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In this work we study the general system of geodesic equations for the case of a massive particle moving
on an arbitrary curved manifold. The investigation is carried out from the symmetry perspective. By
exploiting the parametrization invariance property of the system we define nonlocal conserved charges that
are independent from the typical integrals of motion constructed out of possible Killing vectors/tensors of
the background metric. We show that with their help every two-dimensional surface can—at least in
principle—be characterized as integrable. Due to the nonlocal nature of these quantities no more than two
can be used at the same time unless the solution of the system is known. We demonstrate that even so, the
two-dimensional geodesic problem can always be reduced to a single first order ordinary differential
equation; we also provide several examples of this process.
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I. INTRODUCTION

The existence of symmetries is of paramount importance
in all aspects of physical theories [1]. The search of analytic
solutions in mechanical systems is greatly facilitated when
first order relations provided by existing integrals of motion
are present. The notion of integrability itself is related to the
existence of enough independent, commuting phase space
functions that are constants of motion [2,3]. In this work we
use this term to refer to Liouville integrability and the
Liouville-Arnold theorem [2].
The present work is devoted to the study of a particular

class of mechanical systems. Namely, those that describe
the motion of relativistic free particles in (generally) curved
spaces, i.e., geodesic problems (the inclusion of a potential,
however, does not essentially affect the analysis we follow;
we are going to see this in a later section). The study of
geodesic equations and their symmetries is a subject
extensively examined in the literature [4–13], especially
in the case of pseudo-Riemannian spaces where it is of
particular importance in gravitational problems [14–17].
Apart from the case where the metric describes the base
manifold of some space-time in a gravitational theory, a
pseudo-Riemannian geodesic problem may also be related
with systems appearing in the context of mini-superspace
cosmology [18,19]. The latter are also parametrization

invariant and are completely equivalent to some geodesic
problem as we shall see later on in the analysis. A similar
correspondence can be claimed for regular (nonparametri-
zation invariant) mechanical systems up to a transformation
in time with the use of the Jacobi metric [2,8,20,21]. An
alternative way of a geometrization of classical regular
mechanical problems is supplemented by the Eisenhart-
Duval lift [22–25] which was initially introduced by
Eisenhart and later rediscovered in a more physical context
by Duval and collaborators; for a recent treatment of
two-dimensional problems see [26]. Thus, we see that
the motion of a relativistic particle in a curved manifold can
be associated with several different problems. In regards to
in particular the motion of a such a particle in a Minkowski
space and under several different contexts we refer to the
study presented in [27].
In this work we choose to follow a different procedure

than what is frequently encountered in the literature. The
starting point of a geodesic problem is usually the set of
equations

ẍμ þ Γμ
κλ _x

κ _xλ ¼ 0; ð1:1Þ

where the xα’s are the local coordinates on a given manifold
and Γμ

κλ the Christoffel symbols corresponding to its metric
gβγðxÞ. The set of equations (1.1) describes however a very
particular type of geodesics; those that are characterized by
an affine parameter. Here, we choose to study the more
general system
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ẍμ þ Γμ
κλ _x

κ _xλ ¼ 1

2
_xμ

d
dτ

½ln ð_xκ _xκÞ�; ð1:2Þ

which is the corresponding set of the full geodesic
equations (prior to fixing the gauge, e.g., by deciding that
the parameter along the integral curves is affine). As we
shall see, the parametrization invariance which is inherent
in the action principle producing (1.2) allows for the
definition of additional symmetries leading to rheonomic
conserved charges. These are supplementary to the conven-
tional integrals of motion that may appear when one
concentrates on the gauged fixed Lagrangian of the
geodesic problem. Although these new conserved charges
have a nonlocal form, they can, under specific gauge
choices, provide additional first order relations that may
help to integrate particular systems under consideration.
These integrals of motion are not of “Noetherian” origin;
i.e., they are not the result of an existing variational
symmetry, not even of a generalized one. However, their
realization is inextricably linked to the parametrization
invariance.
In our analysis we provide a method for using such

supplementary, first order relations in order to integrate
(1.2). One of the main points we wish to make is that
Eqs. (1.2) may be a lot easier to solve under a smart gauge
fixing choice, than the “seemingly” simplest (1.1).
Furthermore, we study in what way the integrability of
such a system may be affected by the use of the nonlocal
conserved charges and we use one such integral of motion
in order to reduce the problem of the geodesic motion on a
general two-dimensional manifold to a single first order
differential equation. Something which we show is that it is
in principle always possible, assuming that the metric is
smooth enough.
The structure of the paper is as follows. In Sec. II we

provide the general setting of the geodesic problem and
review some basic properties of the associated systems of
equations. In Sec. III we turn to the phase space description
where we introduce the nonlocal conserved charges that
can be used together with the conventional integrals of
motion. In Sec. IV we study the ways in which the former
may affect the notion of integrability in a given system.
Section V is devoted to the reduction of the general two-
dimensional geodesic problem with the help of such a
nonlocal conserved charge. In Sec. VI, we briefly review
some examples and applications of the general form of
relations derived in the previous section. Finally, our
conclusions are given in Sec. VII.

II. THE GEODESIC PROBLEM

Let us consider the problem of deriving the trajectory of
a free particle of unit mass moving in a space of dimension
d characterized by a metric with components gμνðxÞ. The
usual starting point in the literature is the well-known
Lagrangian

L1 ¼
1

2
gμν _xμ _xν; μ; ν ¼ 1;…; d; ð2:1Þ

with xμ being the coordinates on the manifold and _xμ their
first derivatives with respect to some parameter τ in terms
of which the trajectory is to be described, i.e., _xμ ¼ d

dτ x
μðτÞ.

However, Lagrangian (2.1) does not tell us the full story. It
reproduces as solutions to its equations of motion only a
very specific type of geodesic trajectories: those associated
with an affine parameter.
The full geodesic equations (1.2), in an arbitrary para-

metrization, are given by the square root Lagrangian

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν _xμ _xνj

q
: ð2:2Þ

Strictly speaking, the two systems described by L1 and L2

are not completely equivalent, the basic difference being
that the latter is parametrization invariant. The “time”
parameter τ in the system described by L1 has the status
of a Newtonian-like time, in the sense that the system
exhibits a Noether symmetry generated by X1 ¼ ∂

∂τ, while
the action constructed with the help of L2 possesses a
symmetry generator of the form X2 ¼ FðτÞ ∂

∂τ with FðτÞ
being an arbitrary function.1 The infinite-dimensional
symmetry group available in the second case implies—in
place of a conservation law—the existence of a differential
identity among the equations of motion (second Noether
theorem). In other words not all of them are independent.
Lagrangian L2 is homogeneous of degree one in the

velocities, i.e.,

L2ðx; λ_xÞ ¼ jλjL2ðx; _xÞ; ð2:3Þ

and this results in the HamiltonianH being identically zero.
This is a consequence of Euler’s theorem for homogeneous
functions, which implies in this case that [28]

∂L2

∂ _xκ _xκ − L2 ≡ 0: ð2:4Þ

In the left-hand side we recognize the Hamiltonian,
∂L2∂ _xκ ≡ pκ being the momenta conjugate to xκ. Thus, one
obtains H ≡ 0. However, this complication can be
avoided by using another Lagrangian dynamically equiv-
alent to L2 which has an additional, auxiliary degree of
freedom (d.o.f.) that we denote with N. This Lagrangian is
written as

1The generator X1 implies that a system is invariant under
constant translations in time τ → τ þ c, while X2 allows for time
parametrization invariance τ → fðτÞ. In the first case, constant
translations in time are the “gauge” transformations for the
system. If one had performed any other time transformation it
would result in affecting the physical properties of the latter.
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L3 ¼
1

2N
gμν _xμ _xν −

N
2
; μ; ν ¼ 1;…; d; ð2:5Þ

and the NðτÞ is to be considered as a d.o.f. on an equal
footing with the xðτÞα’s. In other words the system
described by L3, in contrast to those of L1 and L2, has
dþ 1 degrees of freedom instead of just d. We can thus
write L3 ¼ L3ðq; _qÞ, where qi ¼ ðqμ; qdþ1Þ ¼ ðxμ; NÞ,
i ¼ 1;…; dþ 1. The equations of motion for L3 can be
easily derived and they result in the following system of
ordinary differential equations:

∂L3

∂qdþ1
−

d
dτ

� ∂L3

∂ _qdþ1

�
¼ 0 ⇒

1

N2
gμν _xμ _xν þ 1 ¼ 0 ð2:6aÞ

∂L3

∂qμ −
d
dτ

�∂L3

∂ _qμ
�

¼ 0 ⇒ ẍμ þ Γμ
κλ _x

κ _xλ − _xμ
d
dτ

ðlnNÞ ¼ 0;

ð2:6bÞ

where of course if you solve (2.6a) algebraically with
respect to N and substitute into (2.6b) you obtain the set of
equations (1.2) (in this situation we have written L3 in such
a manner so as to consider a metric with Lorentzian
signature in which, for timelike geodesics, _xκ _xκ < 0
holds2). Hence, the two Lagrangians, L2 and L3, are
equivalent and possess exactly the same symmetry group
as both actions constructed by them are parametrization
invariant; i.e., both of them admit X2 as a Noether
symmetry generator. The great difference however is that
the Hamiltonian corresponding to L3 is not identically zero
as the one of L2 but rather weakly zero, thus allowing phase
space dynamics. The additional d.o.f. N is referred to in the
literature as the einbein [1,29] and is usually symbolized
with an e. Here, we prefer to use N due to the relation it
bears with the lapse function of mini-superspace cosmo-
logical models and the Lagrangians that emerge in that
context.
Due to the parametrization invariance of the system

characterizing L3 we have the freedom to fix the gauge in
the set of equations (2.6). Obviously the choice N ¼ const
leads us to the affinely parametrized geodesic equa-
tions (1.1). This is a seemingly opportune choice in order
to simplify the system at hand. However, we are going to
demonstrate here that the set of equations (2.6) may be a lot
easier to solve if a gauge choice smarter than the obvious
N ¼ const is employed.
Before we proceed let us demonstrate how one may be

led to (2.5) from a more general problem of a particle
moving under the influence of some potential VðxÞ. In this
case the Lagrangian would read

L4 ¼
1

2n
ḡμν _xμ _xν − nVðxÞ: ð2:7Þ

These types of Lagrangians appear in the study of
cosmological systems as mini-superspace models, whenever
they happen to reproduce correctly the field equations under
some ansatz for the basemanifoldmetric. Then in this case is
usually the lapse function of the latter. By performing a
simple rescaling of the d.o.f. n ↦ N ¼ 2nV we obtain L3

where gμν ¼ 2VðxÞḡμν, i.e., a geodesic problem of a con-
formally related metric with the potential serving as the
conformal factor. A similar identification can be done for
regular systems without constraints and the resulting metric
gμν is called the Jacobi metric [2,8,20]. The only difference
there is that the equivalence applies modulo a time trans-
formation. This is due to the fact that the aforementioned
scaling of N is equivalent to making a change in time τ ↦
t ¼ 2

R
VðxðτÞÞdτ in the action. For a parametrization

invariant system this is just a change in gauge, for a regular
one it is a transformation that does not belong to its symmetry
group. Hence, it alters the physical properties. Nevertheless,
this is not of essence when the objective is the integrability;
the obtained solution can always be mapped to the original
system through the inverse transformation. There is an
immense bibliography on symmetries of mini-superspace
systems; for the interested reader we just refer to a few
characteristic studies [30–39].

III. PHASE SPACE DESCRIPTION AND A NEW
CLASS OF CONSERVED QUANTITIES

A. Phase space of a singular Lagrangian

ALagrangian functionLðq; _qÞ, wherewithqwedesignate
the generalized coordinates of the configuration space, is
considered to be constrained (or singular) if the correspond-
ing Hessian matrixWij ¼ ∂2L

∂ _qi∂ _qj has a zero determinant. This

results in the Legendre transform not being invertible, which
poses an issue for passing to the Hamiltonian description.
Dirac [40–42] and Bergmann [43] separately provided a
solution to this problem. Before proceeding with the appli-
cation of this formalismonour particular case of thegeodesic
Lagrangian, let us make first a brief introduction to the
Dirac-Bergmann algorithm (for more details we refer the
interested reader to several textbooks that exist on the subject
[42,44–46]). In what follows we mostly follow the presen-
tation of the theory carried out in [44].
Assume a Lagrangian function that possesses D degrees

of freedom qi, i ¼ 1;…; D [in the case of L3 in (2.5)
D ¼ dþ 1], and satisfies the singularity condition

DetðWijÞ ¼ Det

� ∂2L
∂ _qi∂ _qj

�
¼ 0; i; j¼ 1;…D: ð3:1Þ

This implies that RankðWijÞ ¼ R < D and leads to the
existence of a set of D − R equations in number which do

2If for example we wanted to treat a Riemannian metric (or
spacelike “trajectories”) we should write L3 with þ N

2
in the

potential part.
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not contain accelerations. Thus, not all of the equations of
motion are independent.
For clarity, let us split the index i ¼ 1;…; D, which

indicates all the degrees of freedom, into two subindexes α
and I. The first, α ¼ 1;…; R, corresponds to the degrees of
freedom of the invertible submatrix of Wij and the second,
I ¼ Rþ 1;…; D, to those that are left. When a variable
appears with no index in an argument of a function, we
assume the full range i.e., fðxÞ means fðxiÞ, i ¼ 1;…; D.
We can normally define the momenta of the system as

pi ¼ ∂L
∂ _qi for all the range of i ¼ 1;…; D. For R of the

velocities of the system, say _qα, there exists a one to one
correspondence with the equal in number momenta pα,
α ¼ 1;…; R. The rest of the momenta, pI with
I ¼ Rþ 1;…; D, are given in terms of x and pα. These
D − R in number relations among position and momenta,
that involve no velocities, are called the primary constraints
of the system, which we can denote as

ϕIðq; pÞ ¼ 0; I ¼ Rþ 1;…; D: ð3:2Þ

Even though the Legendre transform is no longer invertible,
one can write a Hamiltonian functionHc ¼ pi _qi − L, where
thepI , which are not associatedwith anyof thevelocities, it is
understood that they are being substituted from (3.2). This
Hamiltonian is defined in the space of theD in number qi, the
R momenta pα (that do have a one to one correspondence
with velocities) and the remaining D − R velocities _qI . The
physical space of the problem is the subspace where the
relations (3.2) hold. As it turns out, the Hamiltonian Hc ¼
pi _qi − L is not uniquely defined since one can add any linear
combination of the constraints (3.2) which are zero [42].
Thus we can write the general Hamiltonian

H ¼ Hc þ uIϕI; ð3:3Þ

where the uI are functions that may depend on q and p. The
part of the primary Hamiltonian that is denoted with Hc is
called the canonical Hamiltonian. Poisson brackets can be
defined normally in the space of qi and pi, i.e.,
fA; Bg ¼ ∂A

∂qi
∂B
∂pi

− ∂A
∂pi

∂B
∂qi, and with their help the evolution

of phase space quantities with respect toH can be calculated.
However, it is important to notice that the quantities ϕI ¼ 0
are not to be set to zero prior to carrying the full Poisson
bracket calculation; else the result is erroneous. This rule
defines the notion of the weak equality which is denoted by
an “≈”; hence from now onwewrite the constraint equations
as ϕI ≈ 0.3

Of course, due to the fact that through the dynamical
evolution one is not allowed to leave the physical space, the
time evolution of the constraints must vanish at least on the
constrained surface itself. In other words we have to impose
the supplementary condition

_ϕI ¼ fϕI; Hg ≈ 0: ð3:4Þ

Each of these additional equations may bring about the
following results:
(a) It can be satisfied identically.
(b) Lead to a new relation among position and momenta

that have to vanish weakly. That is, to a new constraint
ψðq; pÞ ≈ 0 which is called secondary.

(c) Define one of the functions uI . In this case (3.4) which
results in

fϕI; Hcg þ uJfϕI;ϕJg ≈ 0 ð3:5Þ

can be solved with respect to some of the multi-
pliers uI.

(d) Lead to an inconsistency. This case emerges if the
action of the system has no extremum; i.e., the Euler-
Lagrange equations are incompatible.

In the case (b), where secondary constraints emerge, the
initial physical space defined by ϕI ≈ 0 has to be further
restricted by any additional secondary constraint ψI ≈ 0,
with I the index counting the number of second class
constraints. Of course the consistency condition _ψI ≈ 0
also has to be imposed for each of the secondary con-
straints, which may lead in its turn to any of the four
previously described possibilities. If the system is consis-
tent, after a finite number of steps, we arrive at a situation
where the process closes without the emergence of any new
secondary constraints.4

After having calculated all the constraints of our theory,
a very important distinction takes place. We split them into
first and second class. The first class constraints are defined
as those that commute at least weakly through the Poisson
bracket with all the rest of the constraints, while on the
other hand the second class are those that do not.5 We
decide to make the following distinction and denote first
class constraints with the subindexes “f” and “s” respec-
tively. We have thus the primary constraints ϕI split into the
subsets ϕIf and ϕIs depending on whether they are first or
second class respectively. The different indexes If and Is
indicate that each one runs in the range of the cardinality of
each subclass. By making the same distinction for the

3Formally, a weak equality for a quantity ϕI ≈ 0 means that it
is zero itself but its gradient (in phase space) is not. This is why it
is important not to put ϕI equal to zero inside Poisson brackets,
since the latter produce terms involving ∂ϕI∂qi and

∂ϕI∂pi
which are the

components of the aforementioned gradient.

4Here we use the term secondary to describe all constraints that
are not primary, irrespectively of the number of times the
eventuality (b) may emerge.

5In the process of making this distinction, a linear rearrange-
ment of the constraints might be necessary so that we obtain the
maximum number of first class constraints that are present in the
given system.
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second class constraints we can divide ψI into ψIf
and ψIs

again depending on if they are first or second class.
In the end we can write the Hamiltonian of the system

from (3.3) as

H ¼ Hc þ uIfϕIf þ uIsϕIs ; ð3:6Þ

where uIf is the subset of the functions uI in (3.3) that remain
arbitrary due to the fact that the ϕIf , being first class,
commute with all the rest of the constraints. The uIs are
those of the uI which have been obtained in terms of q and p
from (3.5). The latter coefficients can bewritten explicitly, if
we put all the second class constraints in one set denoted by
ζΓ ¼ ðϕIs ;ψIs

Þ, where the capital Greek letter Γ runs as an
index through the combined range of Is and Is. We can now
define the invertiblematrix as (note that the number of second
class constraints is always even [42])

CΓΔ ¼ fζΓ; ζΔg: ð3:7Þ

Then, Eqs. (3.5) lead to

uIs ¼ −ðC−1ÞIsΓfζΓ; Hcg ð3:8aÞ

ðC−1ÞΓΔfζΔ; Hcg ≈ 0; ð3:8bÞ

where C−1 is the inverse of the matrix (3.7), i.e.,
ðC−1ÞΓΔCΔΘ ¼ δΓΘ, with δ denoting the usual Kronecker
delta. Finally, with the help of (3.8)—and by using the fact
that any second degree expression in the constraints is
strongly zero—the dynamical evolution of any quantity
Aðt; q; pÞ is given by

_A¼∂A
∂t þfA;Hg

¼∂A
∂t þfA;HcgþuIffA;ϕIfg−fA;ζΓgðC−1ÞΓΔfζΔ;Hcg:

ð3:9Þ

The first class constraints are usually related to some existing
gauge freedom in the problem under consideration, while the
second class constraints simply denote redundant degrees of
freedom.
In the case of the geodesic system, as we are going to see

next, the procedure leads to a situation described purely by
first class constraints. However, the introduction of a gauge
fixing condition as a supplementary constraint turns the
existing primary first class constraint into a second class. In
systems where second class constraints are present the
dynamical evolution can be given with the help of the Dirac
bracket which is defined as

f; gD ¼ f; g − f; ζΓgðΔ−1ÞΓΔfζΔ; g: ð3:10Þ

If one has only second class primary constraints, the
evolution in time of a quantity Aðt; q; pÞ reads

_A ¼ ∂A
∂t þ fA;HcgD: ð3:11Þ

What is more, due to the fact that fA; ζΓgD ≡ 0, the
distinction between a weak and a strong equality for the
second class constraints is no longer necessary, thus
allowing the elimination of the overabundant degrees of
freedom. Apart from the aforementioned textbooks, for
further discussions on the Dirac brackets we refer
to [47,48].
Those are all the theoretical tools we need at our

disposal. We may now proceed and put them in practice
for the general geodesic Lagrangian under consideration.

B. Hamiltonian description for the geodesic problem

We can straightforwardly observe that the Lagrangians
which wewant to study, namely L2 and L3, are constrained.

The Hessian matrices ∂2L2∂ _xμ∂ _xν of the first and Wij ¼ ∂2L3∂ _qi∂ _qj of
the second [where qi ¼ ðxμ; NÞ, i; j ¼ 1;…; dþ 1] have
zero determinants. We already discussed that the L2 system
has an identically zero Hamiltonian. Hence, we concentrate
our attention on the Lagrangian L3.
By following the Dirac-Bergmann prescription, which

we described in the previous subsection, we first have to
identify the constraints of the system, that is the relations
among momenta and positions that do not involve veloc-
ities. For L3 we can immediately see that such a constraint
is the relation

pN ¼ ∂L3

∂ _N
¼ 0; ð3:12Þ

which is zero due to the fact that, in L3, there is no velocity
for the d.o.f. qdþ1 ¼ N. The above is the primary constraint
of the system and is denoted as pN ≈ 0.6 We can also note
that this is the only primary constraint since the rank of the
Wij matrix is R ¼ d ¼ dimðgμνÞ; of course we assume that
the metric gμν in (2.5) is invertible. According to the
discussion of the previous section we expect D − R in
number primary constraints, which in this case is
D − R ¼ dþ 1 − d ¼ 1. We can now proceed by writing
down the Hamiltonian which is

6Here we can immediately see why the notion of a weak
equality is important. Obviously, the derivative of pN with respect
to itself is not zero and thus its gradient in phase space is not
vanishing. So, it would be erroneous to set pN equal to zero
before Poisson brackets are calculated. It is correct to write
fN;pNg ¼ 1, but it wrong to set fN;pNg ¼ fN; 0g ¼ 0.
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H ¼ pi _vi − L3 ¼ pN
_N þ pμ _qμ − L3

¼ N
2
ðgμνpμpν þ 1Þ þ pNuN; ð3:13Þ

where we decided to write _N ¼ uN . In comparison to
relation (3.3) of the previous section we observe that the
canonical Hamiltonian corresponds to the first part of
(3.13), while the primary constraint ϕ1 ¼ pN appears with
a multiplier in the Hamiltonian.
We now need to satisfy the consistency condition (3.4),

that the constraint is preserved (at least weakly) through the
time evolution. As we discussed the system cannot leave
the constrained surface, which is identified as the physical
space. Hence, we need to demand

_pN ≈ 0 ⇒ fpN;Hg ≈ 0 ⇒ −ðgμνpμpν þ 1Þ ≈ 0: ð3:14Þ

The quantity

H ≔ gμνpμpν þ 1 ≈ 0 ð3:15Þ

is the secondary constraint (in the general formulation of
the previous section ψ1 ¼ H), whose conservancy through
time does not lead to any tertiary constraints since

_H ¼ fH; Hg ¼ 0: ð3:16Þ

The process terminates here andwe obtainHamiltonian (3.13)
as a linear combination of constraints. The latter are both
categorized as first class constraints7 since fpN;Hg ¼ 0. Due
to this, the multiplier uN remains an arbitrary function whose
value is not determined by the evolution of the system.
The notion of weak equality in constrained systems

allows us to extend what we may consider as a conserved
charge in phase space. Kuchař was the first to introduce
what we call a conditional symmetry [49]. This is defined
as a quantity, linear in the momenta, which is conserved
due to the Hamiltonian constraint (for more recent appli-
cations of quantities which are conserved on the con-
strained surface see [18,50]). Assume thatQðx; pÞ is such a
quantity; then if

fQ;Hg ¼ ω̃ðxÞH; ð3:17Þ

where ω̃ is some function of the configuration space
variables, then this Q has the property of being conserved
on the constrained surface, i.e., dQdτ ≈ 0. Obviously dQ

dτ ≈ 0 is

less restrictive than dQ
dτ ¼ 0

8; thus in constrained systems

you may have a larger symmetry group than what is
encountered in classical regular systems.
In the case of a geodesic problem, which is described by

(2.5) and in phase space by (3.13), the consideration of a
quantityQ ¼ ξαðxÞpα implies the property (3.17) if the ξα’s
form the components of a Killing vector field of metric gμν
[for ω̃ ¼ 0 in (3.17)]. The same is also true for higher order
symmetries constructed out of Killing tensors of gμν, as it is
well known in the literature. So, we see that—in terms of a
geodesic problem—there is no difference between the
regular system (2.1) and the geodesic systems (2.2) and
(2.5) in regards to these particular types of symmetries. Of
course, in the case where one considers null geodesics this
group expands and conformal Killing tensors or vectors can
be used to construct local conserved charges. The latter
property of null geodesics was used recently in the
realization of a conserved charge out of the scaling
symmetry of the Kepler system [51]. In regards to our
study, and the motion of a massive particle, we shall
immediately see that we can find additional symmetries if
we try to extend the original notion of a conditional
symmetry as introduced by Kuchař.
To that end, let us consider a quantity

I ¼ ξαðxÞpα þ AðτÞ ð3:18Þ
which involves a part containing an explicit dependence on
time. The demand that its time derivative vanish weakly
leads to

dI
dτ

≈0⇒
dI
dτ

¼NωðxÞH⇒
dA
dτ

þfξαðxÞpα;Hg¼NωðxÞH:

ð3:19Þ
In the right-hand side we have chosen to substitute the zero
in the weak equality with an expression linear in the
quadratic constraint.9 If ξ is a conformal Killing vector
of the metric gμν with conformal factor 2ωðxÞ, i.e.,
Lξgμν ¼ 2ωgμν, where L denotes the Lie derivative, then
we obtain

dA
dτ

¼ NðτÞωðxðτÞÞ: ð3:20Þ

Hence, if the quantity AðτÞ is such that

AðτÞ ¼
Z

Nωdτ; ð3:21Þ

then I of (3.18) will be conserved on the constrained
surface. As a result, for every conformal Killing vector ξ of
gμν with conformal factor 2ω we have a conserved quantity
which in general has the nonlocal form [18]

7Remember that a first class constraint is one that commutes
(at least weakly) with all the rest of the constraints.

8If we see (3.17) as a partial differential equation for Qðx; pÞ,
then fQ;Hg ¼ 0 is the corresponding homogeneous equation.
The solution of the latter is of course contained in the general
solution of (3.17).

9Given the quantities of the left-hand side this is the only
possibility for the right-hand side.
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I ¼ ξαðxÞpα þ
Z

Nωdτ; ð3:22Þ

due to involving a part that is a time integral of functions of
phase space variables. Of course, when ξ is a Killing vector
field (ω ¼ 0), we have the usual local conserved charge that
is just linear in the momenta.
Such a conserved charge like (3.22) defines an additional

supplementary equation that holds on mass shell, I ¼ 0.10

It can be argued that such an equation is of no great use due
to being an integrodifferential equation. However, we have
to note that up to this point we have not exploited the
freedom of fixing the gauge. If we choose the gauge in such
a manner so that N ¼ 1

ω, then Eq. (3.22) leads to the first
order differential equation (after the momenta are expressed
in terms of velocities pα ≡ 1

N gμα _x
μ)

ξαðxÞpα þ τ þ c ¼ 0; ð3:23Þ

where c is a constant of integration. The latter, without any
loss of generality, can be set to zero since it can be absorbed
with a transformation τ → τ − c. Note that this equation is
necessarily functionally independent from any other first
order relation constructed by local conserved charges (or
the one given by the constraint itselfH ¼ 0) since τ appears
explicitly in it. Equation (3.23) can be used in order to
obtain the solution of the system, because it supplies us
with the information that, in the gauge N ¼ 1

ω, the combi-
nation ωðxðτÞÞξαðxðτÞÞ_xαðτÞ is equal to −τ.
Another way to exploit an integral of motion like (3.22)

is to parametrize the einbein field as N ¼ _hðτÞ
ω . This leads

I into becoming

I ¼ ξαðxÞpα þ hðτÞ þ c ¼ 0: ð3:24Þ

Once more we may set c ¼ 0, due to the freedom of
selecting at will the function h, hðτÞ → hðτÞ − c (in all
other dynamic relations only _h appears). Relation (3.24)
can be solved algebraically with respect to hðτÞ and we still
have intact the freedom of fixing the gauge by choosing one
of the degrees of freedom as an explicit function of τ.
In [52] it was shown that conformal Killing vectors and

tensors produce integrals of motion as functions of position
and momenta, i.e., I ¼ Iðx; pÞ for a massless particle. Here
we see that this is true also for the massive case, with the
difference that it is necessary to allow for an explicit
dependence on time I ¼ Iðτ; x; pÞ leading to the nonlocal
expression seen in (3.22).

IV. INTEGRABILITY IN TERMS OF THE
NONLOCAL CONSERVED CHARGE

In this section we want to study how the presence of a
nonlocal charge may affect the notion of integrability. We
saw in the previous section that such quantities possess an
explicit dependence on time in terms of an integral of phase
space functions. In regular systems, when we encounter
time dependence in the Hamiltonian and in integrals of
motion, we can consider time as a d.o.f. and thus extend the
phase space dimension by two. This enhancement in the
degrees of freedom does not affect integrability, because it
is counterbalanced by the fact that the Hamiltonian—which
previously was not conserved—now becomes an integral of
motion.
Let us apply the procedure described above to the

singular system under consideration. We assume the
Hamiltonian

H ¼ N
2
Hþ uNpN; ð4:1Þ

where H ¼ K þ 1 ¼ gμνpμpν þ 1 ≈ 0 and pN ≈ 0 are the
first class constraints of the theory. Additionally, we
consider an integral of motion that is linear in the momenta
and is of the form

I1 ¼ ξα1pα þ
Z

N
Ω1

dτ ¼ Q1 þ
Z

N
Ω1

dτ ð4:2Þ

given that fQ1; Hg ¼ N
Ω1ðqðτÞÞK holds. We introduce the

gauge fixing condition

χ ¼ N − Ω1ðτÞ ≈ 0 ð4:3Þ

as an additional constraint for the theory and wewrite a new
Hamiltonian

H̄ ¼ H þ uχχ: ð4:4Þ

We have to add here that we could also choose to consider
the gauge fixing condition (4.3) as χ ¼ N −Ω1ðqÞ ≈ 0, i.e.,
treat theΩ1 as a function of q. This leads to the same results
with the only difference being the in-between determined
values of uχ and uN in the process. The procedure that we
follow here is the simpler one. The constraints pN and χ are
now second class, since fpN; χg ¼ −1, while H ≈ 0
remains first class, i.e., fH; pNg ¼ fH; χg ¼ 0. The func-
tions uN and uχ can be evaluated through the consistency
conditions [see Eq. (3.4)]:

_χ ≈ 0 ⇒ − _Ω1 þ fχ; H̄g ≈ 0 ⇒ uN ≈ _Ω1 ð4:5Þ

_pN ≈0⇒ fpN;H̄g≈0⇒−
1

2
H−uχ ≈0⇒ uχ ≈0: ð4:6Þ

10Note that you do not need to consider I ¼ const: ≠ 0
because expression (3.22) involves an indefinite integral which
already entails an arbitrary constant of integration.
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The matrix CΓΔ, Γ, Δ ¼ 1, 2 defined in (3.7) with the help
of the Poisson bracket of the second class constraints is
[remember that in our case ζΓ ¼ ðpN; χÞ]

C ¼
�
0 −1
1 0

�
: ð4:7Þ

With these results the Hamiltonian (4.4) now reads

H̄ ¼ 1

2
NHþ _Ω1pN; ð4:8Þ

while for the integral of motion (4.2) we obtain (by
absorbing the constant of integration in τ)

I1 ¼ Q1 þ τ: ð4:9Þ

We now add to the phase space two more dimensions by
considering τ corresponding to a dynamical d.o.f. and
consider the Hamiltonian

H̃ ¼ pτ þ H̄ ¼ pτ þ
N
2
Hþ _Ω1ðτÞpN: ð4:10Þ

We notice that the following relations hold:

fI1; H̃g ≈H ≈ 0 ð4:11aÞ

fH; H̃g ¼ 0 ð4:11bÞ

fI1;Hg ¼ 2

Ω1

K ≠ 0: ð4:11cÞ

With the aid of the second class constraints pN ≈ 0, χ ≈ 0
we define the Dirac brackets as

fF;GgD ¼ fF;Gg − fF; pNgfχ; Gg þ fF; χgfpN;Gg:
ð4:12Þ

This definition is straightforward from (3.10) with the use
of the inverse of the matrix CΓΔ as given in (4.7). With the
help of (4.12) we can see that, concerning the Poisson
brackets (4.11), nothing changes:

fI1; H̃gD ¼ fI1; H̃g ≈ 0 ð4:13Þ

fH; H̃gD ¼ fH; H̃g ¼ 0 ð4:14Þ

fI1;HgD ¼ fI1;Hg ≠ 0: ð4:15Þ

For the above relations use has been made of the fact that
fI1; pNg ¼ fI1; χg ¼ 0, together with the property of H
being first class.
We can now see the difference in comparison to the regular

case of nonautonomous systems where the Hamiltonian is

not originally conserved. If we had considered a regular
system of d degrees of freedom, we would need, in order to
claim Liouville integrability, d independent and commuting
integrals of motion. By extending the phase space when we
make time a d.o.f., wewould trivially obtain theHamiltonian
as an extra (commutingwith all the others) integral ofmotion
to cover for the extra dimension added to the problem. This is
not the case for a singular system describing a geodesic
problem. In the latter it is possible to have integrals ofmotion
possessing an explicit time dependencewith theHamiltonian
already being autonomous. Thismeans thatwhenyou extend
the phase space adding time as a d.o.f. you do not gain an
extra integral of motion in terms of the Hamiltonian. The
latter was already conserved before this extension (as being
weakly zero). What is more, the Hamiltonian constraint H
does not commute with I1. Hence, if in such a system you
have d − 1 independent autonomous commuting integrals of
motion (considering the Hamiltonian constraint as one of
them), then the existence of an integral ofmotion like I1 is not
sufficient to characterize the system as Liouville integrable.
However, more than one integral of this type, like I1, may
exist, leading us to consider the system as—in principle—
integrable. Tomake all of the above clearer, let us express it in
terms of a two-dimensional geodesic problem.
As we said, in a regular two-dimensional system that is

Liouville integrable, we have two independent integrals of
motion that commute with each other. The extension of
considering τ as a d.o.f. (in the case where there is an
explicit time dependence) would result in a holonomic
Hamiltonian that automatically provides us with an addi-
tional third integral of motion for the 2þ 1 system. In the
constrained case if we start from two integrals of motion
one of which has an explicit time dependence and the other
being already the Hamiltonian constraint (which is autono-
mous), the advancement to 2þ 1 dimensions does not offer
us a trivial integral of motion like in the regular case. We
have three integrals of motion I1, H and H̃; two of which,
I1 and H, by definition do not commute. However, in two
dimensions, we are not restricted to have only one I1. We
may as well choose (out of infinite possibilities) a second
integral of motion linear in the momenta

I2 ¼ ξα2pα þ
Z

N
Ω2

dτ ¼ Q2 þ
Z

N
Ω2

dτ ð4:16Þ

with fQ2; Hg ¼ N
Ω2ðqÞK and satisfying the property

fQ1; Q2g ¼ 0. After the imposition of the gauge fixing
condition (4.3) the above expression reads

I2 ¼ Q2 þ
Z

Ω1

Ω2

dτ ¼ Q2 þ fðτÞ ð4:17Þ

and we obtain

DIMAKIS, TERZIS, and CHRISTODOULAKIS PHYS. REV. D 99, 104061 (2019)

104061-8



fI2; H̃gD ¼ fI2; H̃g ¼ _f þ N
Ω2

K ≈
Ω1

Ω2

H ≈ 0: ð4:18Þ

As a result we can find two I1, I2 that together with the
Hamiltonian H̃ form a Poisson algebra that satisfies

fI1; I2g ¼ 0; fIi; H̃g ≈ 0; i ¼ 1; 2: ð4:19Þ

The existence of I2 with this property is trivial in two
dimensions but the practical problem that appears is that in
order to know its explicit dependence on τ, i.e., the
functional form of fðτÞ, one should already be aware of
the solution of the system. Hence, one could in this sense
characterize every two-dimensional surface as locally
integrable (given of course any necessary smoothness
conditions over the metric), since at least two such
commuting integrals are guaranteed to exist. Notice that
this result is not in violation of known theorems setting
topological obstructions to the integrability of two-surfaces
[53,54], since those theorems take into account quantities
that are strictly functions of positions and momenta,
without any possible explicit dependence on time.
Returning to our current considerations however, we

may observe that the second integral I2 is practically of
little use in search of a solution for the system, due to the
fact that you cannot turn both of them into local expressions
at the same time with a single gauge fixing condition.
Nevertheless, the reduction of the two dimensional geo-
desic problem to a first order differential equation is always
possible; it is presented in the following section. For a
categorization of Noetherian symmetries for generic
motion of a point particle in two-dimensional surfaces
we refer the reader to [55].

V. THE REDUCTION OF THE
TWO-DIMENSIONAL SYSTEM

We consider the general two-dimensional metric

gμν ¼ fðx; yÞ
�
0 1

1 0

�
ð5:1Þ

with an arbitrary function fðx; yÞ and the local coordinates
on the manifold being denoted with x and y. Even though
we assume gμν to be in the form of (5.1), we do not restrict
our analysis to pseudo-Riemannian spaces. A Riemannian
metric can be written as in (5.1) with the help of a complex
transformation. Thus, in what follows the variables x, y
could very well be complex. Only in the particular
examples that we study in the next section shall we assume
in general real values for the variables.
Of course, we try to treat the problem in its full generality

on an arbitrary two-dimensional surface, not necessarily on
one with which we can associate an integral of motion
commuting strongly with the Hamiltonian; that is, fðx; yÞ is
not necessarily a function such that gμν possesses Killing

vector fields or tensors. However, for any function fðx; yÞ
we know that gμν has an infinite number of conformal
Killing vectors. Let us choose a rather simple one, namely
ξ ¼ ∂

∂x, which has the conformal factor ∂xf
f , i.e.,

Lξgμν ¼
∂xfðx; yÞ
fðx; yÞ gμν: ð5:2Þ

We write the Lagrangian associated to the geodesic
problem on (5.1) as [in comparison to (2.5) we consider
here xμ ¼ ðx; yÞ]

L3 ¼
1

N
fðx; yÞ_x _y−N

2
ð5:3Þ

with the corresponding equations of motion

fðx; yÞ _x _y
N2

þ 1

2
¼ 0 ð5:4aÞ

fðx; yÞÿþ ∂yfðx; yÞ_y2 − fðx; yÞ
_N
N

_y ¼ 0 ð5:4bÞ

fðx; yÞẍþ ∂xfðx; yÞ_x2 − fðx; yÞ
_N
N

_x ¼ 0; ð5:4cÞ

the first of which is the constraint equation of the system.
It can be easily verified that the quantity

I ¼ ξμ
∂L3

∂ _xμ þ
Z

N
2

∂xfðx; yÞ
fðx; yÞ dτ

¼ fðx; yÞ
N

_yþ
Z

N
2

∂xfðx; yÞ
fðx; yÞ dτ ð5:5Þ

is conserved modulo equations (5.4) [it is necessary to
consider also (5.4a) because—as we said in the previous
section—these are quantities that are conserved on the
constraint surface]. We already have a first order relation on
our hands, Eq. (5.4a), which is nothing but the weakly zero
Hamiltonian expressed in velocity phase space variables.
Let us now construct an additional first order differential
equation out of I ¼ 0.
Let us parametrize the function N in the following

manner:

N ¼ 2fðx; yÞ
∂xfðx; yÞ

d
dτ

hðx; yÞ ð5:6Þ

where h is some unknown function of xðτÞ and yðτÞ. Of
course here we have to exclude from the following analysis
the possibility ∂xfðx; yÞ ¼ 0, i.e., the flat space fðx; yÞ ¼
constant and fðx; yÞ ¼ fðyÞ. In the second case the same
analysis can be repeated by taking the conformal Killing
vector η ¼ ∂y instead of ξ ¼ ∂x. The equation I ¼ 0 then
becomes
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_y∂xf
2ð_x∂xhþ _y∂yhÞ

þ h ¼ 0: ð5:7Þ

This is our extra first order differential equation in which
we still have the freedom of choosing a particular form for
hðx; yÞ to reparametrize N and fix the gauge by choosing
one of the degrees of freedom to be some function of time.
By solving (5.7) with respect to _y, substituting into the
constraint equation (5.4a), and using (5.6) we obtain a
quasilinear first order partial differential equation for
hðx; yÞ:

f∂xh − 2h2∂yh − h∂xf ¼ 0: ð5:8Þ

Clearly if we choose the parametrization function in
such a manner so that (5.8) holds identically we will
have the constraint equation automatically satisfied.
From the theory of partial differential equations we know
that the parametric solution of (5.8) is given by the
characteristics

dxðsÞ
ds

¼ fðxðsÞ; yðsÞÞ; dyðsÞ
ds

¼ −2hðsÞ2;
dhðsÞ
ds

¼ hðsÞ∂xfðxðsÞ; yðsÞÞ: ð5:9Þ

Given smooth enough conditions on fðx; yÞ the above
system always has a solution (at least locally). It may
happen however that this solution is not unique. Each
choice satisfying (5.8) sets a particular gauge condition for
which the solution of the full system holds.
Since both functions f and h are arbitrary at this point, it

is easier to go the other way around and parametrize
function f with respect to h so that (5.8) is satisfied. This
leads to

fðx; yÞ ¼ −2hðx; yÞ
�Z

∂yhðx; yÞdxþ h1ðyÞ
�

ð5:10Þ

with hðx; yÞ remaining arbitrary and h1ðyÞ the integration
function due to the presence of an indefinite integral.
With the help of (5.6), (5.7) and (5.10) the original

system (5.4) is expressed as

N ¼ 2hðx; yÞ_x ð5:11aÞ

_y
_x
¼ hðx; yÞR ∂yhðx; yÞdxþ h1ðyÞ

: ð5:11bÞ

It seems that there is some arbitrariness residing in the form
of h1ðyÞ in the denominator of (5.11b), and of course in the
right-hand side of (5.10). But this is not so. In reality this
“arbitrariness” can be lifted and h1ðyÞ can be determined
algebraically by demanding that the given fðx; yÞ satisfy

(5.10) for any hðx; yÞ solving (5.8). We shall see exactly
how this works in the examples that follow in the next
section. It can be easily verified that relations (5.11) satisfy
(5.4). We want to notice that we are essentially left with
only a single first order equation, namely (5.11b), since we
can consider (5.11a) as merely prescribing N. Either of x or
y may serve in (5.11b) as the time variable, thus fixing the
gauge. For every function hðx; yÞ, corresponding to a
conformal factor fðx; yÞ, relations (5.11) provide the
solution of the system. In particular problems however,
the function fðx; yÞ is known, so in order to make use of
(5.11) one needs to determine the corresponding function
hðx; yÞ. In the following section we study a few examples
of such cases, but first we shall demonstrate by means of a
counterexample that this reduction is not the effect of some
point symmetry.

A. The reduction as not the effect
of a point symmetry

The reduction of the system, through the nonlocal
conserved charge, to the first order equation (5.11b) is
not trivial and it can take place for every smooth enough
function fðx; yÞ, even though the corresponding hðx; yÞ
might be difficult to find. We want to show that this
property is not connected to a possible existence of some
Lie-point symmetry. It can be easily verified that there exist
functions fðx; yÞ for which no Lie-point symmetry is
present for the system. However, the reduction to
(5.11b) is in principle always possible due to the existence
of the nonlocal conserved charge and of the solution (5.10)
of (5.8).
In order to demonstrate this fact we can follow the

subsequent procedure: solve the constraint equation (5.4a)
with respect to the auxiliary d.o.f. N and substitute into the
two equations (5.4b) and (5.4c). Then, we see that the latter
become a single second order equation involving two
degrees of freedom xðτÞ and yðτÞ. The gauge freedom of
the system allows us to consider one of the two as time. Let
us choose xðτÞ ¼ τ; then this equation reads

ÿ ¼ _y
fðτ; yÞ ð∂τfðτ; yÞ − _y∂yfðτ; yÞÞ: ð5:12Þ

The existence of a Lie-point symmetry of (5.12) that would
lead to the reduction to a first order equation now depends
on the function fðx; yÞ [or fðτ; yÞ in its gauge fixed version
x ¼ τ]. We are not going to expatiate upon the theory
of point symmetries, for which we refer the reader to the
well-known textbooks [56,57]. We just confine ourselves
to say that in order for a point symmetry generator X ¼
ηðτ; yÞ∂τ þ ϕðτ; yÞ∂y to exist for Eq. (5.12), the following
system of linear partial differential equations must have
some solution:
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∂y;yη −
∂yf∂yη

f
¼ 0 ð5:13aÞ

∂τ;τϕ −
∂τf∂tϕ

f
¼ 0 ð5:13bÞ

2∂τf∂yηþ
∂yfðη∂τf þ ϕ∂yfÞ

f
− η∂τ;yf − ∂yf∂yϕ

− ϕ∂y;yf − fð∂y;yϕ − 2∂τ;yηÞ ¼ 0 ð5:13cÞ

∂τf∂τη −
∂τfðη∂τf þ ϕ∂yfÞ

f
þ η∂τ;τf − 2∂yf∂τϕ

þ ϕ∂τ;yf − fð2∂τ;yϕ − ∂τ;τηÞ ¼ 0 ð5:13dÞ

with respect to ηðτ; yÞ and ϕðτ; yÞ. The function fðτ; yÞ is
considered known. It can be seen that (5.13) does not have a
solution for every possible fðτ; yÞ that one may consider.
For example, if we assume a two-dimensional surface
having fðx; yÞ ¼ exyðxþyÞ, the system (5.13) leads to an
incompatibility. Hence, no Lie-point symmetry exists. On
the other hand, the reduction to (5.11b) is achieved for an
arbitrary function hðx; yÞ and thus fðx; yÞ. As a result, we
see that the aforementioned reduction is not related to a
point symmetry and the nonlocal conserved charges offer a
new nonconventional way of simplifying a dynamical
system. In the following section we are going to study
several examples making use of this property for the
geodesic equations on two-dimensional surfaces.

VI. SIMPLE EXAMPLES OF
TWO-DIMENSIONAL SYSTEMS

In this section we examine a few examples, starting from
a trivially simple and moving on to more complicated ones.

A. Example 1: The flat space

In order to demonstrate how the above considerations
work, let us consider e.g., the trivial case

fðx; yÞ ¼ x; ð6:1Þ

which results in a two-dimensional flat space.
Equation (5.8) implies that hðx; yÞ is any function for which

F

�
hðx; yÞ

x
; hðx; yÞ2 þ y

�
¼ 0; ð6:2Þ

where F is some function of its arguments. The important
thing in order to obtain the general solution for the
geodesics is to involve both branches. Let us take the
simpler possibility, the linear combination

F ¼ c1
hðx; yÞ

x
þ c2ðhðx; yÞ2 þ yÞ ¼ 0 ð6:3Þ

where c1, c2 are constants. Obviously, the solution of the
above equation depends on one constant because we can
reparametrize c1 ¼ 2κ1c2 and divide by c2. Notice that the
constant c2, unlike c1, cannot be zero because it would lead
to hðx; yÞ ¼ 0 which is excluded from our analysis. Thus,
we obtain from (6.3)

hðx; yÞ ¼ −κ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
x

: ð6:4Þ

At this point the system (5.11) implies

N ¼ 2_xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
− κ1Þ

x
ð6:5Þ

_y
_x
¼ 2yð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
− κ1Þ

xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
− 2yh1ðyÞÞ

ð6:6Þ

where h1ðyÞ is some function of integration whose explicit
dependence can be found algebraically by demanding that
(5.10) hold for fðx; yÞ ¼ x. Substitution of the latter and of
(6.4) in (5.10) leads to

x ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
− κ1Þð2yh1ðyÞ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p
Þ

xy
⇒

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − x2y

p ∓ κ1Þ
xy

ðκ1 þ 2yh1ðyÞÞ ¼ 0;

which implies h1ðyÞ ¼ − κ1
2y, thus fixing the function h1ðyÞ

appearing in (5.10). Now Eq. (6.6) can be straightforwardly
integrated. In the gauge xðτÞ ¼ τ we may express the final
result as

NðτÞ ¼ −2κ2τ ð6:7Þ

yðτÞ ¼ κ2ð2κ1 − κ2τ
2Þ ð6:8Þ

which is the general solution of the geodesic equations in
this gauge. It can easily be seen that a different choice of a
function F in place of (6.3) results essentially in the same
solution with a different parametrization in what regards the
constants of integration.

B. Example 2: Space of constant Ricci scalar

If we choose

fðx; yÞ ¼ −
4

Rðxþ yÞ2 ; ð6:9Þ

where R ¼ const we have a space of constant scalar
curvature, R. Of course we can normalize the constant
to be plus or minus one, but in order to deal at the same time
with both cases we just leave it as it is. For this choice of
fðx; yÞ, Eq. (5.8) assumes the form
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h2∂yh −
2

Rðxþ yÞ2 ∂xh −
4

Rðxþ yÞ3 h ¼ 0: ð6:10Þ

The general solution to this equation is given by those
functions hðx; yÞ for which

F

�
Rðxþ yÞ2hðx; yÞ2 − 2

ðxþ yÞ2hðx; yÞ ;
Rxðxþ yÞ2hðx; yÞ2 þ 2y
Rðxþ yÞ2hðx; yÞ2 − 2

�
¼ 0:

ð6:11Þ

We choose the following combination including both
branches of the solution:

F ¼ 2κ1

�
Rðxþ yÞ2hðx; yÞ2 − 2

ðxþ yÞ2hðx; yÞ
�−1

þ
�
Rxðxþ yÞ2hðx; yÞ2 þ 2y
Rðxþ yÞ2hðx; yÞ2 − 2

�
¼ 0; ð6:12Þ

where κ1 is a constant introduced in the same manner as in
the previous example. Equation (6.12) results in

hðx;yÞ¼−
κ1
Rx

�½ðxþyÞ2ðκ21ðxþyÞ2−2RxyÞ�1=2
RxðxþyÞ2 : ð6:13Þ

Use of the latter together with (6.9) inside (5.10) leads to
the determination of the integration function h1ðyÞ which is

h1ðyÞ ¼ −
κ1
Ry

: ð6:14Þ

The set (5.11) becomes

N¼−2_x
�
κ1
Rx

∓ ½ðxþyÞ2ðκ21ðxþyÞ2−2RxyÞ�1=2
RxðxþyÞ2

�
ð6:15Þ

_y
_x
¼ κ21ðxþyÞ2−Rxy∓ κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþyÞ2ðκ21ðxþyÞ2−2RxyÞ

p
Rx2

:

ð6:16Þ

The last equation can be easily integrated to give

y� ¼ κ22Rx ∓ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21κ

2
2ð2κ21 − RÞðκ22 − x2Þ2

p
2κ21κ

2
2 þ ðR − 2κ21Þx2

: ð6:17Þ

We have to note here that the y� solution results for each of
the two plus and minus equations (6.16) corresponding to
each of (6.13), creating a totality of four combinations.
Depending on the range of the parameters κ1, κ2, R and the
variable x the combination that represents the solution of
the system changes. The solution is extracted in an arbitrary
gauge; we can easily set xðτÞ as some explicit function of
the time parameter τ in (6.15) and (6.16) and have the

trajectories expressed with respect to that specific
parameter.
To compare with what we know from the theory of

spherical surfaces, we may use the transformation

x ¼ cot

� ffiffiffiffi
R

p

2
ffiffiffi
2

p ϕþ 1

2
i ln

�
cot

� ffiffiffiffi
R

p

2
ffiffiffi
2

p θ

���
ð6:18aÞ

y ¼ tan

� ffiffiffiffi
R

p

2
ffiffiffi
2

p ϕ −
1

2
i ln

�
cot

� ffiffiffiffi
R

p

2
ffiffiffi
2

p θ

���
ð6:18bÞ

that makes the two-dimensional metric become

gμν ¼
�
1 0

0 sin2Θ

�
; ð6:19Þ

whereΘ ¼
ffiffiffi
R

pffiffi
2

p θ. In the gaugeN ¼ constant, and for Θ ¼ π
2
,

we expect a linear solution in ϕ. Truly, if we consider the
Lagrangian (2.5) with the metric (6.19), its Euler-Lagrange
equations become

_N
N

_Θþ R
2
sinðΘÞ cosðΘÞ _ϕ2 − Θ̈ ¼ 0 ð6:20Þ

−
_N
N

_ϕþ 2 cotðΘÞ _Θ _ϕþ ϕ̈ ¼ 0 ð6:21Þ

2

RN
_Θ2 þ sin2ðΘÞ

N
_ϕ2 þ N ¼ 0 ð6:22Þ

and it is easy to see that the configuration

N ¼ 1; Θ ¼ π

2
; ϕ ¼ iτ ð6:23Þ

is a solution. The imaginary unit in ϕ has to do with the fact
that we took the nonkinetic term in (2.5) as −N=2 with the
metric being positive definite. Had we considered þN=2
instead, the solution would be ϕ ¼ τ. However, since we
just want to see the analogy with the specific example under
consideration, we choose to keep the same−N=2 part in the
Lagrangian. From the transformation (6.18) we can verify
that this solution corresponds to

x ¼ −i coth
� ffiffiffiffi

R
p

2
ffiffiffi
2

p τ

�
; y ¼ i tanh

� ffiffiffiffi
R

p

2
ffiffiffi
2

p τ

�
: ð6:24Þ

The imaginary units again have to do with the fact that we
map a solution for a positive definite metric (6.19) to one of
a Lorentzian signature (5.1) [with fðx; yÞ given by (6.9)].
From (6.17) we notice that for the particular values κ1 ¼ 0,
κ2 ¼ 1 of the integration constants, we obtain

y ¼ 1

x
ð6:25Þ
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which we immediately see is compatible with (6.24). What
is more, if we set (6.24) back into (6.15), again for κ1 ¼ 0
and κ2 ¼ 1, we obtain N ¼ �1 as expected. Thus, we
observe that this particular result is contained in the full
solution that we managed to extract in an arbitrary gauge.

C. Example 3

Let us proceed with a less trivial system.To that end we
consider the more complicated conformal factor

fðx; yÞ ¼ −x3eyðxþ eyÞ: ð6:26Þ

It can be checked that the corresponding metric (5.1) does
not possess a Killing vector or tensor up to second order
apart from itself. In this case it is not straightforward to
integrate Eq. (5.8). However, we can see that the function
hðx; yÞ ¼ xey þ x2 is a partial solution. Thus, we can at
least recognize an integrable sector that gives us explicitly a
solution to the geodesic equations. By following the same
procedure as before Eqs. (5.11) result in [the corresponding
h1ðyÞ function, that is obtained algebraically by checking
the consistency of (5.10), is zero in this case]

NðτÞ ¼ 2τ2ðc1τ − 1Þ ð6:27aÞ

xðτÞ ¼ τ ð6:27bÞ

yðτÞ ¼ ln

�
τ2
�
c1 −

2

τ

��
; ð6:27cÞ

with c1 being the constant of integration. It can be seen that
solution (6.27), together with x ¼ τ, satisfies the system
(5.4). The reason for having only one constant of integra-
tion in this solution, instead of two in the previous example,
is because we used a partial solution hðx; yÞ of (5.8) and not
the more general solution that exists. However, even though
the system does not have an autonomous integral of motion
(at least up to second order), we were able to obtain a partial
solution with the help of the integration based on the
nonlocal conserved charge.
In order to demonstrate how difficult it can prove in

many cases to find solutions given in terms of elementary
functions we need only study the resulting Eq. (5.8) with
the fðx; yÞ given by (6.26). As we discussed, the hðx; yÞ ¼
xey þ x2 given above is a particular solution of (5.8). We
may notice that for the resulting equation

x3eyðxþ eyÞ ∂xh
h

þ 2h∂yh − x2eyð4xþ 3eyÞ ¼ 0; ð6:28Þ

a more general group invariant solution can be given
by introducing a new function h1ðey=xÞ if we set

hðx;yÞ¼x2ðeyx þ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðh1ðey=xÞþ1Þ

q
. Then, (6.28) reduces

to the ordinary differential equation

½ðsþ 1Þh1ðsÞ þ 1� d
ds

h1ðsÞ þ 2ðh1ðsÞ2 − 1Þ ¼ 0; ð6:29Þ

where s ¼ ey
x and where we also see why the previous

particular solution, that corresponds to h1ðsÞ ¼ 1, worked.
Of course, in order to differentiate from before, we require
hðsÞ ≠ �1. Under this condition, the solution of the above
equation can be provided algebraically by solving

κ1
ðh21−1Þ1=4þ 2F1

�
3

4
;1;

3

2
;h21

�
h1−2ðsþ1Þ¼ 0; ð6:30Þ

where κ1 is a constant of integration and 2F1 is the Gauss
hypergeometric function. Obviously, this solution cannot
be practically useful to obtain the corresponding geodesic
equations, a thing that proves still the difficulties that lie
even within the aforementioned reduction.

D. Example 4: A nonintegrable
pseudo-Euclidean Toda system

There is a lot of work dedicated to Euclidean Toda and
generalized Toda systems. The same is not true for the
pseudo-Euclidean case where the metric of the kinetic part
has aLorentzian signature.However, there exist some known
integrable cases of such systems [58]. In two dimensions a
generalized pseudo-Euclidean [g̃μν ¼ diagð−1; 1Þ] Toda
system with a two-part contribution in the potential can be
written as (we present the parametrization invariant version
of the system)

L ¼ 1

2n
g̃μνUμUν −

n
2
ða1eb

ð1Þ
μ Uμ þ a2eb

ð2Þ
μ UμÞ; ð6:31Þ

where we assume both bð1Þ and bð2Þ to be nonzero, linearly
independent vectors onR2. The conditions for such a system
to be integrable are known [58,59]; b ¼ bð1Þ − bð2Þ needs to
be an isotropic vector, i.e., bμbμ ¼ 0. In coordinates Uμ ¼
ðu; vÞ the most general potential we can write is

Vðu; vÞ ¼ a1el1uþl2v þ a2el3uþl4v; ð6:32Þ

with l1, l2, l3, l4 arbitrary constants. Here,we choose to study
a simpler version which however still does not belong to a
known integrable class. To that end we take

l1 ¼ 2ðl3 þ l4Þ − l2: ð6:33Þ

It is easy to verify that, under (6.33), the difference of
the two vectors, bμ ¼ ðl2 − l3 − 2l4; l2 − l4Þ, is nonzero and
orthogonal to itself only if l3 ¼ −l4 or l3 ¼ 2l2 − 3l4. These
are the values that correspond to the known integrable class.
We shall refrain for such an assumption and consider l2, l3
and l4 as completely arbitrary. Hence, we deal with a pure
nonintegrable case.
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In order to use the expression we proved in the
previous section, we perform the reparametrization n ↦
N ¼ nVðu; vÞ and at the same time we adopt the coordinate
transformation

u ¼ x − yffiffiffi
2

p ; v ¼ xþ yffiffiffi
2

p ; ð6:34Þ

so that the Lagrangian (6.31) becomes (5.3) with

fðx; yÞ ¼ a1e
ffiffi
2

p ððl3þl4Þxþyðl2−l3−l4ÞÞ þ a2e
ðl3þl4Þxþðl4−l3ÞyðtÞffiffi

2
p

:

ð6:35Þ

Once more it is not trivial to integrate (5.8), to find the
corresponding hðx; yÞ. However, a partial solution can be
easily derived and it has the form

hðx; yÞ ¼
�

a1ðl3 þ l4Þ
2ðl3 þ l4 − l2Þ

�
1=2

e
ðl3þl4Þxðl2−l3−l4Þyffiffi

2
p

: ð6:36Þ

Now, (5.11) can be written as

N ¼
�
2

a1ðl3 þ l4Þ
ðl3 þ l4 − l2Þ

�
1=2

e
ðl3þl4Þxðl2−l3−l4Þyffiffi

2
p

_x ð6:37aÞ

_y
_x
¼
�

l2
l3þl4

−1−
�
2ðl3þl4−l2Þ
a1ðl3þl4Þ

�
1=2

e−
l2yðtÞþðl3þl4Þðx−yÞffiffi

2
p

h1ðyÞ
�
−1
:

ð6:37bÞ

Substitution of (6.36) and (6.35) into (5.10) results in the
algebraic determination of the integration function h1ðyÞ
which reads

h1ðyÞ ¼ a2

�
l3 þ l4 − l2
2a1ðl3 þ l4Þ

�
1=2

e−
ðl2−2l4Þyffiffi

2
p

: ð6:38Þ

It is more convenient now to integrate (6.37b) with respect
to xðτÞ which results in

xðτÞ ¼
ffiffiffi
2

p

l3 þ l4
ln

�
c1 þ

a2ðl3 þ l4 − l2Þ
a1ð3l2 − 2ðl3 þ 2l4ÞÞ

e
ð2l3þ4l4−3l2ÞyðτÞffiffi

2
p

�

þ l2 − l3 − l4
l3 þ l4

yðτÞ: ð6:39Þ

Finally, we can express the solution in the gauge
yðτÞ ¼ τ as

NðτÞ ¼ −
�
l3 þ l4 − l2
a1l3 þ l4

�
1=2

� ffiffiffi
2

p
a2ðl3 þ 3l4 − 2l2Þe−

ðl2−2l4Þτffiffi
2

p

ð2l3 þ 4l4 − 3l2Þ

þ c1e
ffiffi
2

p ðl2−l3−l4Þτ
�

ð6:40Þ

xðτÞ ¼
ffiffiffi
2

p

l3 þ l4
ln

�
c1 þ

a2ðl3 þ l4 − l2Þ
a1ð3l2 − 2ðl3 þ 2l4ÞÞ

e
ð2l3þ4l4−3l2Þτffiffi

2
p

�

þ l2 − l3 − l4
l3 þ l4

τ ð6:41Þ

yðτÞ ¼ τ: ð6:42Þ

As we see, the solution entails one integration constant, that
is owed to the fact that we were able to only determine a
partial solution of (5.8). Nevertheless, we managed—with
the use of a nonlocal conserved charge—to extract a partial
solution in terms of elementary functions for the equivalent
geodesic problem of a system which originally does not
belong in a known integrable class.

VII. CONCLUSION

In this work we studied the system of geodesic equations
in its full form. By keeping the parametrization invariance
intact, we defined nonlocal conserved charges in phase
space with the help of conformal Killing vectors of the
manifold metric. These quantities are conserved modulo
the constraint equation of motion. This is why the gauge
invariance of the system is important for their realization.
Due to the fact that these integrals of motion possess an
explicit time dependence we considered time as a dynami-
cal variable and extended accordingly the Hamiltonian
function, so as to examine the effect of such conserved
quantities in the integrability of the system.
Due to the fact that two-dimensional surfaces have an

infinite number of conformal Killing vectors, it can be
shown that in principle there exist enough commuting
conserved quantities in phase space, so as to characterize
the system as Liouville integrable. The drawback is,
however, that one cannot know the explicit dependence
in time for all these rheonomic integrals of motion. This
practically means that the explicit transformation to the
action angle variables cannot be known. Even so, we
demonstrated that the corresponding system can always
be reduced to a single first order differential equation.
The latter is the effect of the existing nonlocal charges and
not of an underlying Lie-point symmetry, since it was done
for an arbitrary surface. We studied some particular
examples in order to demonstrate how this method works:
from flat space to a generalized pseudo-Euclidean Toda
system that does not belong to a known integrable class
and which we associated to a corresponding geodesic
problem.
Apart from geodesic problems, these nonlocal conserved

charges can be used in more general parametrization
invariant Lagrangians involving a potential function.
This has been done in cosmological problems in order
to derive new solutions [60] as well as more recently to
prove the integrability of the mixmaster model [61].
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As happens with conventional point symmetries—
corresponding to Killing vectors for a geodesic problem—
which can be generalized to symmetries involving Killing
tensors, the same can be done with the nonlocal conserved
charges. We can write in a similar manner the conserved
charge [62]

I ¼ Ξκα1…αnpκpα1…pαn þ
Z

Nωα1…αnpα1…pαndτ; ð7:1Þ

which is of nþ 1 order in the momenta and constructed out
of conformal Killing tensors

∇ðμΞνα1…αnÞ ¼ωðα1…αngμνÞ ð7:2Þ

of the manifold metric gμν. Again we see how for Killing
tensors (7.1) reduces to the usual local expression
Ξκα1…αnpκpα1 . The nonlocal part, involving the integral of

phase space quantities, can be considered as a pure function
of the time variable on the solution of the system. There is of
course the issue of the possible existence of a solution so that
this integral makes sense. This is a matter of considering a
smooth enough metric, so that the relevant existence theo-
rems of ordinary differential equations can guarantee this fact
for the geodesic system.
In all, we have observed that the parametrization

invariance, when present, can be exploited in such a manner
so as to gain an insight into the integration of the system of
equations at hand. Given specific gauge choices, like e.g.,
(4.3) in (4.2), an additional first order relation of the form
ξαpα þ τ ¼ 0 can be obtained to be used together with the
equations of motion. Due to its rheonomic nature it is
independent of other first order relations provided by
autonomous integrals of motion. Thus, the opportune
strategy is not to fix the gauge of a system blindly, before
studying the symmetry structure of the problem.
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[49] K. V. Kuchař, J. Math. Phys. (N.Y.) 23, 1647 (1982).
[50] T. Igata, Prog. Theor. Exp. Phys. 2018, 063E01

(2018).
[51] P.-M. Zhang, M. Cariglia, M. Elbistan, G.W. Gibbons, and

P. A. Horvathy, Phys. Lett. B 792, 324 (2019).
[52] T. Igata, T. Koike, and H. Ishihara, Phys. Rev. D 83, 065027

(2011).
[53] V. V. Kozlov, Russ. Math. Surv. 38, 1 (1983).
[54] V. N. Kolokol’tsov, Mathematics of the USSR Izvestija 21,

291 (1983).
[55] M. Tsamparlis and A. Paliathanasis, J. Phys. A 44, 175202

(2011).
[56] H. Stephani, Differential Equations: Their Solution Using

Symmetries (Cambridge University Press, Cambridge,
England, 1989).

[57] P. J. Olver, Applications of Lie Groups to Differential
Equations, 2nd ed. (Springer-Verlag, Berlin, Heidelberg,
New York, 2000).

[58] V. R. Gavrilov and V. N. Melnikov, Theor. Math. Phys. 114,
355 (1998).

[59] V. D. Ivashchuk and V. N. Melnikov, Int. J. Mod. Phys. D
03, 795 (1994).

[60] N. Dimakis, A. Karagiorgos, A. Zampeli, A. Paliathanasis,
T. Christodoulakis, and Petros A. Terzis, Phys. Rev. D 93,
123518 (2016).

[61] N. Dimakis, Petros A. Terzis, and T. Christodoulakis, Phys.
Rev. D 99, 023536 (2019).

[62] N. Dimakis, Petros A. Terzis, and T. Christodoulakis,
J. Phys. Conf. Ser. 670, 012021 (2016).

DIMAKIS, TERZIS, and CHRISTODOULAKIS PHYS. REV. D 99, 104061 (2019)

104061-16

https://doi.org/10.1142/S0217732316501832
https://doi.org/10.1142/S0217732316501832
https://doi.org/10.1103/PhysRevD.94.023525
https://doi.org/10.1103/PhysRevD.94.023525
https://doi.org/10.1140/epjc/s10052-017-5029-9
https://doi.org/10.1140/epjc/s10052-017-5029-9
https://doi.org/10.1007/s10509-018-3291-4
https://doi.org/10.1007/s10509-018-3291-4
https://doi.org/10.1140/epjc/s10052-018-5939-1
https://doi.org/10.3390/sym10070233
https://doi.org/10.3390/sym10070233
https://doi.org/10.4153/CJM-1950-012-1
https://doi.org/10.1098/rspa.1958.0141
https://doi.org/10.1103/PhysRev.83.1018
https://doi.org/10.1103/PhysRev.83.1018
https://doi.org/10.1063/1.1664594
https://doi.org/10.1063/1.1664594
https://doi.org/10.1063/1.528076
https://doi.org/10.1063/1.525550
https://doi.org/10.1093/ptep/pty060
https://doi.org/10.1093/ptep/pty060
https://doi.org/10.1016/j.physletb.2019.03.057
https://doi.org/10.1103/PhysRevD.83.065027
https://doi.org/10.1103/PhysRevD.83.065027
https://doi.org/10.1070/RM1983v038n01ABEH003330
https://doi.org/10.1070/IM1983v021n02ABEH001792
https://doi.org/10.1070/IM1983v021n02ABEH001792
https://doi.org/10.1088/1751-8113/44/17/175202
https://doi.org/10.1088/1751-8113/44/17/175202
https://doi.org/10.1007/BF02575448
https://doi.org/10.1007/BF02575448
https://doi.org/10.1142/S0218271894000897
https://doi.org/10.1142/S0218271894000897
https://doi.org/10.1103/PhysRevD.93.123518
https://doi.org/10.1103/PhysRevD.93.123518
https://doi.org/10.1103/PhysRevD.99.023536
https://doi.org/10.1103/PhysRevD.99.023536
https://doi.org/10.1088/1742-6596/670/1/012021

