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We show that the covariant Raychaudhuri identity describing kinematic characteristics of space-time
admits a representation involving a geometrical scalar ξ which, depending on circumstances, might be
related to, e.g., relativistic temperature or cosmological scalar field. With an appropriately chosen
spacetime deformation tensor (fixing the symmetry of a problem under consideration), such scalarization
opens a wide scope for physical applications. We consider a few such applications including dynamics of
cosmological (anti)scalar background, nonvariational deduction of the field equations, scalar and black-
hole thermodynamics and the reshaping of the Einstein equations into the Klein-Gordon equation in
thermodynamic Killing space.
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I. INTRODUCTION

Kinematical characteristics of timelike congruences
fuμg are related to the Ricci tensor Rμν via the fundamental
result of the Riemannian geometry:

Rαβuαuβ ¼ −_θ −
1

3
θ2 − 2σ2 þ 2ω2 þ _uα;α: ð1Þ

Although this expression is often referred to as the
Raychaudhuri equation (see, e.g., Hawking and Ellis [1]
and Wald [2]), in a sense, this might be considered as an
historical jargon, because in fact this expression is an
identity as it follows algebraically from the Ricci identity
and is satisfied by any metric. It is reducible to a proper
equation after substitution of the Ricci tensor with the
energy-momentum tensor in accord with the Einstein
equations. In view of this, we will refer to the expression
(1) as the Raychaudhuri identity, while the result of the
substitution of the Einstein equations for Rαβ in (1) will be
referred to as the Raychaudhuri equation. It should also be
noted that in covariant form commonly used today, the
identity (1) had been obtained by Ehlers [3], and that was
acknowledged by Raychaudhuri who referred to Ehlers’
covariant result in [4]. However, in noncovariant form
specific to Friedmannian metrics the corresponding expres-
sion for R0

0 was obtained earlier by Raychaudhuri [5];
another noncovariant form specific to stationary metrics
was considered by Landau and Lifshits [6] (for additional
historical notes, see, e.g., [7]).
In 2011, Abreu and Visser [8] had obtained the gener-

alization of (1), replacing the unit congruence uμ in this
relation with an arbitrary (timelike, spacelike, or null)

non-normalized vector field ξμ (see Eq. (49) in [8]; here
we use our notation):

Rμνξ
μξν ¼ ðξαξμ;αÞ;μ − ðξα;αξμÞ;μ þ ðξα;αÞ2

− ξðα;βÞξðα;βÞ þ ξ½α;β�ξ½α;β�: ð2Þ

The quantity Rμνξ
μξν, however, seems to be not so straight-

forward from the standpoint of physical applicability, unlike
the standard Raychaudhuri scalar Rμνuμuν ¼ ξ−2Rμνξ

μξν.
We aim at obtaining similar generalization of (1), retaining
the left side in the standard form and focusing on the most
important case of timelike congruences (as for spacelike and
null congruences, see [8,9]). Unlike in [8], our approach is
based on the following two guiding principles.
First, we employ the symmetries of the non-normalized

vector field ξμ in terms of the spacetime deformation tensor
defined as the Lie derivative of the metric tensor with
respect to the given field ξμ.
The second principle is that from the vector field ξμ ¼ ξuμ

we detach the magnitude, i.e., the scalar field ξ which might
be related to such physical variables as temperature, redshift,
etc. Such scalarization leads towhatwe call the ξ-formalism,
opening a wide scope for physical applications some of
which are illustrated in this paper. E.g.,Hawking andEllis [1]
employed the similar principle to deduce the Einstein
equations in a nonvariational way (see also below).

II. SCALARIZATION OF THE
RAYCHAUDHURI IDENTITY

A. Spacetime deformation tensor

From the definition of the Riemann curvature tensor
Rρ

μνλ specified with respect to a unit timelike congruence
uμ, uαuα ¼ 1,

*mychelkin@aphi.kz
†makukov@aphi.kz

PHYSICAL REVIEW D 99, 104055 (2019)

2470-0010=2019=99(10)=104055(10) 104055-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.104055&domain=pdf&date_stamp=2019-05-23
https://doi.org/10.1103/PhysRevD.99.104055
https://doi.org/10.1103/PhysRevD.99.104055
https://doi.org/10.1103/PhysRevD.99.104055
https://doi.org/10.1103/PhysRevD.99.104055


uμ;νλ − uμ;λν ¼ uαRαμνλ; ð3Þ

one obtains the Raychaudhuri identity in its primary
minimal form, i.e., without the decomposition of the term
uα;βuβ;α into irreducible parts [9]:

Rαβuαuβ ¼ uα;βαuβ − uα;αβuβ

¼ uα;βαuβ − _θ

¼ _uα;α − uα;βuβ;α − _θ: ð4Þ

Here, θ ¼ uα;α is expansion, and overdot denotes proper

time derivative _ðÞ≡ ðÞ;αuα ≡ uα∇α.
The relation (3) is a particular case of a more general

Ricci identity specified with respect to an arbitrary vector
field ξμ, the magnitude of which might be represented as a
geometrical scalar field ξ:

ξμ;νλ − ξμ;λν ¼ ξαRαμνλ;

where in the timelike case ξμ ¼ ξuμ. Contraction over the
indices μ and λ yields:

Rανξ
α ¼ ξRανuα ¼ ξλ;νλ − ξλ;λν: ð5Þ

The right side of (5) might now be expressed through the
so-called spacetime deformation tensor

Dμν ≔ Lξgμν ¼ ξμ;ν þ ξν;μ ¼ 2ξuðμ;νÞ þ 2ξ;ðμuνÞ; ð6Þ

defined as the Lie derivative of the metric tensor with
respect to the given vector field ξμ. The advantage of
employing such tensor is that it provides a flexible tool to
treat various symmetries of spacetime under consideration.
From (6) it follows that:

ξλ;νλ ¼ Dλ
ν;λ −□ξν; □ξν ≡ ξν

;λ
;λ; ð7Þ

and

Dα
α ¼ 2ξα;α ⇒ ξλ;λν ¼

1

2
Dλ

λ;ν: ð8Þ

Then, substituting (7) and (8) into (5), we get

ξRανuα ¼ −
1

2
Dα

α;ν þDλ
ν;λ −□ξν ¼ fν −□ðξuνÞ; ð9Þ

where the new object fν might be called the deformation
vector:

fν ≡Dα
ν;α −

1

2
Dα

α;ν: ð10Þ

Written in terms of the scalar ξ and the unit congruence uμ,
it has the following form:

fμ ¼ ξ;μνuν þ ξuν;μν þ ξ;νuν;μ þ 2ξ;νuμ;ν

þ uμ□ξþ ξ□uμ − _ξ;μ − ξθ;μ;

and thus

fαuα ¼ ξuβuα;βα þ□ξþ ξuα□uα − ξ_θ: ð11Þ

So, we have derived basic relations of the ξ-formalism to
start with.

B. Primary form

Now, projecting (9) onto uμ-congruence again, and
separating out the term Rμνuμuν, we obtain

Rμνuμuν ¼ ξ−1fνuν − ξ−1uν□ðξuνÞ
¼ ξ−1fνuν − ξ−1□ξ − uν□uν:

It might be shown that

uν□uν ¼ −uα;βuα;β; ð12Þ

and so we ultimately have the following primary form of
the scalarized Raychaudhuri identity:

Rαβuαuβ ¼ −ξ−1□ξþ ξ−1fαuα þ uα;βuα;β: ð13Þ

As opposed to (4), this expression functionally relates the
time-time projection of the Ricci tensor not only to the
congruence uμ, but also to the geometrical scalar ξ and,
implicitly, to the deformation tensor Dμν which, in general,
might be chosen independently as a subsidiary condition.

C. Decomposed form

Next, we employ the decomposition

uα;βuβ;α ¼ uα;βuα;β − 4ω2 − _uα _uα ð14Þ

following from the known expressions

uα;β ¼ ωαβ þ σαβ þ
1

3
θhαβ þ _uαuβ

and

uα;βuβ;α ¼
1

3
θ2 þ 2σ2 − 2ω2; ð15Þ

with vorticity ω and shear σ defined by

ω2 ¼ 1

2
ωαβω

αβ; ωμν ¼ hμαhνβu½α;β�
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and

σ2 ¼ 1

2
σαβσ

αβ; σμν ¼ hμαhνβuðα;βÞ −
1

3
θhμν;

correspondingly. Here, hμν ¼ gμν − uμuν is the projector
operator. Then, as is known, the traditional Raychaudhuri
identity might be recast from its primary form (4) into
decomposed form (1). In the same manner, applying (14)
and (15), the scalarized Raychaudhuri identity might be
cast from the primary form (13) into the decomposed form:

Rαβuαuβ ¼ −ξ−1□ξþ ξ−1fαuα þ 2ω2

þ _uα _uα þ
1

3
θ2 þ 2σ2: ð16Þ

Note that here the sign of the last two terms differs from
that in (1). This is due to the first two terms which are
absent in (1). After expressing the second term via the
definition (11), and using (12), (14) and (15), the for-
mula (16) might be reduced to (1).

III. COMPARISON WITH THE
ABREU-VISSER RESULT

Here we prove that our scalarized version of the
Raychaudhuri identity (13) is equivalent to the Abreu and
Visser version (2) with a timelike non-normalized congru-
ence. This might be shown by reducing both expressions to
the same form. Thus, substituting (11) into (13) and taking
into account (12) one arrives at the standard (normalized)
Raychaudhuri identity (4). Now, consider the Abreu-Visser
version and substitute ξμ ¼ ξuμ. Then the first three terms on
the right in (2) become, correspondingly:

ðξαξμ;αÞ;μ ¼ _ξ2 þ 3ξξ;α _uα þ ξuαuβξ;αβ þ ξ_ξθ

þ ξ2uα;βuβ;α þ ξ2uαuβ ;αβ;

−ðξα;αξμÞ;μ ¼ −_ξ2 − ξ_ξ;αuα − 3ξ_ξθ − ξ2θ2 − ξ2 _θ;

ðξα;αÞ2 ¼ ð_ξþ ξθÞ2 ¼ _ξ2 þ 2ξ_ξθ þ ξ2θ2;

while the last two terms in (2) together yield

−ξðα;βÞξðα;βÞ þ ξ½α;β�ξ½α;β� ¼ −_ξ2 − 2ξξ;α _uα − ξ2uα;βuβ;α:

Summing up and taking into account that _ξ;αuα ¼
ðξβuβÞ;αuα ¼ ξ;αβuαuβ þ ξ;α _uα, we have instead of (2):

ξ2Rμνuμuν ¼ ξ2uαuβ ;αβ − ξ2 _θ;

which is the same as (4), Q.E.D.
In fact, all versions of the Raychaudhuri identity—

normalized (standard), non-normalized and scalarized—
are mathematically equivalent because their left side is
(or might be) represented as the same Raychaudhury scalar

Rμνuμuν, so that expressions on the right can always be
transformed one into another. The essential difference is
only in how certain symmetries of congruences and metrics
under consideration enter functionally into each of these
versions.
In particular, in the Killing case Dμν ¼ 0 and we have

fμ ¼ 0, uα;β ¼ − _uαuβ (here _uα is four-acceleration), and so
the scalarized Raychaudhuri identity (13) reduces to

Rαβuαuβ ¼ −ξ−1□ξþ uα;βuα;β: ð17Þ

Abreu and Visser had found analogous expression in the
following form (with ξμ being the Killing vector):

Rαβξ
αξβ ¼ ∇αðξβ∇βξ

αÞ þ ξ½α;β�ξ½α;β� ð18Þ

(see Formula (52) in [8]). To prove equivalence of (17) and
(18), it may be shown that the first term on the right side of
(18) is reducible to

∇αðξβ∇βξ
αÞ ¼ −ξ□ξ − ξ;αξ

;α;

while the second term is

ξ½α;β�ξ½α;β� ¼ ξα;βξ
½α;β� ¼ 3

2
ξ;αξ

;α þ ξ2uα;βu½α;β�

¼ 3

2
ξ;αξ

;α þ ξ2uα;βuα;β − ξ2uα;βuðα;βÞ

¼ 3

2
ξ;αξ

;α þ ξ2uα;βuα;β −
1

2
ξ;αξ

;α

¼ ξ;αξ
;α þ ξ2uα;βuα;β;

and so their sum, taking into account that the left side of
(18) is Rαβξ

αξβ ¼ ξ2Rαβuαuβ, yields (17). Q.E.D.

IV. TYPICAL CHOICES OF THE DEFORMATION
TENSOR

The Killing, four-conformal, space-conformal or time-
conformal symmetries are defined as follows:

Killing∶ Dμν ¼ ξμ;ν þ ξν;μ ¼ 0; ð19aÞ

four-conf∶ Dμν ¼ ξμ;ν þ ξν;μ ¼ 2ΦðxλÞgμν; ð19bÞ

space-conf∶ Dμν ¼ ξμ;ν þ ξν;μ ¼ 2ΨðxλÞhμν; ð19cÞ

time-conf∶ Dμν ¼ ξμ;ν þ ξν;μ ¼ 2ΞðxλÞuμuν; ð19dÞ

The four-conformal symmetry implies Φ ¼ Ψ ¼ Ξ,
since 2Φgμν ≡ 2ϕðhμν þ uμuνÞ ¼ 2Φhμν þ 2Φuμuν, pro-

vided that ξðbÞμ ¼ ξðcÞμ þ ξðdÞμ , where the upper index indi-
cates corresponding equation in (19).
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The conformal factor 2Φ in (19b) should not be confused
with the factor Ω2 in the conformal transformation
g̃μν ¼ Ω2gμν. Substituting g̃μν and gμν into (19b), it might
be shown that these factors are related by (see, e.g., [10]):

Φ ¼ ξα∇αΩ
Ω

¼ ξ
_Ω
Ω
: ð20Þ

Each of the expressions in (19) might be included into the
primary form of the Raychaudhuri identity (13) with
corresponding deformation vector fα (10). As a result,
we obtain four identities functionally differing only in the
last term on the right:

Rαβuαuβ¼−ξ−1□ξþuα;βuα;β;

Rαβuαuβ¼−ξ−1□ξþuα;βuα;β−2ξ−1uα∇αΦ;

Rαβuαuβ¼−ξ−1□ξþuα;βuα;β−ξ−1ð2Ψθþ3uα∇αΨÞ;
Rαβuαuβ¼−ξ−1□ξþuα;βuα;βþξ−1ð2Ξθþuα∇αΞÞ: ð21Þ

So, for Ξ ≠ Ψ the space-conformal and time-conformal
cases might be considered as independent. The idea of
selective action of conformal transformations on submani-
folds of a Riemannian manifold had been evolved in a
number of works—see, e.g., [11] and, in form-covariant
manner, [12]. The peculiarity of the cases (c) and (d) is that
the conformal weight of physical quantities under consid-
eration is defined by the power of length dimensionality
for (c) and of time dimensionality for (d).
In some cases, apart from (19b), one might consider the

conformal optical metric (see, e.g., [13]) in the definition of
the deformation tensor:

optical-conformal∶ Dμν ¼ ξμ;ν þ ξν;μ ¼ 2Φ̄ðxλÞḡμν;

with ḡμν ¼ gμν − ð1 − n−2Þuμuν, where n is the effective
refraction index of the medium under consideration. Such
approach had been developed with application to systems
with spontaneous creation/annihilation of particles [14],
which also might lead to the symmetry of the type (19c), as
shown in [15].

V. COSMOLOGICAL APPLICATIONS

We seek for the simplest natural prolongation of the
minimal antiscalar field (which is well-justified by obser-
vations; for details on antiscalarity see [16]) to massive
field at cosmological scales. To this end, consider the
energy-momentum tensor of a cosmological scalar field
with nonzero mass-term and negative Λ-term:

Tsc
μν −

1

8π
Λgμν

¼ 1

4π

�
ϕ;μϕ;ν −

1

2
gμνðϕ;αϕ

;α −m2ϕ2Þ
�
−

1

8π
Λgμν:

The choice of the negative sign for the cosmological term is
justified below. Then, from the field equations in scalar
(upper signs) and antiscalar (lower signs) regimes, Gμν ¼
�8πTsc

μν − Λgμν, we obtain:

Rμν ¼ �2ϕμϕν ∓ m2ϕ2gμν þ Λgμν;

and so it is necessary to satisfy the system represented by
the Raychaudhuri equation,

Rμνuμuν ¼ �2 _ϕ2 ∓ m2ϕ2 þ Λ; ð22Þ

and the Klein-Gordon equation,

□ϕþm2ϕ ¼ 1ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp
gμα∂αϕÞ

∂xμ þm2ϕ ¼ 0: ð23Þ

In general, solving the system (22)–(23) is rather difficult.
However, there exist important cosmological solutions in
the Friedmanian-type metrics

ds2 ¼ dt2 − eFðtÞðdr2 þ r2dΩ2Þ; ð24Þ

which we consider next.

A. Scalar solution

We solve directly the Einstein-Klein-Gordon system in
scalar regime with negative Λ-term, i.e., forGμν ¼ 8πTsc

μν −
Λgμν together with (23). Then, writing the equations for
G0

0 and G1
1 in the metric (24) we get, correspondingly:

3

4
_F2 ¼ _ϕ2 þm2ϕ2 − Λ ð25Þ

and

3

4
_F2 þ F̈ ¼ − _ϕ2 þm2ϕ2 − Λ: ð26Þ

The difference of the two is F̈ ¼ −2 _ϕ2. Adopting the
Papapetrou ansatz that metric dependence on coordinates
enters only through ϕ, i.e., gμνðxαÞ ¼ gμνðϕðxαÞÞ [17], we
seek for solutions in the following form:

FðtÞ ¼ −ϕ2ðtÞ; ð27Þ

from which we get _F ¼ −2ϕ _ϕ and F̈ ¼ −2 _ϕ2 − 2ϕϕ̈.
To avoid contradiction with (25) and (26) one should pose
ϕ̈ ¼ 0, implying that ϕ is a linear function of t. Then the
system (25), (26) reduces to a single equation,

_ϕ2 ¼ m2ðϕ2 − Λ
m2Þ

3ðϕ2 − 1
3
Þ : ð28Þ
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It might be shown that in general this equation might be
solved in terms of elliptic integrals. However, the required
linearity of ϕðtÞmight be satisfied only under the following
integrability condition:

Λ ¼ m2

3
; ð29Þ

yielding (up to the sign)

ϕ ¼ mffiffiffi
3

p ðt − t0Þ ¼
ffiffiffiffi
Λ

p
ðt − t0Þ: ð30Þ

The resulting square of mass in (29) is found to be m2 ¼
3Λ ≈ 3 × 10−56 cm−2 or m ≈ 10−33 eV. The real (positive)
character of the relation (29) corresponds to our choice of
the negative sign for theΛ-term (cf. [18], where the positive
Λ-term yields negative square of mass).
Thus, (24) proves to be the Gaussian metric

ds2 ¼ dt2 − e−Λðt−t0Þ2ðdr2 þ r2dΩ2Þ ð31Þ

which may be considered as a fundamental cosmological
solution appropriate for the description of dark energy
background [19].
Finally, we check the compatibility of the Einstein

equations with the Klein-Gordon equation in the metric
(24) under the subsidiary condition ϕ̈ ¼ 0:

□ϕþm2ϕ ¼ 3

2
_F _ϕþm2ϕ ¼ 0:

This yields 3 _ϕ2 ¼ m2, as it should according to (30).

B. Antiscalar solution

Analogous calculation for antiscalar case, Gμν ¼
−8πTsc

μν − Λgμν, implying the replacement ϕ → iϕ [16]
and so leading to the ansatz

F ¼ ϕ2 ð32Þ

instead of (27), yields the same solution (31) under the
condition ϕ̈ ¼ 0, as well as compatibility with the corre-
sponding Klein-Gordon equation.
Alternatively, working directly with the Raychaudhuri

equation and using the metric (24) with antiscalar ansatz
(32) in comoving frame (uμ ¼ δμ0=

ffiffiffiffiffiffi
g00

p
) we obtain:

Rμνuμuν ¼ −3ð _ϕ2 þ ϕ2 _ϕ2 þ ϕϕ̈Þ: ð33Þ

Substituting this into (22) and taking into account that in
this case again ϕ̈ ¼ 0, we finally get:

_ϕ2 þ 3 _ϕ2ϕ2 þm2ϕ2 þ Λ ¼ 0;

which might be rewritten as

_ϕ2 ¼ −
m2ðϕ2 þ Λ

m2Þ
3ðϕ2 þ 1

3
Þ :

Under the conditions (29) and (32), this yields the solution
with antiscalar (effectively imaginary) potential

ϕ ¼ i
mffiffiffi
3

p ðt − t0Þ ¼ i
ffiffiffiffi
Λ

p
ðt − t0Þ; ð34Þ

and, correspondingly, again the Gaussian metric (31). As it
should be, the antiscalar Klein-Gordon equation in the
metric (24) with the condition (32),

ð□þm2Þϕ ¼ ð3 _ϕ2 þm2Þϕ ¼ 0;

is identically satisfied with the solution (34).
Thus, both in scalar and antiscalar regimes with negative

Λ-term we get the same cosmological solution (31) with
real-valued integrability condition (29). In a sense, such
situation is opposite to the Λ-vacuum case where de Sitter
and anti–de Sitter metrics represent topologically different
solutions. However, in static case only antiscalar regime
admits the solution (the Papapetrou metric) which proves to
be in excellent agreement with observational data (see [16]
and Sec. VI A below).
The significance of the two examples presented above is

that due to the existence of such background (whichmight be
identifiedwith dark energy [19]) the values of theΛ-term and
of mass of (anti)scalar field mediators appear to be coupled
according to (29). Moreover, in cosmological general rela-
tivity the mass- and Λ-terms, being of the same order of
magnitude, should be included into (or excluded from) the
(anti)scalar stress-energy tensor only simultaneously.

C. Cosmological conformal symmetry

Now, we consider the obtained solution in terms of the
spacetime deformation tensor. We begin with the general
cosmological metric (24).
Rewriting the deformation tensor (19b) with partial

derivatives as

Dμν ¼ Lξgμν ¼ ξα∂αgμν þ gμα∂νξ
α þ gνα∂μξ

α ¼ 2Φgμν;

where ξμ ¼ ξuμ, with uμ ¼ δμ0=
ffiffiffiffiffiffi
g00

p
(comoving frames),

and gμν represents Friedmannian metric (24) with scale
factor eFðtÞ ¼ a2ðtÞ, we get

D00 ¼ 2_ξ ¼ 2Φ ⇒ Φ ¼ _ξ ð35Þ

and then

SCALARIZED RAYCHAUDHURI IDENTITY AND ITS … PHYS. REV. D 99, 104055 (2019)

104055-5



D11 ¼ −ξuα∂αða2Þ ¼ −2Φa2 ⇒

_ξ

ξ
¼ _a

a
¼ HðtÞ; or a ¼ ξ

ξ0
;

where ξ0 is the integration constant and HðtÞ is the Hubble
parameter. So, the expression (35) might be rewritten as

Φ ¼ ξ
_a
a
¼ ξH:

Juxtaposing this with the general relation (20) we see that
the conformal factor transforming the Minkowski space-
time into the Friedmannian one is Ω ¼ a, as it should be.
As a result, relation (19b) becomes

ξðμ;νÞ ¼ _ξgμν ¼ 2
_a
a
ξgμν;

and at the same time, the Friedmannian metric (24) acquires
the following ξ-form:

ds2 ¼ dt2 − ξ2ðtÞðdr2 þ r2dΩ2Þ:

For the Gaussian metric (31) we, evidently, have
ξ ¼ e−Λðt−t0Þ2=2.
As for conformal-type symmetries (19c) and (19d), they

prove to be incompatible with Friedmannian metrics, as
follows from direct calculations. In a more general situation
when ξ ¼ ξðt; rÞ and g00 ¼ g00ðt; rÞ (e.g., for the bounded
systems imbedded into cosmological background) the
symmetries of the types (19c) and (19d) might appear
relevant.

VI. THE KILLING SYMMETRIES

For a static scalar field, the Killing symmetries (21) in
the timelike case imply _ϕ ¼ 0. However, unlike in cosmo-
logy, finding the solutions of (22)–(23) with nonzero mass-
term represents a nontrivial task. Meanwhile, for static
(equilibrium) systems with minimal scalar field there exist
a number of interesting problems which are solvable and
might be naturally described in terms of the ξ-formalism
being developed.

A. Nonvariational Hawking-Ellis deduction of
the Einstein equations

The presented ξ-formalism is intricately related to the
Hawking-Ellis nonvariational approach to the deduction of
the Einstein equations. As a direct consequence of the
scalarized Raychaudhuri identity (17), we get:

Rαβuαuβ ¼ −ξ−1□ξþ uα;βuα;β

¼ −ξ−1□ξþ ξ−2ξ;αξ
;α

¼ −ξ−1ξ;αβðgαβ − uαuβÞ
¼ −ξ−1hαβξ;αβ:

Here we have made use of the fact that uα;βuα;β ¼ _uα _uα by
virtue of (14) and (15) for θ ¼ ω ¼ σ ¼ 0, with _uα _uα ¼
ξ−2ξ;αξ

;α due to _ξα ¼ −ξ;α (true for any Killing vector ξμ),
and also that

ξ−2ξ;αξ
;α ¼ ξ−1ξ;αβuαuβ; ð36Þ

as might be obtained from the condition ̈ξ ¼ 0. Such
scalarized representation of the Raychaudhuri identity in
final form

Rαβuαuβ ¼ −ξ−1hαβξ;αβ ð37Þ

was first derived by Hawking and Ellis [1], who also showed
that in weak-field approximation (ξ ¼ ffiffiffiffiffiffi

g00
p ≈ 1 − ϕ,

ϕ ≪ 1) the right side reduces to the Laplacian of the
Newtonian potential (which we choose positively defined).
Then, in particular, the Poisson equation of the Newtonian
gravity Δϕ ¼ −4πGρ immediately follows after equating
the Raychaudhuri scalar Rμνuμuν to matter density 4πGρ.
On the other hand, since in relativity ρ generalizes to

Tμνuμuν, this serves as an indication that there should
exist a linear connection between the Ricci tensor and the
energy-momentum tensor Tμν. This connection becomes
unique after imposing the divergencefree condition
Tμν

;ν ¼ 0. Then, applying the contracted Bianchi identity,
one arrives at the field equations Rμν − 1

2
Rgμν ¼ ϰTμν with

ϰ ¼ 8πG=c4, or simply ϰ ¼ 8π if G ¼ c ¼ 1. Thus, the
Einstein equations follow nonvariationally from the sca-
larized Raychaudhuri identity with the Killing symmetry in
weak-field approximation.
The Hawking-Ellis form (37) of the scalarized

Raychaudhuri identity is satisfied by any metric obeying
a timelike Killing symmetry. As a special application,
we envisage the static spherically symmetric Papapetrou
metric [17]

ds2 ¼ e−2ϕðrÞdt2 − e2ϕðrÞðdr2 þ r2dΩ2Þ
¼ ξ2dt2 − ξ−2ðdr2 þ r2dΩ2Þ; ð38Þ

where scalar potential and the Killing vector magnitude
are related as ξ ¼ ffiffiffiffiffiffi

g00
p ¼ e−ϕ, and so, substituting (38)

into right side of (37) we obtain:

Rμνuμuν ¼ −eφðgμν∇μ∇ν − uμuν∇μ∇νÞe−φ
¼ ϕ;α

;α ¼ Δϕ; ð39Þ
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where we have taken into account that ϕ;αϕ
;α ¼

−ϕ;αβuαuβ as a consequence of (36), and, at the last step,

that _ϕ ¼ 0. But unlike the weak-field approximation in the
Hawking-Ellis procedure, the result (39) is not an approxi-
mate but exact expression for Δϕ≡ ϕ;ijgijði; j ¼ 1; 2; 3Þ
in the metric (38).
In its turn, this metric represents the exact solution of the

Einstein equations

Rμν ¼ −8π
�
Tsc
μν −

1

2
gμνTsc

�
; ð40Þ

for the minimal scalar field energy-momentum tensor,

Tsc
μν ¼

1

4π

�
ϕ;μϕ;ν −

1

2
gμνϕ;αϕ;α

�
;

taken here in antiscalar regime Tsc
μν → −Tsc

μν [16,19].
Rewriting (40) as Rμν ¼ −2ϕμϕν we get Rμνuμuν ¼
−2 _ϕ2 ¼ 0, where the last equality is due to timelike
Killing symmetry. Thus, (39) leads to the Laplace equation
Δϕ ¼ 0 with the solution ϕ ¼ GM=r being the Newtonian
potential entering (38).
At the same time, the Raychaudhuri identity (37) in case

of antiscalar background for the metric (38) turns into zero.
In a sense, this result explains why all observational effects
predicted by antiscalar solutions prove to be so close to
their vacuum analogues [16]. On the other hand, the actual
value of (37) is in fact irrelevant; for the result obtained
only functional dependence on ξ on the right side of (37)
matters, as was already noted above (see Sec. III).

B. Antiscalar thermodynamics and BHs

Both in relativistic kinetics [20] and thermodynamics the
magnitude of timelike Killing vector ξμ ¼ ξuμ (dimensional
in this case) represents the reciprocal temperature ξ ¼
1=ðkTÞ ¼ Θ−1. Then the local equilibrium solution of the
functional Boltzmann equation being the standard covariant
Jüttner-type distribution function (with pμpμ ¼ m2c2),

fðxν; pνÞ ¼ FðxνÞe−pμξ
μc;

produces the chain of moments which, in terms of the kinetic
ξ-formalism, are written as:

fð0ÞðξÞ ¼
Z

fðxμ; pμÞdω≡Φ;

fð1ÞðξÞ ¼ −
∂
∂ξμ f

ð0Þ ¼ c
Z

pμfdω ¼ jμ;

fð2ÞðξÞ ¼ −
∂
∂ξν f

ð1Þ ¼ c2
Z

pμpνfdω ¼ cTμν; ð41Þ

etc. Here, jμ and Tμν are the number flux density and the
energy-momentum tensor, correspondingly, and dω ¼ffiffiffiffiffiffi−gp

d3p=p0 is an element of integration over momentum

space. Integration can be performed in terms of the modified
Bessel (Macdonald) functions KnðxÞ (see, e.g., [20]):

Φ ¼ 4πmF
K1ðmc2ξÞ

ξ
;

jμ ¼ 4πm2c2F
ξμK2ðmc2ξÞ

ξ2
;

Tμν ¼ 4πm3c3F

�
ξμξνK3ðmc2ξÞ

ξ3
−
gμνK2ðmc2ξÞ

mc2ξ2

�
; ð42Þ

etc., to be normalized by F ¼ nξ=ð4πm2cK2ðmc2ξÞÞ with
the number density n ¼ c−1jαuα ¼ c−1jαξα=ξ.
From (41) with jμ ¼ ncuμ we get

Tμν ¼ −
∂jμ
c∂ξν ¼ −uν

∂ðnξμ=ξÞ
∂ξ ¼ −

∂n
∂ξ uμuν −

n
ξ
hμν;

from which it follows for energy density and pressure:

ε ¼ −
∂n
∂ξ ; p ¼ n

ξ
: ð43Þ

This might be verified with (42) in terms of Bessel
functions as well. Now, applying the relations (43) to
the Gibbs equation (with s being the entropy density and q
the heat flux density),

dq ¼ ξ−1d

�
s
n

�
¼ d

�
ε

n

�
þ pd

�
1

n

�
¼ 0;

we obtain a differential equation with respect to n ¼ nðξÞ:

nn00 þ 1

ξ
nn0 − n02 ¼ 0:

Its first integral represents the barotropic equation of state:

−w
∂n
∂ξ ¼ n

ξ
⇔ p ¼ wε;

where w is a constant, and finally we get:

n ¼ Cξ−
1
w; ε ¼ C

w
ξ−ð1þ

1
wÞ; p ¼ Cξ−ð1þ

1
wÞ; ð44Þ

s
k
¼ dp

dΘ
¼ −

1

ξ2
dp
dξ

¼ C

�
1þ 1

w

�
ξ−

1
w ¼ ξðεþ pÞ; ð45Þ

where the chemical potential is taken to be zero, and
C ¼ CðwÞ is the positive integration constant with physical
dimensionality dictated by the value of w.
The Einstein equations for perfect fluid with the equation

of state p ¼ ε, i.e., w ¼ 1, can mimic minimal antiscalar
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field [16] and in static (equilibrium) case are satisfied by the
Papapetrou metric (38). Then the trace of the Einstein
equations in terms of the ξ-formalized quantities in (44) is

−R ¼ ϰðε − 3pÞ ¼ ϰC
1 − 3w

w
ξ
−ð1þ1

wÞ
0 ;

i.e., for w ¼ 1,

R ¼ 2ϰCξ−20 ; ð46Þ

where the special-relativistic invariant ξ ¼ 1=Θ is replaced
with the general-relativistic one ξ0 ¼ 1=Θ0 in conformity
with Tolman’s relation Θ0 ¼ ffiffiffiffiffiffi

g00
p Θ.

On the other hand, the Ricci scalar might be calculated
directly from the Papapetrou metric (38) as

R ¼ 2
G2M2

c4r4
exp

�
−
2GM
c2r

�
¼ 2

G2M2

c4r4
g00: ð47Þ

Equating (46) and (47), the local temperature of antiscalar
background is found to be

ξ−1 ¼ ΘðrÞ ¼ 1

2
ffiffiffiffiffiffi
2π

p
ffiffiffiffi
G
C

r
M
r2

: ð48Þ

Applying the general expression (48) to the equipotential
surface with r ¼ rg ¼ 2GM=c2 we get for the value of local
temperature Θ at this surface:

ΘðrgÞ ¼
c4

8
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffi
CG3

p 1

M
; ð49Þ

which is similar to the Hawking black hole temperature:

ΘBH ¼ kTBH ¼ ℏc3

8πG
1

M
: ð50Þ

Comparison of (49) with (50) yields the corresponding
value for C:

C ¼ Cðw ¼ 1Þ ¼ πc2

2ℏ2G
: ð51Þ

It is known that the entropy of a black hole is propor-
tional to the area of the event horizon, i.e., in Planck units,
SBH ¼ A=4. To ascertain that the found value of C is
physically relevant one can compute the entropy SðrgÞ
within the domain r ¼ rg, taking into account (51).
According to (45), for w ¼ 1 we have s ¼ 2kCξ−1, and so

SðrgÞ ¼
Z

sμdVμ ¼ 4π

Z
rg

0

sðrÞr2dr

¼ 8πCk
Z

rg

0

ξ−1ðrÞr2dr ¼ k
4πG
ℏc

M2;

where sμ ¼ suμ and dVμ ¼ uμd3V. The last result coin-
cides exactly with the mentioned value of black hole
entropy expressed in standard units:

SBH ¼ k
A
4l2

P
¼ k

πr2g
l2
P
¼ k

4πG
ℏc

M2
BH;

with A being the area of the horizon and lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
the

Planck length. So, the antiscalar thermodynamics includes
the relations of traditional black hole thermodynamics as a
particular case for r ¼ rg.
The ξ-formalism applied to thermodynamics of antisca-

lar background leads, in general, to a simpler interpretation
of thermodynamic quantities as compared to the vacuum
case. Here, the gravitational radius rg is not singled out
because all equipotential surfaces for the Papapetrou
spacetime are on equal footing, thereby filling up (ana-
lytically) all the space, and thus also making the application
of the holographic principle quite natural.

C. Einstein equations in thermodynamic
Killing space

When Jacobson [21] had found the relation between the
Einstein equations and thermodynamics he built upon the
Raychaudhuri equation for null geodesic congruence, i.e.,
in fact, employed the conformal symmetry. Here, we search
for an analogous relation in case of the timelike Killing
symmetry.
To this end, starting from the kinetic Einstein equations

Rμν −
1

2
Rgμν ¼ ϰc

Z
pμpνfdω ð52Þ

and contracting them,

−R ¼ ϰm2c3
Z

fdω≡ ϰm2c3Φ;

we find that the generating function ΦðξÞ is equal, up to a
constant factor, to the Ricci scalar taken with the negative
sign. Then, functional relations of the kinetic ξ-formalism
(41) might be geometrized as follows:

Φ ¼ −
1

ϰm2c3
R;

jμ ¼
1

ϰm2c3
∂R
∂ξμ ;

Tμν ¼ −
1

ϰm2c3
∂2R

∂ξμ∂ξν ; ð53Þ

etc. As a result, from the last relation in (53) the Einstein
equations (52) become
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−
1

m2c4
∂2R

∂ξμ∂ξν ¼ Rμν −
1

2
Rgμν; ð54Þ

with ξμ ¼ ξuμ, ξμ;ν þ ξν;μ ¼ 0, see (19a). Transforming the
left side of this expression,

∂2R
∂ξμ∂ξν ¼

ξμ
ξ

∂
∂ξ

�
ξν

ξ

∂R
∂ξ

�
¼ ∂2R

∂ξ2 uμuν þ
1

ξ

∂R
∂ξ hμν;

and contracting (54) with gμν, we get the equation known in
the theory of cylindric functions:

∂2R
∂ξ2 þ 3

ξ

∂R
∂ξ ¼ m2c4R: ð55Þ

The left side in this expression represents d’Alembertian
of a spherically symmetric function RðξÞ in the tangent
4-dimensional thermodynamic ξ-space. Thus, (55) proves
to be equivalent to the Klein-Gordon equation (with
negative mass-square) defined on this Killing space:

�
□
ξ
−m2c4

�
R ¼ 0; ð56Þ

with □
ξ
¼ ∂2

∂ðξ0Þ2 −
∂2

∂ðξ1Þ2 −
∂2

∂ðξ2Þ2 −
∂2

∂ðξ3Þ2 written in Cartesian

coordinates. Conversely, if, in accord with (23), we rewrite
(56) in pseudospherical coordinates in ξ-Minkowski space
(analogue of the Milne metric in the usual space-time),

ds2ξ ¼ dξ2 − ξ2ðχ2 þ sinh2χdΩ2Þ;

with ξ ¼ ξμuμ ¼ ξ0, then we return to (55).
So, applying the geometrized kinetic ξ-formalism (53) we

have performed the transfiguration of the Einstein equa-
tions (52) into the thermodynamic “ξ-Gordon” equation (56).
Its operator has the dimensionality of energy squared, unlike
the standard Klein-Gordon operator ð□þ m2c2

ℏ2 Þ with the
dimension of ðlengthÞ−2.

The solution of (55) with the boundary conditions
RðξÞ ¼ 0 and ∂R=∂ξ ¼ 0 at ξ → ∞ (zero temperature)
leads to the Ricci scalar for a system under consideration as
a function of ξ (and, consequently, of temperature):

R ¼ const
K1ðmc2ξÞ

ξ
:

As it should, it coincides, up to the factor (−ϰm2c3), with
the generating function Φ, thereby reproducing all the
chain of moments in the kinetic ξ-formalism.

VII. CONCLUSION

The scalarization of the Raychaudhuri identity allows
us to develop the ξ-formalism employing underlying
symmetries (generally speaking, homeomorphisms) in
terms of the spacetime deformation tensor. This presents
an additional means to study not only usual kinematical
characteristics of timelike congruences but also physically
relevant symmetries of metrics under consideration, as we
have illustrated, in particular, for some problems in
cosmology (evolution of scalar vs antiscalar background)
and in general relativistic thermodynamics. In the latter
case, the absence of horizon in antiscalar solutions
represents a fundamental physical difference from the
traditional black hole thermodynamics; nevertheless, the
final results, if evaluated for equipotential surfaces at
the horizon scale, prove to be the same. In a broader
context, the transformation of kinetic Einstein’s equations
into the “ξ-Gordon” equation in thermodynamic Killing
space is in line with the general idea that the Einstein
equations and thermodynamics appear to be intricately
connected.
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