density, and the pressure p are
obtained from Eq. (78) and from the polytropic relation
(79). The quantity A2 appearing in expressions (62) is
defined by (45) where Krφ and Kθφ should be computed
according to formulas (35) and (36).
The numerical code used to obtain the solutions pre-

sented in this paper is a modification of the code described
and tested in [17] to which the interested reader is
addressed for details. It is an iterative method, where in
each iteration one solves Eq. (70) for the angular velocity
Ω, Eq. (78) for the density ρ (or the specific enthalpy h),
and then Eqs. (61) for the metric functions. The latter are
solved with 2nd-order finite differences. We take advantage
of the banded matrix structure of the resulting linear
equations and use LAPACK [37]. The changes introduced
with respect to the version of the code described in [17] are
only related to the presence of the magnetic field. While the
inclusion of the magnetic terms in Eqs. (61) is straightfor-
ward, solving Eq. (78) with the magnetic terms is more

TABLE I. Parameters of the numerical solutions. In all cases we assumed the polytropic exponent γ ¼ 4=3, the magnetization law
parameter n ¼ 1, and the black hole mass parameter m ¼ 1. From left to right the columns report: the black hole spin parameter a, the
coordinate inner radius of the disk r1, the circumferential inner radius of the disk rC;1, the coordinate outer radius of the disk r2, the
circumferential outer radius of the disk rC;2, the maximum rest-mass density within the disk ρmax, the parameter C1 appearing in
the magnetization law, the total ADM mass mADM, the mass of the black hole mBH, the angular momentum of the disk J1, and the
magnetization parameter βmag ¼ p=pmag ¼ 2p=b2 at the maximum of the rest-mass density.

No. a r1 rC;1 r2 rC;2 ρmax C1 mADM mBH J1 βmag

1a −0.5 8.0 9.2 35.3 36.7 5 × 10−5 0 1.33 1.01 1.7 ∞
1b −0.5 8.0 9.2 35.3 36.7 5 × 10−5 0.01 1.34 1.01 1.75 30.5
1c −0.5 8.0 9.3 35.3 36.8 5 × 10−5 0.1 1.40 1.01 2.08 3.49
1d −0.5 8.0 9.4 35.3 36.9 5 × 10−5 1 1.51 1.02 2.65 0.21
1e −0.5 8.0 9.4 35.3 36.9 5 × 10−5 1.3 1.50 1.02 2.58 5.3 × 10−2

1f −0.5 8.0 9.3 35.3 36.9 5 × 10−5 1.42 1.49 1.02 2.54 1.3 × 10−3

2a 0 8.1 9.3 35.1 36.5 5 × 10−5 0 1.33 1.02 1.64 ∞
2b 0 8.1 9.3 35.1 36.5 5 × 10−5 0.01 1.34 1.02 1.69 29.4
2c 0 8.1 9.3 35.1 36.5 5 × 10−5 0.1 1.40 1.02 2.02 3.37
2d 0 8.1 9.4 35.1 36.7 5 × 10−5 1 1.52 1.03 2.61 0.19
2e 0 8.1 9.4 35.1 36.7 5 × 10−5 1.3 1.51 1.03 2.55 3.0 × 10−2

2f 0 8.1 9.4 35.1 36.7 5 × 10−5 1.37 1.50 1.03 2.52 5.8 × 10−4

3a 0.9 3.0 4.4 20.0 21.7 3.5 × 10−4 0 1.52 1.00 2.04 ∞
3b 0.9 3.0 4.4 20.0 21.7 3.5 × 10−4 0.01 1.52 1.00 2.05 75.8
3c 0.9 3.0 4.4 20.0 21.7 3.5 × 10−4 0.1 1.55 1.00 2.17 8.38
3d 0.9 3.0 4.4 20.0 21.7 3.5 × 10−4 1 1.57 1.01 2.23 0.96
3e 0.9 3.0 4.4 20.0 21.6 3.5 × 10−4 2 1.47 1.00 1.79 0.26
3f 0.9 3.0 4.4 20.0 21.5 3.5 × 10−4 2.74 1.39 1.00 1.45 5.88 × 10−4

4a 0.99 0.8 2.41 20.1 21.9 1.5 × 10−3 0 1.70 1.00 2.31 ∞
4b 0.99 0.8 2.41 20.1 21.9 1.5 × 10−3 0.01 1.70 1.00 2.30 805.5
4c 0.99 0.8 2.40 20.1 21.9 1.5 × 10−3 0.1 1.68 1.00 2.24 80.3
4d 0.99 0.8 2.38 20.1 21.7 1.5 × 10−3 1 1.51 1.00 1.64 7.72
4e 0.99 0.8 2.35 20.1 21.5 1.5 × 10−3 2 1.32 1.00 1.01 3.07
4f 0.99 0.8 2.33 20.1 21.3 1.5 × 10−3 3 1.17 1.00 0.52 1.31
4g 0.99 0.8 2.32 20.1 21.3 1.5 × 10−3 4 1.08 1.00 0.24 0.39
4h 0.99 0.8 2.32 20.1 21.2 1.5 × 10−3 4.5 1.05 1.00 0.17 0.11
4i 0.99 0.8 2.32 20.1 21.2 1.5 × 10−3 4.7 1.05 1.00 0.15 2.28 × 10−2

PATRYK MACH et al. PHYS. REV. D 99, 104063 (2019)

104063-10



troublesome. To describe it we need to discuss details
connected with the treatment of Eqs. (70) and (78).
Each iteration is started with a Newton-Raphson pro-

cedure that gives the values of constants w and C0,
assuming that the inner and outer equatorial radii of the
disk (r1 and r2, respectively) are fixed. This procedure
solves Eqs. (70) and (80) at points ðr; θÞ ¼ ðr1; π=2Þ;
ðr2; π=2Þ. These are four equations for the four unknowns
w, C0, Ω1 ¼ Ωðr1; π=2Þ, Ω2 ¼ Ωðr2; π=2Þ; in this step we
assume that the metric functions are known from the
previous iteration, or from the initial guess. In the next
step we compute the values of Ω in a region which is large
enough to contain the disk, but smaller than the domain
covered by the numerical grid. In this way we can avoid
problems with finding solutions to Eq. (70) in the vicinity
of the symmetry axis θ ¼ 0. Equation (70) is also solved
with a Newton-Raphson scheme. The next stage consists in
solving Eq. (78) for the specific enthalpy h, also by a
Newton-Raphson procedure. The problem that one encoun-
ters here (which is absent in the purely hydrodynamical
case) is that Eq. (78) contains a density term ρ, and in order
to obtain a solution for h one has to specify the value of the
polytropic constant K. On the other hand, in [17] we found
that the possibility of obtaining a convergent solution
increases considerably if the solution is parametrized by
a maximum value of the rest-mass density ρmax within the
disk. In the purely hydrodynamical case the value of the
polytropic constant is then adjusted at each iteration so that
the maximum value of the specific enthalpy h obtained

from Eq. (78) (with no magnetic terms) corresponds to the
maximum of ρ equal to an a priori prescribed value ρmax.
This approach is not straightforward in the present
GRMHD case. Therefore, we instead take the value of
the polytropic constant K inherited from the previous
iteration, solve Eq. (78) for h, and then assume a value
of K so that the maximum in the specific enthalpy h
corresponds to the maximum in ρ equal to ρmax. This
approach leads to convergent solutions.
In most cases we start the iterative process by assuming,

as an initial guess, a solution that has already been
obtained for a different set of parameters. Alternatively,
we start from the Kerr metric. The difficulty that one may
encounter in the latter case is that the rotation law (68)
may not allow for sufficiently thick disks (with fixed inner
and outer radii) computed on the Kerr background. The
solution to this issue is the following simple trick. One
starts by computing a solution (initially on the Kerr
background metric), assuming a value of the spin param-
eter a in (68) different than the value used to fix the
characteristics of the black hole. Then, after several
iterations, the spin parameter in the rotation law (68)
can be reset to the proper value.
All stationary solutions of self-gravitating, magnetized

disks obtained in this work have been computed on a
numerical grid with approximately 800 nodes in the radial
direction and 200 nodes in the angular direction.
Specifically, the nodes in the grid are distributed according
to

FIG. 1. Morphology of the disks: distribution of the logarithm of the rest-mass density for selected models of our sample (see Table I).
The effects of the magnetization increase from left to right; the leftmost column depicts disks with no magnetic field.
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ri ¼ rs þ
fi−1 − 1

f − 1
Δr; i ¼ 1;…; Nr; ð98Þ

in the radial direction, and

θj ¼

8>>><
>>>:

0; j ¼ 1;

arccos
h
1þ

�
3
2
− j

�
Δμ

i
; j ¼ 2; Nθ − 1;

π
2
; j ¼ Nθ;

ð99Þ

where Δμ ¼ 1=ðNθ − 2Þ, in the angular direction. We
choose, in particular, Δr ¼ rs=50, f ¼ 1.01, Nr ¼ 800,
Nθ ¼ 200. The above grid specification is similar to the one
used in [11].
The number of iterations required to obtain a solution

depends mainly on the resolution of the grid, but also on the
parameters of the solution [17]. Obtaining the solutions
collected in Table I required typically ∼104 to ∼2 × 104

iterations. Highly magnetized disks denoted in Table I as
4e–4i are exceptional, and required up to ∼105 iterations.

V. RESULTS

The numerical solutions are specified by the following
set of parameters: the black hole mass and angular
momentum parameters, m and a, the inner and outer radii
of the disk r1, r2, the polytropic exponent of the equation of
state γ, the maximum rest-mass density within the disk
ρmax, and the constants C1 and n that characterize the
prescription of the magnetic field. We note that this
parametrization does not specify solutions uniquely. In
fact, even in the case with no magnetic field one can
observe a bifurcation: two solutions corresponding to
different asymptotic masses can be obtained for fixed m,

a, r1, r2, γ, and ρmax. Usually, one of these solutions

corresponds to a case with the mass of the torus much larger

than the mass of the central black hole [38]. This effect is

FIG. 2. Radial profiles of the rest-mass density at the equatorial plane for the same subset of models plotted in Fig. 1. The insets show
the same profiles in the logarithmic scale, to better account for the low-density regions.
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interesting per se, and it will be the subject of a sepa-
rate study.
The values r1 and r2 refer to coordinate radii of the torus.

The simplest way of obtaining a geometrical size measure
would be to use the circumferential radius rC related to r
at the equatorial plane by the coordinate transformation
rC ¼ ψ2r. In the following, by rC;1 and rC;2 we will denote
the circumferential radii corresponding to coordinate radii
r1 and r2, respectively. It should be kept in mind that in the
strong gravitational-field regime the relation between r and
rC may be not monotonic. In fact, numerical solutions
representing self-gravitating tori with a maximum of rC
occurring within the torus, and not at its outer edge, were
computed in [39].
We measure the impact of the magnetic field by

computing a magnetization parameter βmag defined as

βmag ¼
p

pmag
¼ 2p

b2
; ð100Þ

and evaluated at the maximum of the thermal pressure p.

We have computed a sample of numerical solutions.
Their parameters are reported in Table I. This table also
provides the values of a handful of quantities that can be
used to characterize the solutions: the total ADM mass
mADM, the mass of the black hole mBH, the angular
momentum of the torus J1, the circumferential inner and
outer radii of the torus rC;1, rC;2, and the magnetization
parameter βmag. In all our numerical examples we set
m ¼ 1. This can be viewed as fixing the system of units;
in practice, settingm ¼ 1 yieldsmBH ≈ 1. Table I is divided
into parts which group models with the same values of a,
r1, r2, ρmax but different values of C1. In particular, each
group corresponds to a different value of a; we chose
specifically a ¼ −0.5, 0, 0.9, and 0.99. A negative value of
a means counter-rotation, i.e., we adhere to a convention
with Ω > 0. For simplicity, we fix in all our solutions the
value of the polytropic exponent to γ ¼ 4=3 and the
parameter n of the magnetization law to n ¼ 1. Except
for the models with the fastest spinning black hole
(a ¼ 0.99), in all investigated cases we were able to obtain
solutions with the magnetization parameter βmag ranging
from∞ (no magnetic field) to the level of the order of 10−3

to 10−4 (i.e., highly magnetized models). The case with
(a ¼ 0.99) listed in Table I is exceptional: the tori char-
acterized by small values of βmag are fairly light. Moreover,
a large number of numerical iterations (∼105) is required in
order to converge to a solution.
It is not unreasonable to assume that stable solutions

should have r1 larger than the location of the Innermost
Stable Circular Orbit (ISCO). Because of the self-gravity of
the torus, the location of the ISCO deviates from the value
characteristic for the Kerr spacetime with a given mass m
and spin parameter a. Nevertheless, the Kerr values can be
still used to get a rough estimate of the location of the
ISCO. For m ¼ 1 and a ¼ −0.5, the circumferential radius
of the ISCO in the Kerr spacetime is rC;ISCO ¼ 7.57. For
m ¼ 1 and a ¼ 0, 0.9 and 0.99, we obtain, respectively,
rC;ISCO ¼ 6, 2.63, and 2.11. Of course, given a numerical
solution, the true location of the ISCO can also be
computed, for instance, using the formalism described in
[40]. We have actually checked that the solutions listed in
Table I satisfy the condition rC;1 > rC;ISCO. A detailed
analysis of the influence of the self-gravitating torus on the
location of the ISCO will be given elsewhere.
From the inspection of all solutions listed in Table I we

conclude that the configurations with smaller values of βmag

(relatively stronger magnetic fields) tend to have the
maxima of the density shifted towards smaller radii.
This behavior is illustrated in Fig. 1, which depicts the
morphology of a subset of models by plotting the logarithm
of their rest-mass density ρ in the meridional half-plane.
Figure 2, in which we plot radial profiles of the density at
the equatorial plane, shows this trend in a more clear way.
For clarity, Fig. 2 displays the profiles both in linear and
logarithmic scales (the latter in the insets). We note that the

FIG. 3. Comparison of the thermal pressure p (solid black
lines) and the magnetic pressure pmag ¼ 1

2
b2 (dashed blue lines)

at the equatorial plane.
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shift of the maximum of the density towards smaller radii in
magnetized disks has already been observed in the test-
fluid models built in [20].
On the other hand, the analysis of the solutions with

different values of the constant C1 appearing in Eq. (78)
shows that the larger C1 the smaller the thermal pressure p,
even in cases in which the maximum of the baryonic
density ρ is fixed. In general we also observe an increase of
the absolute values of the magnetic pressure pmag ¼ 1

2
b2.

Both factors lead to a rapid decrease of the magnetization
parameter βmag. In some sense, with an increase of C1, the
role of the (gradient of the) thermal pressure in counter-
balancing gravity is taken over by the magnetic pressure.
This effect is illustrated in Fig. 3 for models 2c, 2e, 3c and
3e. Note that in both cases the maximum of the largest of
the two pressures (thermal or magnetic) is about two orders
of magnitude smaller than the maximum of the rest-mass
density.
The presence of a magnetic field affects the total ADM

mass of the system (mainly by influencing the mass of the

torus) in a nontrivial way. Although a direct contribution of
the terms related with the magnetic field to the mass, as
computed e.g., from Eq. (89), is small, the magnetic field
changes the total mass of the system by affecting the
distribution of the rest-mass density within the disk. The
nature of the changes of the ADM mass with an increasing
magnetic field contribution depends on the spin of the black
hole and on the distance between the black hole and the
torus (mainly on the location of the inner edge of the torus
r1). Disentangling these two factors is difficult, since the
location of the ISCO depends predominantly on the spin of
the black hole, and we want our models to satisfy the
condition rC;ISCO < rC;1. For the classes of solutions with a
fixed black hole spin collected in Table I the dependence of
the ADM mass on C1 is, in general, not monotonic. The
ADM mass increases initially with increasing C1, attains a
local maximum for some value of C1, and then decreases.
Solutions with a ¼ 0.99 given in Table I are exceptional, as
the ADM mass decreases with increasing C1. In the latter
case the change of the ADM mass with the magnetization

FIG. 4. Radial profiles of the deviation of the lapse function α with respect to its value for an isolated Kerr black hole with massmADM
and spin a. The models displayed are the same subset of models plotted in Fig. 1.
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parameter is large. The ADM mass drops from mADM ¼
1.70 for C1 ¼ 0 (no magnetic field) to mADM ¼ 1.05 for
C1 ¼ 4.7 (magnetization parameter βmag ¼ 2.28 × 10−2).
The importance of the effects of the disk self-gravity

can be estimated by plotting the deviation of the lapse
function at the equatorial plane with respect to its value for
an isolated Kerr black hole, ðαK − αÞ=α [here αK is
computed using Eq. (A7)]. These radial profiles are plotted
in Fig. 4 for the same subset of models depicted in Fig. 1.
We observe a correlation of the maximum deviations with
the rest-mass density ρmax of the models, the deviations
being larger the larger the value of ρmax, namely 20% for
model 4a, 8.5% for model 3d and 3.5% for models 1d and
2d. Furthermore, it can be seen that, as expected, the
deviation grows if the fraction of the mass stored at the
torus is greater. This fraction can be easily inferred from
Table I.

A close inspection of plots in Figs. 2 and 4 reveals a
somewhat unexpected similarity of certain features of models
1a–1f and 2a–2f. These two families of models are charac-
terized by the same values of coordinate radii r1 and r2, and
the same maximal densities ρmax, but they differ in the as-
sumed values of the black hole spin parameter (a ¼ −0.5 and
a ¼ 0, respectively). The plots of the rest-mass density shown
in Fig. 2 and corresponding to models belonging to both
families are nearly indistinguishable from one another. One
can also hardly spot any difference betweenmodels 1a–1f and
2a–2f in the plots of the differences between the lapse
functions (the actual lapse and the lapse corresponding to
the Kerr metric) shown in Fig. 4. However, both classes of
models are actually different.Thedifferences standout clearly
in the plots of the shift vector β shown in Fig. 5. Of course, the
absolute values of the lapse function characterizing the
models belonging to both classes are also different.

FIG. 5. Radial profiles of the shift vector component β at the equatorial plane. The models displayed are the same subset of models
plotted in Fig. 1.
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VI. SUMMARY

We have presented general-relativistic models of sta-
tionary, axisymmetric, self-gravitating, magnetized disks
(or tori) rotating around spinning black holes. They have
been obtained by solving numerically the coupled system
of the Einstein equations and the equations of ideal
GRMHD. The mathematical formulation of our approach
has closely followed the work of Shibata [11], who built
purely hydrodynamical self-gravitating, constant angular
momentum tori around black holes in the puncture frame-
work. The inclusion of magnetic fields represents the first
new ingredient of our approach. On the other hand,
building on previous studies of configurations with no
magnetic field [16,17,41], we have constructed our mag-
netized models assuming a Keplerian rotation law in the
disks, which departs from the constant angular momentum
disks reported by [11]. The use of the Keplerian rotation
law is the second new ingredient of our procedure. We have
focused on toroidal distributions of the magnetic field and
presented a large set of models corresponding to a wide
range of values of the magnetization parameter, starting
with weakly magnetized disks and ending at configurations
in which the magnetic pressure dominates over the ther-
mal one.
The impact of the magnetic field on the disk structure

is mainly related to the magnetic pressure. In all inves-
tigated models, we have observed a shift of the location
of the maximum of the rest-mass density towards the
central black hole. The impact of the magnetization
on the total mass of the system (or the mass of the disk)
depends on the black hole spin and on the geometry of the
disk. It is possible to obtain classes of solutions in which
the mass of the torus decreases with the decreasing
magnetization parameter, but the converse can also be
true.
The construction presented in this paper assumes explic-

itly purely toroidal magnetic fields. It can be expected that
the disks originating in true astrophysical situations would
exhibit more complex structures of the magnetic field.
Magnetic fields occurring in the disks formed during BNS
mergers were investigated for instance in [42]. Although
the results of [42] show fairly complex magnetic field
structures, the magnetic fields contained within the disks
remain mostly toroidal. Nevertheless, a generalization of
the results of this paper allowing for nonzero poloidal
components of the magnetic field remains an open and
challenging problem.
All our solutions have been obtained for the polytropic

equation of state with the polytropic exponent γ ¼ 4=3,
and for a specific choice of the magnetization law. These
choices can, of course, have an impact on the obtained
results. Furthermore, the values of the ratio of the black-
hole mass to the total mass of the system reported in this
paper were kept within a reasonable range: the obtained

disks are massive enough so that the effects connected
with the self-gravity become important. On the other
hand, in this work we have not considered disks with
masses exceeding the mass of the central black hole. It is
known that allowing for sufficiently large disk masses
can lead to the occurrence of several general-relativistic
effects, characteristic of the strong gravitational-field
regime. In [43] Ansorg and Petroff showed that a perfect
fluid torus rotating (rigidly) around a black hole can
create its own ergoregion, disconnected from the ergo-
region of the black hole. (This effect is also present in
more exotic objects, for instance the scalar hairy black
holes described in [44], for which the scalar field has a
toroidal distribution.) In [39] Labranche, Petroff, and
Ansorg gave examples of perfect fluid tori (with no
central object) in which the circumferential radius attains
its maximum inside the torus, and not at its outer edge.
We expect these effects to be present also within our
formulation.
The results presented in this paper can be extended in

several directions. On the one hand we plan to investigate
the influence of the self-gravity of the torus on the location
of the ISCO of a rotating black hole. In addition, we will
also study the nonlinear stability properties of our solutions
through numerical-relativity simulations in a dynamical
spacetime setup. There are a number of instabilities that
may affect the disks, such as the runaway, the Papaloizou-
Pringle and the magnetorotational instabilities. In particu-
lar, the development of the PPI in tori threaded by toroidal
magnetic fields may be significantly affected by the
concurrent development of the MRI, as shown recently
by [30] for non-self-gravitating disks. The self-gravitating,
magnetized tori we have built in this work can be used to
investigate the generality of those findings beyond the test-
fluid limit.
The presented solutions, and models of self-gravitating

magnetized disks in general, should be also relevant to the
ongoing attempts to estimate the amount of angular
momentum within a given volume. This is an interesting
area of research within mathematical relativity [45,46].
Recent works focusing on such estimates for stationary
Keplerian self-gravitating disks around black holes
include [41,47].
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APPENDIX: KERR METRIC IN QUASI-
ISOTROPIC COORDINATES

For completeness, we express the Kerr metric in the
quasi-isotropic coordinates of the form (28) [11,48].
Define

rK ¼ r
�
1þm

r
þm2 − a2

4r2

�
; ðA1Þ

ΔK ¼ r2K − 2rK þ a2; ðA2Þ
ΣK ¼ r2K þ a2 cos2 θ: ðA3Þ

The Kerr metric can be expressed as

g ¼ −α2Kdt2 þ ψ4e2qKðdr2K þ r2Kdθ
2Þ

þ ψ4
Kr

2
K sin2 θðβKdtþ dφÞ2; ðA4Þ

where

ψK ¼ 1ffiffiffi
r

p
�
r2K þ a2 þ 2ma2

rK sin2 θ
ΣK

�
1=4

; ðA5Þ

βK ¼ −
2marK

ðr2K þ a2ÞΣK þ 2ma2rK sin2 θ
; ðA6Þ

αK ¼
�

ΣKΔK

ðr2K þ a2ÞΣK þ 2ma2rK
sin2θ

�
1=2

; ðA7Þ

eqK ¼ ΣKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2K þ a2ÞΣK þ 2ma2rK sin2 θ

p : ðA8Þ

The functions HE and HF corresponding to the Kerr metric
read

HE ¼ ma½ðr2K − a2ÞΣK þ 2r2Kðr2K þ a2Þ�
Σ2
K

; ðA9Þ

HF ¼ −
2ma3rK

ffiffiffiffiffiffiffi
ΔK

p
cos θ sin2 θ

Σ2
K

: ðA10Þ
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