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Lorentz violations in gravitational waves are investigated. Plane-wave solutions for arbitrary gauge-
invariant violations in linearized gravity are constructed. Signatures of Lorentz violation include
dispersion, birefringence, and anisotropies. Modifications to waves from coalescing compact binaries
and to strain signals in gravitational-wave detectors are derived.

DOI: 10.1103/PhysRevD.99.104062

I. INTRODUCTION

The growing catalog of gravitational-wave observations
[1–6] offers new opportunities for tests of fundamental
physics. Lorentz invariance is a feature of both Einstein’s
general relativity and the standard model of particle
physics, so any breaking of this symmetry would signal
new physics [7–10] potentially rooted in quantum gravity
[11]. Because of the large propagation distances, gravita-
tional waves produced in binary mergers are particularly
sensitive to defects in relativity, enabling new precision
tests of Lorentz invariance in gravity [3,12–21].
Lorentz invariance is the combination of both rotation

symmetry and boost symmetry, so Lorentz violations
generally produce unexpected directional and velocity
dependences. One consequence is modified kinematics
for particles and waves. However, to fully characterize
the effects of Lorentz violation one needs a complete
dynamical model of the system. A theoretical framework
known as the Standard Model extension (SME) character-
izes general violations of Lorentz and CPT invariance in
both general relativity and the standard model at attainable
energies [9,10]. A Lorentz-violating term in the SME
action is formed from the contraction of a conventional
tensor operator with a tensor coefficient for Lorentz
violation. The terms are classified according to the mass
dimension d of the operator in natural units with ℏ ¼ c ¼ 1

[22,23]. It is generally assumed that higher-d terms
represent higher-order corrections to conventional physics.
While particle sectors of the SME have received intense

scrutiny over the last two decades [8], fewer searches for
Lorentz violation in gravity have been performed. Tests of
Lorentz violation in gravitational waves include searches
for birefringence [12] and dispersion [16]. Other tests of
Lorentz invariance in the SME gravity sector include those
involving gravitational Čerenkov radiation [21], atomic
interferometers [24], superconducting gravimeters [25],
orbital dynamics [26–29], short-range-gravity experiments
[30,31], comagnetometers [32], nuclear binding energy

[33], and very-long-baseline interferometry [34]. The SME
also serves as the foundation for a number of theoretical
studies of Lorentz violation in gravity [35–40].
The development of the gravity sector of the SME has

progressed along several parallel lines, each corresponding
to a different limit of the theory. The most general extension
describes violations in gravity and particles, including
gravitational couplings to standard-model fields [10]. It
is based on Riemann-Cartan geometry, where the vierbein
eμa is the gravitational field. One can then focus on matter-
gravity couplings [35] or on the pure-gravity sector [36].
The pure-gravity limit assumes Riemannian geometry.
The usual Einstein-Hilbert action is then augmented by
all possible coordinate-independent terms involving the
metric gμν.
The above construction produces an effective field theory

that encompasses all realistic violations of Lorentz invari-
ance in gravity, whether they are explicit or dynamically
generated [37]. However, the difficulties of working in a
nonlinear theory like general relativity are only exacerbated
by the inclusion by Lorentz violation, encumbering system-
atic studies. We can avoid many of the complications by
working at the level of linearized gravity [41]. In this limit
of the SME, one posits that gravity is suitably weak and
expands the metric gμν ¼ ημν þ hμν about the constant
Minkowski metric ημν. The action is constructed from all
possible Lorentz-invariant and Lorentz-violating terms quad-
ratic in the metric perturbation hμν.
The full linearized-gravity extension is constructed in

Refs. [12,39]. It takes the form of an effective field theory
in flat spacetime, making its development and application
comparatively simple. The action contains the linearized
limit of all Lorentz and diffeomorphism violations in
general relativity, including those that violate the usual
gauge invariance, hμν → hμν þ ∂ðμξνÞ. Work involving the
linear extension includes studies of gravitational-wave
dispersion relations for gauge-invariant [12] and gauge-
breaking violations [39] and studies of Lorentz violation in
Newtonian gravity [40].
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Some of the tightest constraints on Lorentz violation in
any sector come from observations of radiation from
astrophysical sources, where tiny modifications to the
dynamics can accumulate over cosmological times. For
example, searches for photon dispersion [42–44], photon
birefringence [43–45], and unconventional Čerenkov radi-
ation [46,47] have all placed tight limits on particle-sector
Lorentz violation.
In gravitational waves, dispersion causes a deformation

of the waveform, and birefringence causes changes in the
polarization. Both will distort the strain signal measured by
gravitational-wave observatories. This paper characterizes
dispersion and birefringence due to Lorentz violation and
the effects of Lorentz violation on gravitational waves
produced in the coalescence of compact binaries.
We restrict attention to the gauge-invariant linearized-

gravity sector of the SME [12]. We find that this limit
produces two independent modes for propagation with
differing phase velocities and conventional polarizations
at zeroth order in Lorentz violation. Note, however, that
the full SME includes gauge-breaking terms, which are
expected to produce effects beyond those discussed here.
For example, new exotic modes may propagate that could
be detected in observations of gravitational waves [5,48].
Throughout this work, we adopt units with c ¼ 1, but

explicitly include Newton’s constant GN . Setting GN ¼ 1
yields geometrized units. Alternatively, setting ℏ ¼ 1 gives
natural units and GN ¼ 1=M2

Pl, where MPl is the Planck
mass. Spacetime indices are raised and lowered using the
Minkowski metric with ð−;þ;þ;þÞ signature.
This paper is organized as follows. Section II examines

gravitational plane waves in gauge-invariant linearized
gravity with Lorentz violation. In Sec. III, we consider
waves created in binary mergers and derive the modified
detector strain including the effects of Lorentz violation
during propagation. Section IV provides a summary and
some concluding remarks. The effects of Lorentz violation
on gravitational Stokes parameters are discussed in the
Appendix.

II. GRAVITATIONAL WAVES

In this section, we find plane-wave solutions for gravi-
tational waves in the presence of Lorentz violation. We
begin by first reviewing the gauge-invariant linearized-
gravity sector of the SME. We then derive the leading-order
dispersion relation and the polarizations of the propagating
modes. The effects on waves that have traveled astrophysi-
cal distances are explored, and several special cases are
discussed.

A. Basic theory

The Lagrangian for the gauge-invariant linearized-
gravity sector of the SME consists of all possible terms
quadratic in hμν, including arbitrary numbers of derivatives

of hμν. It contains the usual linearized Einstein-Hilbert
Lagrangian and an infinite series of Lorentz-invariant and
Lorentz-violating terms. It can be written in the compact
form [12]

L ¼ 1

4
ϵμρακϵνσβληκλhμν∂α∂βhρσ

þ 1

4
hμνðŝμρνσ þ q̂μρνσ þ k̂μνρσÞhρσ: ð1Þ

Each term is invariant under the usual gauge transfor-
mation hμν → hμν þ ∂ðμξνÞ up to a total derivative. The
first line in Eq. (1) is the conventional Lagrangian and
generates the usual linearized Einstein tensor Gμν ¼
− 1

2
ηρσϵ

μρακϵνσβλ∂α∂βhκλ.
The last term in Eq. (1) contains the Lorentz-violating

modifications. It naturally splits into three different classes
of violations, corresponding to the operators

ŝμρνσ ¼
X

sðdÞμρα1νσα2…αd−2∂α1…∂αd−2 ;

q̂μρνσ ¼
X

qðdÞμρα1να2σα3…αd−2∂α1…∂αd−2 ;

k̂μνρσ ¼
X

kðdÞμα1να2ρα3σα4…αd−2∂α1…∂αd−2 : ð2Þ

The tensor coefficients in these expansions control the
Lorentz violation. Each has different symmetries, which are
summarized in Table 1 of Ref. [12]. The s- and k-type
violations are CPT even, while q-type violations break
CPT invariance in addition to Lorentz invariance. For
particles, CPT breaking typically leads to different proper-
ties for particles and antiparticles. For gravitational waves,
CPT violation breaks the degeneracy between left- and
right-handed polarizations. The sums in Eq. (2) are over
even d ≥ 4 for s-type violations, odd d ≥ 5 for q-type, and
even d ≥ 6 for k-type.
The equations of motion for Eq. (1) can be written in

the form

0 ¼ Gμν þ δMμνρσhρσ; ð3Þ

where the tensor operator

δMμνρσ ¼ −
1

4
ðŝμρνσ þ ŝμσνρÞ − 1

2
k̂μνρσ

−
1

8
ðq̂μρνσ þ q̂νρμσ þ q̂μσνρ þ q̂νσμρÞ ð4Þ

contains the unconventional parts. This operator is sym-
metric in the first pair of indices and the last pair of indices.
The CPT-even part of δMμνρσ is symmetric under inter-
change of the first and last pair of indices and involves an
even number of derivatives. The CPT-odd part is anti-
symmetric under interchange of the pairs of indices and
contains an odd number of derivatives. Consequently,
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δMμνρσ is a Hermitian operator acting on the space of
symmetric rank-2 tensors.

B. Eigenmodes

We next derive leading-order plane-wave solutions
of the equations of motion. A fourier transform converts
∂α → ipα and Eq. (3) to a p-dependent matrix equation.
The operators ŝμρνσ, q̂μρνσ, and k̂μνρσ are now interpreted
as functions of pα. Solving the p-space equations of
motion gives plane-wave solutions with wave vector
pα ¼ ðω; p⃗Þ. To handle both positive and negative frequen-
cies, it is useful to write p⃗ ¼ ωv̂=v. The unit vector v̂ ¼
sgnðωÞp⃗=jp⃗j points in the direction of propagation, and
v ¼ jωj=jp⃗j is the phase velocity. Note that v̂ points in
the direction of p⃗ for positive frequencies and opposite to p⃗
for negative frequencies.
In the usual case, one normally starts in a Hilbert gauge

by imposing the Lorenz condition pνh̄μν ¼ 0, where h̄μν ¼
hμν − 1

2
hρρημν is the trace-reversed metric perturbation. The

Einstein equation then reads Gμν ¼ 1
2
p2h̄μν ¼ 0, giving the

dispersion relation p2 ¼ 0. On shell, you can choose a
gauge that is temporal (h0μ ¼ 0), transverse (hjkpk ¼ 0),
and traceless (hjj ¼ 0), leading to the transverse traceless
gauge. Two degrees of freedom remain, giving two
degenerate polarizations.
In the Lorentz-violating case, where the on-shell pα is

no longer lightlike, we cannot necessarily impose all of
the above gauge conditions simultaneously. It is conven-
ient, however, to work in the temporal gauge. The other
gauge conditions may or may not be satisfied on shell.
An advantage of the temporal gauge is that coordinates
for free nonrelativistic test masses are inertial, since
∂2
t xj ≈ −Γj

00 ¼ 0.
It is also useful to work in a helicity basis with basis

vectors [22]

êr ¼ êr ¼ v̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ;

ê� ¼ ê∓ ¼ 1ffiffiffi
2

p ðêθ � iêϕÞ: ð5Þ

The propagation vector v̂ defines the “radial” direction, and
êθ and êϕ are the usual unit vectors associated with
spherical-coordinate angles θ and ϕ. The complex helicity
vectors ê� span the transverse subspace.
In the temporal gauge, only the spatial parts of hμν are

nonzero, which we write as h
↔

¼ habêa ⊗ êb in terms of

helicity-basis components hab ¼ êa · h
↔
· êb. Note that

raising and lowering spatial indices in the helicity basis
is done using the skew-diagonal helicity metric ηab ¼
ηab ¼ êa · êb. The result is that raising or lowering
helicity-basis indices changes � to ∓. For example,
Grþ ¼ Gr−.

The ten helicity components of the p-space Einstein
tensor can be written in terms of the six components of the

temporal-gauge h
↔
. The unconventional 0-helicity compo-

nents are given by Grr ¼ vG0r ¼ v2G00 ¼ ω2hþ− and

Gþ− ¼ ω2

2
hrr − p2

2
hþ−. The �1-helicity components obey

Gr� ¼ vG0� ¼ − ω2

2
hr�. The transverse �2-helicity com-

ponents give G�� ¼ p2

2
h��. In the usual case, where

Gμν ¼ 0 and p2 ¼ 0, only the h�� components can be

nonzero, giving an h
↔
that is transverse and traceless. In the

Lorentz-violating case, we can use the above relations to
construct perturbative solutions.
Assuming the 0-helicity and �1-helicity components of

h
↔
are small, the leading-order�2-helicity components h��

satisfy the matrix equation�
p2 þ 2δMþþ−− 2δMþþþþ

2δM−−−− p2 þ 2δM−−þþ

��
hðþ2Þ
hð−2Þ

�
¼ 0; ð6Þ

where we denote

hð�2Þ ¼ h��: ð7Þ
After solving for the leading-order hð�2Þ, we can use them
and the modified Einstein equation (3) to perturbatively
solve for higher-order corrections to the polarization. This
procedure leads to a temporal-gauge hμν that differs from a
conventional hμν by corrections that are suppressed by
coefficients for Lorentz violation. Note that the result is
neither transverse nor traceless. However, the unconven-
tional parts are likely to be too small to be directly
observable. Therefore, the dominant effect of Lorentz
violation on the polarization is a possible breaking of
the usual degeneracy between the two polarizations,
resulting in birefringence.
Each of the matrix elements in Eq. (6) has definite

helicity. The diagonal elements of the square matrix have
zero helicity, while the off-diagonal elements have helicity
�4, coupling the right-handed hðþ2Þ and left-handed hð−2Þ
polarizations. The trace element preserves the usual
degeneracy between the two polarizations, motivating
the following definition

ς0 ¼ −
1

2ω2
ðδMþþ−− þ δM−−þþÞ

¼ 1

2ω2
ðŝþ−þ− þ k̂þþ−−Þ: ð8Þ

We expect the remaining parts to break the degeneracy,
giving birefringence. We define these as

ςð0Þ ¼
1

2ω2
ðδMþþ−− − δM−−þþÞ ¼ −

1

2ω2
q̂þ−þ−;

ςð�4Þ ¼
1

2ω2
δM���� ¼ −

1

2ω2
k̂����: ð9Þ
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The combinations ς0 and ςð0Þ are real and have zero helicity,
while ςð�4Þ have helicity �4 and obey ς�ð�4Þ ¼ ςð∓4Þ.
In this work the ς functions are found by fixing the gauge

and working in the helicity basis. Note, however, that
covariant versions of these functions and the dispersion
relation are derived in Ref. [12] without gauge fixing using
the methods discussed in Ref. [39].
As discussed in the Appendix, the p-dependent coef-

ficient combinations ς0, ςð0Þ, ςðþ4Þ, ςð−4Þ can be interpreted
as conveniently normalized Stokes parameters for the faster
propagating mode. They are functions of the frequency ω
and the wave vector p⃗. However, when evaluating the ς
functions, we can assume the usual energy-momentum
relation and take p⃗ ¼ ωv̂ at leading order. We then get
functions that depend on the frequency ω and propagation
direction v̂. They can be written as

ς0 ¼
X
d

ωd−4ςðdÞ0ðv̂Þ;

ςð�4Þ ¼
X
d

ωd−4ςðdÞð�4Þðv̂Þ;

ςð0Þ ¼
X
d

ωd−4ςðdÞð0Þðv̂Þ; ð10Þ

separating the frequency and direction dependences.
The direction-dependent factors can be expanded in

spin-weighted spherical harmonics sYjm. Spin weight is
the opposite of helicity [22], so the expansions take the
form [12]

ςðdÞ0ðv̂Þ ¼
X
jm

ð−1Þj0Yjmðv̂ÞkðdÞðIÞjm;

ςðdÞð�4Þðv̂Þ ¼
X
jm

ð−1Þj∓4Yjmðv̂Þðk
ðdÞ
ðEÞjm � ikðdÞðBÞjmÞ;

ςðdÞð0Þðv̂Þ ¼
X
jm

ð−1Þj0Yjmðv̂ÞkðdÞðVÞjm: ð11Þ

The spherical coefficients for Lorentz violation kðdÞðIÞjm,

kðdÞðVÞjm, k
ðdÞ
ðEÞjm and kðdÞðBÞjm are linear combinations of the

underlying tensor coefficients in Eq. (2). The connection
places limits on the angular momentum indices j and m for
each dimension d. These limits, along with the coefficient
count, are given in Table I. The spherical coefficients for
Lorentz violation have mass dimension 4 − d in units with
ℏ ¼ 1. In geometrized units, they have length dimension
d − 4. Note that ð−1ÞjsYjmðv̂Þ ¼ −sYjmð−v̂Þ, which is
convenient in astrophysical tests where −v̂ gives the
location of the source.
Different physical systems access different linear com-

binations of the fundamental coefficients [40]. The spheri-
cal coefficients in Eq. (11) represent the subset affecting
gravitational waves at leading order. Note, however, that a

given point source with fixed observed v̂ can at most
measure the four linear combinations of spherical coef-
ficients given in Eq. (11). Different sources with different v̂
will access different linear combinations. One can in
principle disentangle the numerous spherical coefficients
for Lorentz violation at any dimension d by combining data
from multiple sources at different locations on the sky.
Nontrivial solutions to Eq. (6) exist when the determi-

nant of the 2 × 2 matrix vanishes. This gives the dispersion
relation

p2 ¼ 2ω2ðς0 ∓ jς⃗jÞ; ð12Þ

where we define

jς⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jςðþ4Þj2 þ jςð0Þj2

q
: ð13Þ

Solving for the frequency, the dispersion relation can be
written as jωj ¼ ð1 − ς0 � jς⃗jÞjp⃗j, giving phase velocities

v� ¼ 1 − ς0 � jς⃗j: ð14Þ

The usual degeneracy between the polarizations is broken
when jς⃗j ≠ 0, as expected, and the two modes propagate at
different speeds. The top sign in these expressions corre-
sponds to the fast mode, and the bottom sign gives the
slow mode.
To find the polarization of each mode, we solve Eq. (6)

on shell. The result can be written in terms of two angles ϑ
and φ that completely characterize the polarizations of the
modes. They are defined through

sinϑ ¼ jςðþ4Þj
jς⃗j ; cos ϑ ¼ ςð0Þ

jς⃗j ; e∓iφ ¼ ςð�4Þ
jςðþ4Þj

: ð15Þ

We then find that the fast mode has normalized polarization

TABLE I. Summary of the spherical coefficients for Lorentz
violation [12]. The second and third columns give the ranges for
the dimension index d and angular-momentum index j. The m
index obeys the usual relation −j ≤ m ≤ j. The last column gives
the total number of independent coefficients for each d. Each
set of coefficients obeys the complex-conjugation relation

kðdÞ�jm ¼ ð−1ÞmkðdÞjð−mÞ.

Coefficient d j Number

kðdÞðIÞjm
even;≥ 4 0; 1;…; d − 2 ðd − 1Þ2

kðdÞðVÞjm
odd;≥ 5 0; 1;…; d − 2 ðd − 1Þ2

kðdÞðEÞjm
even;≥ 6 4; 5;…; d − 2 ðd − 1Þ2 − 16

kðdÞðBÞjm
even;≥ 6 4; 5;…; d − 2 ðd − 1Þ2 − 16
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�
hðþ2Þ
hð−2Þ

�
fast

¼
�
cos ϑ

2
e−iφ=2

sin ϑ
2
eiφ=2

�
; ð16Þ

while the polarization of the slow mode can be written

�
hðþ2Þ
hð−2Þ

�
slow

¼
�− sin ϑ

2
e−iφ=2

cos ϑ
2
eiφ=2

�
: ð17Þ

A general polarization is a linear combination of the two
eigenmodes. The unitary transformation

�
hðþ2Þ
hð−2Þ

�
¼
�
cos ϑ

2
e−iφ=2 − sin ϑ

2
e−iφ=2

sin ϑ
2
eiφ=2 cos ϑ

2
eiφ=2

��
hðfÞ
hðsÞ

�

ð18Þ

relates the helicity components hð�2Þ of an arbitrary
polarization to its fast-mode component hðfÞ and its
slow-mode component hðsÞ.
Combined with the dispersion relation (12), the above

polarizations describe the leading-order effects in gravita-
tional waves for any gauge-invariant extension to linearized
gravity, including all possible Lorentz-violating and
Lorentz-invariant modifications.

C. Dispersion and birefringence

The unconventional parts of the phase velocity lead to a
gradual shift in phase as the wave propagates. Consider, for
example, a simple plane wave in flat spacetime that has
propagated a distance l. For a deformed phase velocity
v ¼ 1þ δv, we get hðtÞ ∼ e−iωðt−l=vÞ ≈ e−iωδvle−iωðt−lÞ,
shifting the phase by ωδvl.
For cosmological sources in an expanding universe, the

redshift of the frequency can be accounted for by consid-
ering an infinitesimal change in the phase, dψ ¼ dψ0 þ
ωδvdl. Integrating from the source to the observer, the first
part gives the conventional phase. The second part gives the
Lorentz-violating contribution, δψ� ¼ R dlωð−ς0 � jς⃗jÞ,
for the fast and slow modes. At zeroth order, the wave
propagates at v ¼ 1, so we can replace the distance interval
dl with the propagation time dt ¼ −dz=ð1þ zÞ=HðzÞ,
where HðzÞ is the Hubble expansion rate at redshift z.
The accumulated Lorentz-violating phase is then given by

δψ� ¼ ω

Z
z

0

dz
−ς0 � jς⃗j
HðzÞ ¼ −δ� β; ð19Þ

where ω is the observed frequency. The common phase δ is
independent of polarization and leads to dispersion but no
birefringence. The birefringent phase β is the polarization
dependent, causing the net polarization to evolve as the
wave propagates. For fixed dimension d, we can write the
phases as

δ ¼ ωd−3τςðdÞ0; β ¼ ωd−3τjς⃗ðdÞj; ð20Þ

where

τ ¼
Z

z

0

ð1þ zÞd−4
HðzÞ dz ð21Þ

is an effective d-dependent propagation time that accounts
for the redshift in ω during propagation.
As the wave propagates, the phase of the fast and slow

components shifts relative to the conventional case, leading
to observed components hðf;sÞ ¼ eiδ∓iβhLIðf;sÞ, where h

LI
ðf;sÞ is

the Lorentz invariant limit. Using Eq. (18), we transform
this result to the helicity basis, giving

hð�2Þ ¼ eiδðcos β ∓ i cosϑ sin βÞhLIð�2Þ
− ieiδ sin ϑe∓iφ sin βhLIð∓2Þ: ð22Þ

We can also write this in terms of standard “plus” and
“cross” linear polarizations, defined as hðþÞ ¼ hθθ ¼ −hϕϕ

and hð×Þ ¼ hθϕ ¼ hϕθ. These are related to the helicity
components through

hð�2Þ ¼ hðþÞ ∓ ihð×Þ: ð23Þ

The changes to the linear polarizations are given by

hðþÞ ¼ eiδðcos β − i sin ϑ cosφ sin βÞhLIðþÞ
− eiδðcos ϑþ i sinϑ sinφÞ sin βhLIð×Þ;

hð×Þ ¼ eiδðcos β þ i sinϑ cosφ sin βÞhLIð×Þ
þ eiδðcos ϑ − i sinϑ sinφÞ sin βhLIðþÞ: ð24Þ

Equations (22) and (24) give the predicted effects for
general modifications to linearized gravity. They provide a
map between the modified theory and the conventional
limit and incorporate dispersive changes in phase and
changes in polarization due to birefringence.
While the above applies to general cases, one simplify-

ing strategy is to consider various special limits. The three
main classes of Lorentz violation in gravitational waves are
nonbirefringent violations, CPT-odd birefringent viola-
tions, and CPT-even birefringent violations. We briefly
consider each of these in turn.
Nonbirefringent violations. The CPT-even kðdÞðIÞjm coef-

ficients are responsible for nonbirefringent Lorentz viola-
tions and exist for even d ≥ 4. They generally produce a
frequency-dependent phase velocity producing dispersion.
Note, however, that the d ¼ 4 case gives a phase velocity
that depends on direction but is frequency independent.
Consequently, only d ≥ 6 violations produce dispersion. In
this limit, the birefringent phase β vanishes, and Eqs. (22)
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and (24) reduce to hð·Þ ¼ eiδhLIð·Þ for all polarizations, giving
a change in phase but no change in polarization.

CPT-odd birefringence. The kðdÞðVÞjm coefficients give

both dispersion and birefringence and exist for odd
d ≥ 5. Setting all other coefficients to zero, we find that
the eigenmodes are circularly polarized. We get ϑ ¼ 0
when the right-handed polarization hðþ2Þ is faster and
ϑ ¼ π when the left-handed polarization hð−2Þ is faster.
In both cases, the circular polarizations acquire a simple

phase shift, hð�2Þ ¼ hLIð�2Þe
∓iδψ , where δψ ¼ ωd−3τςðdÞð0Þ .

The shift in relative phase between the two circular polar-
izations causes a rotation of the linear polarizations:

�
hðþÞ
hð×Þ

�
¼
�
cos δψ − sin δψ

sin δψ cos δψ

� hLIðþÞ
hLIð×Þ

!
: ð25Þ

This corresponds to a simple rotation of h
↔
about v̂ by angle

δψ=2, leaving the degree of linear and circular polarization
unchanged. Note that the polarization will remain fixed if
the wave is produced in one of the circularly polarized
eigenmodes, but frequency dependence in the phase veloc-
ity still produces dispersion.

CPT-even birefringence. The kðdÞðEÞjm and kðdÞðBÞjm coeffi-

cients also give dispersion and birefringence, but exist for
even d ≥ 6. The changes in the wave can be found by
setting δ ¼ 0 and ϑ ¼ π=2 in Eqs. (22) and (24). The result
is more complicated in this case because the eigenmodes
are linearly polarized at polarization angles φ=4 and
φ=4þ π=4. Only linearly polarized waves at one of
these angles will maintain constant polarization. All waves
will experience dispersion due to the frequency-dependent
phase velocities.
The effects of birefringence in the CPT-even case and

more general cases can be made more transparent by
considering the gravitational Stokes parameters, as dis-
cussed in the Appendix. In general, birefringence produces
a simple rotation of the Stokes vector for the wave about the
Stokes vector for the faster eigenmode, which can have any
elliptical polarization.
Dimension d ¼ 4 violations do not affect chirp obser-

vations since they are nondispersive and nonbirefringent. In
this case, the phase and group velocities acquire the same
frequency- and polarization-independent shift

δv ¼
X

ð−1Þjþ1
0Yjmðv̂Þkð4ÞðIÞjm: ð26Þ

While this does not affect chirp signals, it can be tested
through time-of-flight comparisons with photons [18,19].
For example, assuming a common origin for GW170817
and GRB 170817A, Ref. [19] places limits on the differ-
ence between the speed of gravity and the speed of light.

The result can be translated to a constraint on a combination
of spherical SME coefficients:

−3 × 10−15 ≤
X
jm

0Yjkðn̂Þðcð4ÞðIÞjm − kð4ÞðIÞjmÞ ≤ 7 × 10−16;

ð27Þ

where cð4ÞðIÞjm are photon-sector coefficients for Lorentz

violation. Here we assume negligible birefringence in
photons [45]. Using the location of the optical counterpart
[49], the source location n̂ ¼ −v̂ has angles fθn̂;ϕn̂g ≃
f113°; 197°g in the Sun-centered frame used in tests
involving the SME. Restricting attention to the isotropic
limit, the shift in the speed of gravity reduces to δv ¼
−

ffiffiffiffiffiffiffiffiffiffi
1=4π

p
kð4ÞðIÞ00. Assuming isotropy in photons as well, the

constraint above gives

−11 × 10−15 ≲ cð4ÞðIÞ00 − kð4ÞðIÞ00 ≲ 25 × 10−16: ð28Þ

III. BINARY COALESCENCE

The goal of this section is to apply the above results to
coalescing binaries in order to characterize the signatures of
Lorentz violation in chirp signals. We begin by reviewing
conventional mergers in the quadrupole approximation,
which describes the dominate expected features of the
emitted gravitational waves in the Lorentz-invariant case.
We then calculate the modifications due to Lorentz viola-
tion. General expressions for Earth-incident gravitational
waves and detector strains are found in terms of coefficients
for Lorentz violation in the standard Sun-centered celestial
equatorial reference frame used in Lorentz tests involving
the SME. We then discuss signatures in several special
limits.

A. Conventional mergers

In order to search for Lorentz violation in chirp signals
produced by binary systems, we first need a realistic
description of the expected wave without Lorentz violation.
This section provides a brief discussion of conventional
binary mergers and establishes the basic structure needed to
construct gravitational-wave signals with Lorentz violation.
For a review of the underlying conventional physics see, for
example, Refs. [50,51].
Starting in the time domain, we imagine an asymptoti-

cally flat frame centered on the merger. We orient the frame
so that the binary revolves in the right-handed sense about
the z axis. Far from the merger, the wave will be transverse
to the propagation direction v̂ and the position vector
x⃗ ≈ rv̂. The conventional gravitational radiation is then
completely described by either of the complex helicity
components, since hðþ2ÞðtÞ ¼ h�ð−2ÞðtÞ in the time domain,
where hμν is real.
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Conventional waves produced by binaries are dominated
by their merger-frame j ¼ 2, m ¼ �2 multipoles and are
even under parity. This implies that the observed wave
takes the generic form

hðþ2ÞðtÞ ¼ UðtÞ−2Y22ðv̂Þ þ U�ðtÞ−2Y2ð−2Þðv̂Þ: ð29Þ

The wave is then completely characterized by a single
complex scalar function UðtÞ.
While the exact form of UðtÞ can only be found by

considering the detailed physics of the merger, some
general features can be ascertained. For example, splitting
UðtÞ into an amplitude and a phase, UðtÞ ¼ AðtÞe−iΨðtÞ, we
expect both the phaseΨðtÞ and its rate of change to increase
monotonically with time. To see this, we write hðþ2Þ in
terms of the spherical-coordinate angles θ and ϕ for the
direction vector v̂:

hðþ2ÞðtÞ ¼
ffiffiffiffiffiffi
5

4π

r �
Ue2iϕcos4

θ

2
þ U�e−2iϕsin4

θ

2

�
: ð30Þ

We then note that U only contributes through the combi-
nation Ue2iϕ ¼ Aeið2ϕ−ΨÞ, so wavefronts satisfy 2ϕ ¼ Ψþ
ðconstantÞ. Since we assume right-handed rotations about
the z axis, we expect the azimuthal angle ϕ of a wavefront
at a fixed distance from the merger to increase with time, so
the phase function Ψ increases monotonically with time.
Also, since the rotation of the binary accelerates as it
inspirals, we expect a positive instantaneous oscillation
frequency ΩðtÞ ¼ ∂tΨðtÞ that increases with time. We also
note that the wave frequency Ω is twice the wavefront
rotation rate, as expected in a binary system.
The frequency-domain version of Eq. (29) is more

amenable to studies of Lorentz violation. Taking the
Fourier transform, we get

hðþ2ÞðfÞ ¼ uðfÞ−2Y22ðv̂Þ þ u�ð−fÞ−2Y2ð−2Þðv̂Þ; ð31Þ

where uðfÞ ¼ R dtUðtÞei2πft, for 2πf ¼ ω. The uðfÞ
function completely characterizes the wave in the fre-
quency domain. The negative-helicity component can be
found using hð−2ÞðfÞ ¼ h�ðþ2Þð−fÞ. We also split the

frequency-domain function

uðfÞ ¼ AðfÞeiψðfÞ ð32Þ

into an amplitude and a phase.
The connection between the time- and frequency-

domains can be studied through a stationary-phase approxi-
mation. For a fixed frequency f, the fourier transform
uðfÞ ¼ R dtAðtÞeið2πft−ΨÞ is dominated by times tf that are
extrema of the phase. These times are solutions to the
equation 2πf ¼ ΩðtfÞ. Since the instantaneous frequency
ΩðtÞ is positive, extrema only exist for positive frequencies,

and we can assume that negative frequencies play an
insignificant role in uðfÞ. The negative frequencies do
affect the signal through u�ð−fÞ in Eq. (31), however.
Since Ω increases with time, we can in principle invert
the relationship between f and tf, so tf is a single-valued
function of f. Then the usual stationary-phase approxima-

tion gives AðfÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=∂2

tΨðtfÞ
q

AðtfÞ and ψðfÞ ≈ 2πftf −
ΨðtfÞ − π

4
.

Applying the stationary-phase approximation to the
inverse fourier transform yields similar relations. It implies
that the dominant frequency ft at time t is a solution of
2πt ¼ ∂fψðftÞ. Again, since ft and t are expected to rise
together, we can assume ∂2

fψðftÞ is positive. We then arrive
at two key characteristics of the frequency-domain function
uðfÞ ¼ AðfÞeiψðfÞ. To a good approximation, we can
assume that uðfÞ is nonzero for positive frequencies only
and that the phase function ψðfÞ is convex.
As a chirp progresses, it transitions from an inspiral to a

merger, followed by the ringdown. Each stage is subject to
different physics and gives different contributions to AðfÞ
and ψðfÞ. For example, early in the inspiral the
“Newtonian” approximation is valid [52], which results in

ψðfÞ ≈ 2πft0 þ ψ0 þ
3

27π5=3
η−1ðTfÞ−5=3;

AðfÞ ≈ Cr−1T2η1=2ðTfÞ−7=6; ð33Þ

where C is a constant, r is the distance from the source, t0
determines the time origin, and ψ0 is a phase constant. The
important features of the chirp depend on the total mass
M ¼ M1 þM2 and mass ratio η ¼ M1M2=M2. Here we
define the chirp time constant T ¼ GNð1þ zÞM, which
gives the characteristic timescale. We incorporate the
source redshift z to account for cosmological expansion.
The expressions in Eq. (33) provide a simple approxi-

mation that should hold at low frequencies. At higher
frequencies, corresponding to later times, the approxima-
tion is expected to fail. More accurate descriptions at all
frequencies can be achieved through a combination of
higher-order post-Newtonian corrections [51] and numeri-
cal relativity [53]. Analytic templates can be constructed to
approximate the late-stage physics. These generally have a
phase function of the form

ψðfÞ ¼ 2πft0 þ ψ0 þ
X
n

ðTfÞn=3ψn; ð34Þ

where the ψn are constants. The amplitude AðfÞ may also
be modified. For example, Ref. [54] assumes an AðfÞ that is
proportional to f−7=6 over inspiral frequencies, is propor-
tional f−2=3 for the merger, and decays as a Lorentzian at
higher ringdown frequencies. Their phase includes terms
with n ¼ −5, −3, −2, −1, 1, 2. All parameters are treated
as functions of the mass ratio η and fit to results from
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post-Newtonian and numerical relativity. The spins of the
two bodies can also be incorporated in the templates [55].

B. Signatures of Lorentz violation

The choice of reference frame is important when testing
Lorentz invariance since the coefficients for Lorentz
violation are different in different frames. By convention,
Lorentz tests report results using a Sun-centered celestial
equatorial frame [22,56]. The direction of propagation v̂
has Sun-frame polar angle θ ¼ decþ 90° and Sun-frame
azimuthal angle ϕ ¼ r:a:� 180°, in terms of the declina-
tion and right ascension of the source. The standard Sun-
frame linear polarizations hðþÞ and hð×Þ are related to the
helicity components through Eq. (23). The axes of the hðþÞ
polarization align with the celestial cardinal directions,
while the axes for hð×Þ polarization are along the inter-
cardinal directions.
Equation (31) gives the predicted form for the Lorentz-

invariant helicity components in the merger frame. Before
we determine the effects of Lorentz violation, we first
transform this result to the Sun frame. This is done by
passively rotating Eq. (31) using the rotation operator
R ¼ eiαzJzeiαyJyeiα

0
zJz , where αy, αz, and α0z are Euler angles

relating the two frames. The rotation acting on the spherical

harmonics gives RsYjm ¼Pm0DðjÞ
m0mð−αz;−αy;−α0zÞsYjm0 ,

where DðjÞ
m0m are the Wigner rotation matrices. The Sun-

frame Lorentz-invariant wave can then be written as

hLIð�2ÞðfÞ ¼ uðfÞYð�2Þ þ u�ð−fÞY�
ð∓2Þ; ð35Þ

where it is convenient to define the direction-dependent
factors

Yð�2Þ ¼
X
m

Dð2Þ
m2ð−αz;−αy; 0Þ∓2Y2mðθ;ϕÞ

¼
X
m

dð2Þm2ð−αyÞeiαzm∓2Y2mðθ;ϕÞ: ð36Þ

The dðjÞmm0 in the last line are little Wigner matrices.
The Yð�2Þ factors have helicity �2 and account for the

location ðθ; ϕÞ and orientation ðαy; αzÞ of the source in the
Sun-centered frame. While the general rotation depends on
the three Euler angles, the α0z angle corresponds to a
rotation about the merger-frame z axis. This is equivalent
to a change in phase and can be absorbed into the phase
constant ψ0. We may therefore take α0z ¼ 0, leaving four
angles to characterize the location and orientation of the
binary in the Sun frame. Note that the Yð�2Þ also com-
pletely determine the polarization content in the conven-
tional limit.
Restricting attention to positive f and using Eq. (22), the

helicity components with Lorentz violation are

hð�2Þ ¼ ueiδððcos β ∓ i cosϑ sin βÞYð�2Þ
− ie∓iφ sin ϑ sin βYð∓2ÞÞ: ð37Þ

The negative-frequency parts can be found using the
identity hð�2ÞðfÞ ¼ h�ð∓2Þð−fÞ. In the linear basis, the
positive-frequency parts become

hðþÞ ¼ ueiδððcos β − i cosφ sinϑ sin βÞYðþÞ

− ðcosϑþ i sinφ sinϑÞ sin βYð×ÞÞ;
hð×Þ ¼ ueiδððcos β þ i cosφ sin ϑ sin βÞYð×Þ

þ ðcos ϑ − i sinφ sinϑÞ sin βYðþÞÞ; ð38Þ

where YðþÞ and Yð×Þ are direction factors for linear polar-
izations and are related to helicity-basis factors through
Yð�2Þ ¼ YðþÞ ∓ iYð×Þ. The linear components both obey
the conjugation rule hðþ;×ÞðfÞ ¼ h�ðþ;×Þð−fÞ, which implies

the time-domain hðþ;×ÞðtÞ are real, as expected.
The signal generated in a given detector depends on its

orientation relative to the Sun-centered frame at the time of
the observation. The gravitational strain for a detector can
be written as

hðDÞ ¼ FðþÞhðþÞ þ Fð×Þhð×Þ

¼ 1

2
F�
ðþ2Þhðþ2Þ þ

1

2
F�
ð−2Þhð−2Þ: ð39Þ

Assuming arms of equal length, the linear-basis antenna
pattern functions are

FðþÞ ¼
1

2
ðC2

θ1 − C2
ϕ1 − C2

θ2 þ C2
ϕ2Þ;

Fð×Þ ¼ Cθ1Cϕ1 − Cθ2Cϕ2; ð40Þ

where Cak ¼ êa · l̂k are the direction cosines between the
Sun-frame êθ and êϕ vectors and the arms of the detector,
which point along unit vectors l̂1 and l̂2. Assuming the l̂k
vectors are horizontal, the cosines are

Cθk ¼ cosðϕ − αÞ cos θ cos χ cos ξk þ sin θ sin χ cos ξk

þ sinðϕ − αÞ cos θ sin ξk;
Cϕk ¼ cosðϕ − αÞ sin ξk − sinðϕ − αÞ cos χ cos ξk; ð41Þ

where θ and ϕ are the Sun-frame propagation angles, χ is
the colatitude of the detector, α is the right ascension of
the laboratory zenith at the time of the detection, and ξk
is the angle between l̂k and local south measured to
the east. The helicity-basis pattern functions are given
by Fð�2Þ ¼ FðþÞ ∓ iFð×Þ.
Using either the helicity components (37) or linear

components (38), we find that the theoretical positive-
frequency strain with Lorentz violation takes the simple
form
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hðDÞ ¼ AeiðψþδÞðF 0 cos β − iF⃗ · ς̂ sin βÞ; ð42Þ

where

ς̂ ¼ ðsin ϑ cosφ; sin ϑ sinφ; cosϑÞ ð43Þ

is the Stokes rotation axis discussed in the Appendix. It is
the normalized Stokes vector for the faster eigenmode and
depends on the birefringence angles ϑ and φ defined in
Eq. (15). The negative-frequency strain can be found using
hðDÞðfÞ ¼ h�ðDÞð−fÞ, ensuring that the time-domain strain

is real.
We emphasize that Eq. (42) gives the leading-order

theoretical strain signal for any realistic extension of
linearized gravity, including all possible Lorentz-breaking
and Lorentz-invariant modifications.
The unconventional effects in a given event are com-

pletely determined by the common phase δ, the birefringent
phase β, and the ϑ and φ angles. The conventional degrees
of freedom are those in the chirp amplitude AðfÞ and phase
ψðfÞ functions and in the Stokes-like parameters

F 0 ¼ 1

2
ðF�

ðþ2ÞYðþ2Þ þ F�
ð−2ÞYð−2ÞÞ;

F 1 ¼ 1

2
ðF�

ð−2ÞYðþ2Þ þ F�
ðþ2ÞYð−2ÞÞ;

F 2 ¼ i
2
ðF�

ð−2ÞYðþ2Þ − F�
ðþ2ÞYð−2ÞÞ;

F 3 ¼ 1

2
ðF�

ðþ2ÞYðþ2Þ − F�
ð−2ÞYð−2ÞÞ: ð44Þ

These complex factors represent a distillation of all the
usual directional degrees of freedom.
The strain in the Lorentz-invariant case is hLIðDÞ ¼

F 0Aeiψ . In this limit, the incident polarization depends
on the location and orientation of the source relative to the
Earth but is the same for all frequencies. The conventional
direction factor F 0 accounts for the polarization of the
incident wave and its alignment relative to the arms of the
detector.
In Lorentz-violating cases with birefringence, different

frequencies can have different polarizations, which gives
additional f dependence characterized by the terms in
brackets in Eq. (42). While nonbirefringent Lorentz vio-
lation affects the phase of the signal, birefringence can alter
both the phase and the amplitude. The changes in amplitude
can by isolated by considering the spectral density

jhðDÞj2 ¼ A2ðjF 0j2cos2β þ jF⃗ · ς̂j2sin2β
þ ImðF 0�F⃗ · ς̂Þ sin 2βÞÞ: ð45Þ

Deviations from the expected spectral density jF 0j2A2

provide a generic signature of birefringence due to
Lorentz violation.

C. Special cases

Equation (42) provides a general framework for searches
Lorentz violation in chirp signals. While the SME describes
an endless variety of possible Lorentz violations, exper-
imental limitations likely preclude a broad search. It is
therefore useful to focus on the three main classes of
violations controlled by the three different coefficient
combinations in Eq. (11). We again consider each case
in turn.
Nonbirefringent violations. Setting all but the kðdÞðIÞjm

coefficients to zero yields the nonbirefringent limit. In this
limit, the strain becomes

hðDÞ ¼ F 0AeiðψþδÞ: ð46Þ

This simply adds the Lorentz-violating phase δ ¼
ð2πfÞd−3τςðdÞ0 to the conventional phase function ψ . The
modifications exist for even d ≥ 4, but dispersion results
only when d ≥ 6. Figure 1 shows an example of dispersion
in the strain signal for d ¼ 6 Lorentz violations. A single
point source can constrain one direction-dependent coef-
ficient combination ςðdÞ0, for fixed d. Measurements from
multiple sources at different locations on the sky could be

combined to limit the entire kðdÞðIÞjm coefficient space.
A single source can, however, constrain the isotropic

limit. At each d, there is one isotropic coefficient kðdÞðIÞ00.
Setting all other coefficients to zero yields a simple one-
parameter special case with Lorentz-violating phase

δiso ¼
1ffiffiffiffiffiffi
4π

p ð2πfÞd−3τkðdÞðIÞ00: ð47Þ

This produces polarization- and direction-independent
dispersion. Isotropic dispersion of the form ω2 ¼ jp⃗j2 þ
Ajp⃗jα has been considered [14]. This formalism maps to

SME parameters through α¼d−2 and A ¼ −
ffiffiffiffiffiffiffiffi
1=π

p
kðdÞðIÞ00.

Note that this implies that α is an even positive integer.
Other values of α may occur in gauge-breaking theories or
in nonfield-theoretic descriptions of gravity, but both of
these possibilities likely produce additional effects beyond
simple dispersion. Odd α values do appear in the CPT-odd
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FIG. 1. Time-domain strain for nonbirefringent dispersion with
τςð6Þ0 ¼ 20T3 (black) and the Lorentz-invariant limit (gray). The
Lorentz-invariant strain is generated using the amplitude and
phase functions in Ref. [54] with mass ratio η ¼ 1

4
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birefringent case discussed below. However, dispersion in
that case is accompanied by changes in polarization.

CPT-odd birefringence. Taking nonzero kðdÞðVÞjm coeffi-

cients gives the CPT-odd birefringent case. The result can

be written in term of the phase δψ ¼ ð2πfÞd−3τςðdÞð0Þ , for odd
d ≥ 5. The positive-frequency strain reduces to

hðDÞ ¼ AeiψðF 0 cos δψ − iF 3 sin δψÞ; ð48Þ

and the spectral density becomes

jhðDÞj2 ¼ A2ðjF 0j2cos2δψ þ jF 3j2sin2δψ
þ ImðF 0�F 3Þ sin 2δψÞ: ð49Þ

Figure 2 shows an example of the theoretical strain from
d ¼ 5 CPT-odd birefringence. As in the nonbirefringent
case, multiple sources at different locations on the sky are

required to fully constrain the kðdÞðVÞjm coefficient space for

fixed d. This case also contains an isotropic limit, where

δψ iso ¼
1ffiffiffiffiffiffi
4π

p ð2πfÞd−3τkðdÞðVÞ00: ð50Þ

A single source can fully constrain this simple special case.
CPT-even birefringence. For the CPT-even birefringent

case, we take kðdÞðEÞjm and kðdÞðBÞjm coefficients to be nonzero.

For fixed d, the strain is then given by Eq. (42), with δ ¼ 0,
birefringent phase

β ¼ ð2πfÞd−3τjςðdÞðþ4Þj; ð51Þ

and

F⃗ · ς̂ ¼ F 1 cosφþ F 2 sinφ: ð52Þ

Using this direction factor in Eq. (45) gives the spectral
density. The effects are therefore governed by the magni-

tude and phase of the coefficient combination ςðdÞðþ4Þ. No
isotropic limit exists in this case. This is because the �4-

helicity ςðdÞð�4Þ combinations couple the circular polariza-

tions hð�2Þ, giving a change of �4 in helicity. Only scalar
helicity-zero functions contain isotropic components, so
violations of this type are necessarily anisotopic.
In both birefringent cases, the unlikely possibility exists

that the observed gravitational wave is produced in one of
the propagating eigenmodes. For the CPT-odd case, the
eigenmodes are circularly polarized, implying that the
Earth would need to lie on the z axis of the merger frame.
The wave then maintains a fixed polarization, and the
direction factors obey F 3 ¼ �F 0. For the CPT-even case,
the eigenmodes are linearly polarized, which means the
Earth lies in the x-y plane of the merger frame, and
the plane is aligned with a polarization axis of one of
the eigenmodes. In this scenario, the direction factor
satisfies F⃗ · ς̂ ¼ F 0 for the fast mode and F⃗ · ς̂ ¼ −F 0

for the slow mode. In both the CPT-odd and CPT-even
cases, the polarization would be unaffected and there would
be no sign of Lorentz violation in the spectral density.
However, the birefringent phase β produces dispersion and
therefore still results in a deformed strain.

IV. SUMMARY AND DISCUSSION

In this paper, we derive and study signals for Lorentz
violation in gravitational waves. We work in the linearized-
gravity limit of the SME and consider all possible
violations that preserve the usual gauge invariance. The
violations involve d − 2 spacetime derivatives of the metric
perturbation hμν, where d is the mass dimension of the
corresponding operator in the action, in natural units.
Leading-order plane-wave solutions are found in Sec. II.

Lorentz violation results in two propagating modes with
conventional leading-order polarizations. The modes can
propagate at different frequency-dependent phase veloc-
ities, resulting in both dispersion and birefringence. While
the effects depend on the propagation direction in general,
one isotropic coefficient for Lorentz violation exists at each
dimension d that gives direction-independent modifica-
tions. Equation (22) gives the effects of Lorentz violation
on the circular-polarization components of a wave after
propagating an astrophysical distance in terms of its
Lorentz-invariant limit. Equation (24) gives the effects
for the linear polarizations.
Signals of Lorentz violation in waves from coalescing

binaries are derived in Sec. III. The key result is the
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FIG. 2. (a) Time-domain strain and (b) base-10 logarithm of the
spectral density for CPT-odd birefringence with τςð5Þð0Þ ¼ 10T2

(black). The Lorentz-invariant limit (gray) is generated using the
phase and amplitudes from Ref. [54] with mass ratio η ¼ 1

4
. The

merger is positioned so that the incident wave is linearly polarized
in the Lorentz-invariant limit, and the detector arms are aligned to
maximize the conventional sensitivity.
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detector-specific theoretical strain given in Eq. (42). While
the emphasis of this paper is Lorentz violation, Eq. (42)
describes in general the leading-order effects of any
extension of linearized gravity, including all possible
Lorentz-violating and Lorentz-invariant terms.
The theoretical chirp signal involves a number of

unknown parameters that can only be determined through
observation. The wave depends on the total binary massM,
the mass ratio η, and the redshift z. The spins of the objects
may also play a role. There are two angles θ and ϕ that
specify the location of the binary relative to the Earth. Two
more angles αy and αz characterize its orientation.
Lorentz violation introduces a frequency-dependent

common phase δ, which produces dispersion but no
birefringence. It also results in a frequency-dependent
birefringent phase β that gives both dispersion and bire-
fringence. Birefringence produces changes in the polari-
zation of the wave, which also depends on two angles ϑ
and φ that determine the polarizations of the propagating
eigenmodes. For a given source with propagation direction
v̂, all the Lorentz-violating parameters can be written in
terms v̂-dependent combinations of spherical coefficients
for Lorentz violation using Eq. (11).
While the formalism developed here can be used to

search for general Lorentz violations, forming a complete
picture of a merger is challenging even in the usual case,
due in part to the large number of degrees of freedom. The
task can be simplified by focusing on one of three limiting
cases: nonbirefringent violations, CPT-odd birefringent
violations, and CPT-even birefringent violations.
Nonbirefringent dispersion results from the kðdÞðIÞjm coef-

ficients for Lorentz violation. Dispersion deforms chirp
waveforms by adding unconventional frequency depend-
ence ∼fd−3 to the phase. A single source can be used to
limit the direction-dependent coefficient combination ςðdÞ0
in Eq. (11) for d ¼ 6; 8;…. Results from multiple sources
at different locations on the sky could be combined to

constrain the kðdÞðIÞjm spherical coefficients for Lorentz
violation for fixed dimension d.
While birefringent Lorentz violation comes with

dispersion, a key signature differentiating it from the
nonbirefringent case is a polarization that evolves as the
wave propagates. The conventional case is expected to give
a frequency-independent polarization, so a polarization that
changes with frequency is an indicator for birefringent
Lorentz violation.
While a single detector measures a single polarization

component, a wave’s polarization can in principle be
reconstructed by combining the strain data from multiple
detectors. Alternatively, signs of birefringence can be found
in the spectral density. The spectral density of the strain is
insensitive to the phase of incident wave and is therefore
insensitive to dispersion. Changes in polarization due to
birefringence distort a detectors response to a wave,
affecting the strain amplitude. As a result, the spectral

density is highly sensitive to frequency dependence in the
polarization. The general predicted spectral density with
Lorentz violation is given in Eq. (45). A deviation for the
expected power law during the inspiral could be a signal of
birefringence, for example.
CPT-odd and CPT-even birefringence each produce

distinctive changes in the polarization. The kðdÞðVÞjm coef-
ficients give CPT-odd birefringence, which leads to a
simple frequency-dependent rotation of the polarization
about the propagation direction. The result is a change in
the polarization angle but no change in the degree of linear
or circular polarization. CPT-even birefringence stems

from the kðdÞðEÞjm and kðdÞðBÞjm coefficients for Lorentz viola-

tion. The effects in the CPT-even case are more compli-
cated, giving a change in the polarization angle and the
degrees of linear and circular polarization.
Because the effects of Lorentz violation depend on the

direction of propagation and the polarization, some waves
may experience minimal defects even if Lorentz violation is
significant in general. This leads to a potential selection
bias that is common in other astrophysical tests. Dispersion
and birefringence may distort a gravitational wave to the
point where it is no longer recognizable as a potential chirp
event. The detected waves may be those that happen to
propagate in particular directions and have particular
polarizations that produce very little change. This possibil-
ity can be ruled out experimentally by constraining the
underlying coefficients for Lorentz violation through
observations of multiple sources at different points on
the sky and with different polarizations.
The precision at which Lorentz violation can be tested in

a gravitational wave is largely determined by the effective
propagation time τ and the chirp time constant T. The
effects of Lorentz violation may be significant when the
phase in Eq. (19) is of order one. Frequencies up to ∼1=T
contribute to the chirp, so gravitational waves are expected
to test combinations of coefficients for Lorentz violation at
levels approaching ∼Td−3=τ. Assuming propagation dis-
tances on the order of a Gpc and a total mass of around fifty
solar masses, this gives an approximate sensitivity at the
level of ∼10−16 m to d ¼ 5 coefficients and ∼10−11 m2 to
d ¼ 6 coefficients.
At present, few gravitational-wave bounds exist on the

spherical coefficients for Lorentz violation. Estimated
limits on birefringence in GW150914 have been used to
bound one combination of d ¼ 5 CPT-odd kð5ÞðVÞjm coef-
ficients at the level of 10−14 m and one combination of

d ¼ 6 CPT-even kð6ÞðEÞjm and kð6ÞðBÞjm coefficients at the level

of 10−8 m2 [12]. More sophisticated analyses will likely
achieve sensitivities orders of magnitude beyond these
bounds.
The best constraints on kð6ÞðIÞjm coefficients come from the

absence of gravitational Čerenkov radiation in high-energy
cosmic rays [21]. Lorentz violation in gravity can lead to
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subluminal wave speeds. High-energy particles traveling
faster than gravity will radiate gravitational waves, losing
energy. Observations of high-energy cosmic rays place
stringent limits on the coefficients for Lorentz violation
responsible for the changes in velocity. The high energies
involved mean Lorentz invariance is tested at much higher
frequencies, giving sensitivities that are many orders of
magnitude beyond what can be achieved through obser-
vations of low-frequency mergers. However, Čerenkov
studies generally make a number of simplifying assump-
tions concerning Lorentz violation in the cosmic-ray
particles and their interactions with gravity, assumptions
that may not hold in nature. By contrast, dispersion and
birefringence provide clean signatures of Lorentz violation
in pure gravity, completely independent of violations in
other sectors.
Tests of short-range gravity have also placed constraints

on d ¼ 6 Lorentz violations [30]. Binary-merger observa-
tions are expected to give sensitivities to d ¼ 6 violations
that are several orders of magnitude better than short-range
tests. Due to the long wavelengths of the gravitational
waves and the sub-millimeter reach of the laboratory
tests, short-range gravity experiments will likely achieve
better sensitivities to higher-d violations. Note, how-
ever, that these tests should be viewed as complementary
since gravitational waves provide access to the “vacuum”
coefficients in Table I, while short-range experiments are

sensitive to a different set of “Newton” coefficients kNðdÞjm .
Each of these sets of coefficients are different combinations
of the underlying coefficients for Lorentz violation in
Eq. (2), so the two classes of experiment test fundamentally
different forms of Lorentz violation.
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APPENDIX: STOKES PARAMETERS

As with electromagnetic radiation, one can define
gravitational Stokes parameters that characterize the
power associated with different polarizations. They also
provide a simple picture for the effects of birefringence.
While birefringence generally produces complicated
changes in the polarization of a wave, the effects can
be understood as a simple rotation of the Stokes
parameters [22].
While gauge-invariant extensions of general relativity

can in principle give up to 6 polarizations, resulting in 36
gravitational Stokes parameters [57], the limit considered in
this work produces two propagating modes with conven-
tional leading-order polarizations. For positive frequencies,
we define four real gravitational Stokes parameters

S0 ¼ jhðþÞj2 þ jhð×Þj2 ¼
1

2
ðjhðþ2Þj2 þ jhð−2Þj2Þ;

S1 ¼ jhðþÞj2 − jhð×Þj2 ¼ Reðh�ðþ2Þhð−2ÞÞ;
S2 ¼ 2Reðh�ðþÞhð×ÞÞ ¼ Imðh�ðþ2Þhð−2ÞÞ;

S3 ¼ 2Imðh�ðþÞhð×ÞÞ ¼
1

2
ðjhðþ2Þj2 − jhð−2Þj2Þ: ðA1Þ

The Stokes parameters obey ðS0Þ2 ¼ S⃗2, where S⃗ ¼
ðS1; S2; S3Þ is the Stokes vector. The Stokes vector can
also be written in terms of �4-helicity components Sð�4Þ ¼
S1 ∓ iS2 and a 0-helicity component Sð0Þ ¼ S3.
Some understanding of the Stokes parameters can be

gained by parametrizing an arbitrary polarization using
the form

hð�2Þ ¼ a

�
cos

χ

2
� sin

χ

2

�
e∓iζ=2; ðA2Þ

where − π
2
≤ χ ≤ π

2
and 0 ≤ ζ < 2π. In the linear basis, we

can write this as

�
hðþÞ
hð×Þ

�
¼ a

 
cos ζ

2
− sin ζ

2

sin ζ
2

cos ζ
2

!�
cos χ

2

i sin χ
2

�
: ðA3Þ

This gives general elliptical polarization along rotated axes
ê1 ¼ cos ζ

4
êθ þ sin ζ

4
êϕ and ê2 ¼ cos ζ

4
êϕ − sin ζ

4
êθ, imply-

ing that ζ
4
is the linear polarization angle. The angle χ

determines the degree of circular polarization, with χ ¼ 0
for linear, χ ¼ π

2
for right-handed circular, and χ ¼ − π

2
for

left-handed circular polarizations.
In terms of ζ and χ, the Stokes parameters are

S0 ¼ jaj2; S⃗ ¼ S0ðcos χ cos ζ; cos χ sin ζ; sin χÞ: ðA4Þ

Each Stokes vector S⃗ defines a unique point on a sphere of
radius S0 analogous to the Poincaré sphere from optics.
Every point on the sphere represents a unique polarization.
Points in the S1-S2 plane are the linear polarizations, with
hðþÞ on the positive S1 axis and hð×Þ on the negative S1 axis.
The upper hemisphere, with S3 > 0, contains all right-
handed elliptical polarizations, and the lower hemisphere
gives left-handed elliptical polarizations. The poles corre-
spond to the two circular polarizations. In general, orthogo-
nal polarizations point to opposite points on the sphere. The
degree of linear polarization is cos χ, and sin χ gives the
degree of circular polarization.
Assuming Eq. (31), the Lorentz-invariant Stokes param-

eters for a merger are
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S0LI ¼
1

2
juj2
�
cos8

θ

2
þ sin8

θ

2

�
;

S1LI ¼ juj2sin4 θ
2
cos4

θ

2
;

S2LI ¼ 0;

S3LI ¼
1

2
juj2
�
cos8

θ

2
− sin8

θ

2

�
; ðA5Þ

in the merger frame. Note that this only depends on the
merger-frame polar angle θ. This shows that we get right-
handed circular polarization along the þz merger axis and
left-handed circular polarization along the −z axis. Waves
traveling in the x-y plane are linearly polarized. All linear
and elliptical polarizations have a polarization angle of
ζ
4
¼ 0. In the Sun frame, the Stokes parameters are

SμLI ¼ juj2SμY , where SμY are the Stokes parameters con-
structed from the direction factors in Eq. (36).
The Lorentz-violating parameters in Eq. (10) can be

thought of as conveniently normalized Stokes parameters
for the birefringent eigenmodes. The vector

ς⃗ ¼
�
1

2
ðςðþ4Þ þ ςð−4ÞÞ;

i
2
ðςðþ4Þ − ςð−4ÞÞ; ςð0Þ

�
ðA6Þ

points in the direction of the Stokes vector for the faster
eigenmode and opposite the vector for the slower mode.
Note, however, that ðς0Þ2 ≠ ς⃗2.
Changes in polarization due to birefringence will cause

the Stokes vector S⃗ of a wave to evolve as it propagates.
Only waves with S⃗ along ς⃗, corresponding to one of the
eigenmodes, will remain unaltered. To find the effects
for other polarizations, we define the orthonormal Stokes
basis

ς̂ ¼ ς⃗=jς⃗j ¼ ðsinϑ cosφ; sinϑ sinφ; cos ϑÞ;
ϑ̂ ¼ ðcos ϑ cosφ; cos ϑ sinφ;− sinϑÞ;
φ̂ ¼ ð− sinφ; cosφ; 0Þ; ðA7Þ

in terms of the birefringence angles ϑ and φ. Expanding an
arbitrary Stokes vectors in this basis, S⃗¼Sςς̂þSϑϑ̂þSφφ̂,

we arrive at a set of Stokes parameters associated with the
eigenmodes,

Sς ¼ 1

2
ðjhðfÞj2 − jhðsÞj2Þ;

Sϑ ¼ Reðh�ðfÞhðsÞÞ; Sφ ¼ Imðh�ðfÞhðsÞÞ: ðA8Þ

An eigenmode differs from its Lorentz-invariant limit by a
phase, hðf;sÞ ¼ eiδ∓iβhLIðf;sÞ, giving

Sς ¼ SςLI;

Sϑ ¼ cosð2βÞSϑLI − sinð2βÞSφLI;
Sφ ¼ cosð2βÞSφLI þ sinð2βÞSϑLI: ðA9Þ

This shows that the Stokes vector with Lorentz violation S⃗
can be obtained from the Stokes vector without Lorentz
violation S⃗LI by rotating S⃗LI about the axis ς̂ by angle 2β,
which is the change in relative phase due to birefringence.
In the CPT-odd case, where ϑ ¼ 0 or ϑ ¼ π, the rotation

axis ς̂ points to one of the poles of the Poincaré sphere.
Birefringence causes a rotation about the S3 axis by
δζ ¼ �2β, changing the linear polarization angle by�β=2.
For the CPT-even birefringence, where ϑ ¼ π=2, the

rotation axis ς̂ lies in the S1-S2 plane at an angle φ from the
S1 axis. Unless S⃗LI happens to align with ς̂, the Stokes
vector rotates on a cone centered around ς̂. This causes
changes in both the ζ and χ polarization angles. The linear
polarization angle changes, as do the degree of linear
polarization and degree of circular polarization.
The Stokes parameters can also be used to track the

evolution of the polarization as it propagates from the
source to the observer. The infinitesimal change in phase
dψ� ¼ dψ0 þ ωð−ς0 � jς⃗jÞdl changes the eigenmodes by
dhðf;sÞ ¼ −idψ�hðf;sÞ. The result is an infinitesimal rota-
tion of the Stokes parameters about ς̂. The rotation can be
written

dS⃗
dl

¼ 2ως⃗ × S⃗; ðA10Þ

giving right-handed rotations of S⃗ about ς̂ at a rate of 2ωjς⃗j.
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