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Using the inverse scattering method to solve the five-dimensional vacuum Einstein equations, we
construct an asymptotically flat four-soliton solution as a stationary and biaxisymmetric solution. We
impose certain boundary conditions on this solution so that it includes a rotating black hole whose horizon-
cross section is topologically a lens space of Lð2; 1Þ. The solution has nine parameters but three only are
physically independent due to the constraint equations. The remaining degrees of freedom correspond to
the mass and two independent angular momenta of the black hole. We analyze a few simple cases in detail,
in particular, the static case with two zero-angular momenta and the stationary case with a single nonzero
angular momentum.
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I. INTRODUCTION

The studies on higher-dimensional black hole solutions
to Einstein’s equations have played roles in the microscopic
derivation of Bekenstein-Hawking entropy [1], and the
realistic black hole production at an accelerator in the
scenario of large extra dimensions [2]. Despite two decades
of research and development in techniques of solution
generation, our understanding of higher dimensional black
holes is still not enough. The topology theorem for a
stationary black hole generalized to five dimensions [3–6]
states that the topology of the spatial cross section of the
event horizon must be either a sphere S3, a ring S1 × S2 or
lens spaces Lðp; qÞ (p, q: coprime integers), if the
spacetime is asymptotically flat and admits two commuting
axial Killing vector fields which also commutes a sta-
tionary timelike Killing vector. As for the first two
topologies, the exact solutions to vacuum Einstein’s equa-
tions [7–10] have already been found. In contrast, a regular
vacuum black hole solution with the horizon of lens space
topology has been difficult to find in spite of a few trials,
since the resultant solutions always suffer from naked
singularities.

The inverse scattering method (ISM) is known as one of
the most useful tools to obtain exact solutions of Einstein
equations with D − 2 Killing isometries (D: spacetime
dimension). In this method, new solutions with the same
isometries can be systematically obtained by the soliton
transformation from a certain known simple solution, which
is often called seed. In general, the direct application of the
original method formulated by Belinski and Zakharov
[11–13] to higher dimensions yields singular solutions but
Pomeransky modified the ISM so that it can generate regular
solutions even in higher dimensions [14]. Remarkably,
combined with the rod structure [15] mentioned below, it
has achieved a great success so far, concerned with, in
particular, five-dimensional vacuum black hole solutions.
The first example of the generation of black hole solutions by
the modified ISM is the rederivation of the five-dimensional
Myers-Perry black hole solution [14]. Thereafter, the S2-
rotating black ring was rederived [16] by the ISM from the
Minkowski seed (this solution was first derived in
Refs. [17,18] independently), but it turned out that the
generation of the S1 rotating black ring has a more delicate
problem on how to choose the seed, since a facile choice of
the seed always results in the generation of a singular
solution. The suitable seed to derive the black ring with
the S1 rotation was first considered in [19,20]. Subsequently,
the regular black ring solution with both of S1 and S2

rotations was constructed by Pomerasnky and Sen’kov [10].
When one constructs a stationary and biaxisymmetric

vacuum solution in five dimensions, it is useful to combine
ISM with the rod structure, which was first introduced by
Harmark [15], based on the earlier work for static solutions
[21], since it was mathematically shown that asymptotically
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flat black hole solutions are uniquely characterized by their
mass, two angular momenta and rod structures [3]. The
metric possessing three mutually commuting Killing vector
fields admits a canonical form, inwhich theEinstein equation
reduces to a differential equation for a 3 × 3matrix living in a
three-dimensional flat space. In the three-dimensional flat
space where cylindrical coordinates ðρ; z;φÞ are introduced,
the sources for the metric consist of thin rods lying on the z
axis. Each rod has a direction,which is specified by the three-
dimensional rod vector lying in the space spanned by the
Killing vectors. The set of the intervals of the rods and their
directions is referred to as rod structure.
Using the ISM, a few authors attempted to construct

asymptotically flat black lens solutions to the five-
dimensional vacuum Einstein equations. First, Evslin
[22] attempted to construct a static black lens with the lens
space topology of Lðn2 þ 1; 1Þ but found that curvature
singularities cannot be eliminated, whereas both conical and
orbifold singularities can be removed. Subsequently, Chen
and Teo [23] constructed a black lens solution with the
horizon topology of Lðn; 1Þ ¼ S3=Zn by the ISM but
observed that it must have either conical singularities or
naked curvature singularities. Thus, the major obstacle in
constructing a black lens solution is always suffering from
naked singularities. However, the sudden breakthrough in
this line has come from supersymmetric solutions. Based on
the well-known framework of the construction for super-
symmetric solutions in the bosonic sector of five-dimen-
sional minimal supergravity developed by Gauntlett et al.
[24], Kundhuri and Lucietti [25] succeeded in the derivation
of the first regular exact solution of an asymptotically flat
black lens with the horizon topology of Lð2; 1Þ ¼ S3=Z2.
This solution was subsequently generalized to the more
general supersymmetric black lenswith the horizon topology
Lðn; 1Þ ¼ S2=Znðn ≥ 3Þ in the same theory [26].
The supersymmetric solutions provide us various useful

information on the corresponding vacuum solutions when
we do not yet know them. In particular, the discovery of the
supersymmetric black lens solutions [25,26] gives us a nice
guideline for understanding the rod structure of unfound
regular vacuum black lens solutions. From now, for
simplicity, we consider the vacuum solution with the
horizon of the special lens space topology Lð2; 1Þ.
Figure 1 shows the rod diagram of the Kunduri-
Lucietti’s supersymmetric black lens in [25], where the
horizon rod is drawn as a point because the supersymmetric
black hole has a degenerate horizon. On the contrary, Chen
and Teo in [23] considered the black lens with the rod
structure displayed in Fig. 2, though this solution has
conical singularities on z ∈ ½z3; z4�.1 The main difference

between these rod diagrams except the shapes of the
horizon rods lines in the signatures of the third component
of the rod vectors (0; 2;�1) on ½z3; z4�. In this paper, we
consider to construct the vacuum solution of a black lens
with the combined rod diagram displayed in Fig. 3 where
the rod vector on ½z3; z4� in Fig. 2 is replaced with one
in Fig. 1.
To this end, using the Pomeransky’s ISM for the five-

dimensional vacuum Einstein equation, we construct a
four-soliton solution by regarding the singular solution
with a diagonal metric as a seed (see Fig. 4 on the rod
diagram), which is the same as one used for the con-
struction of the black ring solution. In order to obtain a
black lens solution of physical interest, we impose suitable
boundary conditions at infinity, on the horizon, on a
symmetry of axis as follows: (i) Infinity must be such that
the spacetime is asymptotically flat. (ii) The horizon
corresponds to a smooth null surface, whose spatial cross
section has a topology of the lens space Lð2; 1Þ ¼ S3=Z2.
(iii) On the axis, there appear no curvature singularities, no
conical singularities, no Dirac-Misner strings, and besides,
orbifold singularities at isolated points must be eliminated.
There indeed exist the parameter regions where all these
boundary conditions are satisfied, however, it seems to be
considerably hard to deal with the four-soliton itself owing
to the rather complex metric and five constraints on the
parameters. For this reason, when we study the physical
properties of the solution, we restrict ourselves to a few
simple cases, a case with a single angular momentum and a
static case. As shown later, as for the black lens with a
single angular momentum, there exist unavoidable naked

FIG. 1. The rod diagram of the Kunduri-Lucietti’s supersym-
metric black lens with the horizon topology of Lð2; 1Þ ¼ S3=Z2.

FIG. 2. The rod diagram of the Chen-Teo’s solution with the
horizon topology of Lð2; 1Þ ¼ S3=Z2.

1More precisely, this has two branches: one has conical
singularities only on the axis, whereas the other has curvature
singularities on the surface surrounding the point z ¼ z4. Here we
consider the former case.
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closed timelike curves (CTCs) surrounding the nut z ¼ z4
outside the horizon, even if all of the (conical, curvature,
and orbifold) singularities and Dirac-Misner strings can be
removed at these boundaries. For the static case, there are
two branches, though there necessarily exist conical sin-
gularities on ½z3; z4� only. One has the CTCs region around
the point z ¼ z4, but the other does not.
We organize the present paper as follows. In Sec. II, by

using the Pomeransky’s ISM, we present the four-soliton
solution in five dimensions which admits three commuting
Killing vectors, stationary and biaxially symmetric Killing
vectors. The solution contains many parameters. In the
general choice of these parameters, the solution cannot be
necessarily asymptotically flat and regular, and the lens
space topology of the horizon is not guaranteed. Therefore,
in Sec. III, we impose on the parameters the boundary
conditions under which the spacetime is asymptotically
flat, neither (curvature, conical, and orbifold) singularities
nor Dirac-Misner strings exist, at least, on the axis and
horizon. It is shown that the boundary conditions finally
reduce the number of the independent parameters to three.
In Sec. IV, we analyze a few simple cases, the case with a
single angular momentum and a static case. In particular,
for the former case, we will discuss the phase diagram and
the existence of CTCs. In Sec. V, we devote ourselves to the
summary and discussion on our results.

II. BLACK LENS SOLUTIONS

First, let us start from the construction of the seed
solution. We consider a five-dimensional, stationary and
biaxisymmetric spacetime which has three commuting
Killing vectors, a stationary Killing vector ∂=∂t, and

two axisymmetric Killing vectors ∂=∂ϕ1, ∂=∂ϕ2. The
diagonal metric of the five-dimensional vacuum solution
whose rod diagram is given by Fig. 4 can be written as

ds2 ¼ −
μ1
μ3

dt2 þ μ2μ4
μ1

dϕ2
1 þ

ρ2μ3
μ2μ4

dϕ2
2

þ k2
μ3R11R22R33R44R2

24

μ2μ4R12R13R14R23R34

ðdρ2 þ dz2Þ;

where μi and Rijði; j ¼ 1;…; 4Þ are defined, respec-
tively, by

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

q
− ðz − ziÞ; Rij ¼

μiμj
ρ2 þ μiμj

zi are constants, and we assume z1 < z2 < z3 < z4. As seen
later, k is the integration constant which is determined from
the requirements of the absence from conical singularities
at infinity. Note that this metric is exactly the same as that
of the seed solution used for the derivation of the rotating
black ring by the ISM. As shown later, although there exist
naked curvature singularities on the rod ρ ¼ 0, z ∈ ½z1; z2�
which has a negative density, they have disappeared
under some appropriate boundary conditions after the
four-soliton transformation. Now, we briefly explain how
we have obtained the four-soliton solution, following the
Pomeransky’s procedure:

(i) First, let us remove trivial solitons from the four
points z ¼ z1, z2, z3, and z4 with the BZ vectors
(0,1,0), (0,0,1), (1,0,0) and (0,0,1), respectively.
After the solitons are removed, the obtained metric is
written as

g̃0 ¼ g0 · diag

�
−
ρ2

μ̃23
;−

ρ2

μ̃21
;

�
−
ρ2

μ̃22

��
−
ρ2

μ̃24

��
ð1Þ

¼ diag

�
ρ2

μ̃1μ̃3
;

ρ4

μ̃1μ̃2μ̃4
;−

ρ4

μ̃4μ̃3μ̃4

�
; ð2Þ

where μ̃i ¼ −ρ2=μi ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

p
− ðz − ziÞ.

Performing the formal replacement of μ̃i →
μ̃i − λði ¼ 1;…; 4Þ, ρ2 → ρ2 − 2zλ − λ2 in the matrix
g̃0 (λ is a so-called spectrum parameter), we can
obtain the generating matrix Ψ0½λ; ρ; z� corresponding
to g̃0:

Ψ0½λ; ρ; z� ¼ diag

�
ρ2 − 2zλ − λ2

ðμ̃1 − λÞðμ̃3 − λÞ ;

ðρ2 − 2zλ − λ2Þ2
ðμ̃1 − λÞðμ̃2 − λÞðμ̃4 − λÞ ;

−
ðρ2 − 2zλ − λ2Þ2

ðμ̃2 − λÞðμ̃3 − λÞðμ̃4 − λÞ
�
: ð3Þ

FIG. 3. The rod diagram of the obtained four-soliton solution.

FIG. 4. The rod diagram of the seed solution.
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(ii) Next, let us add back the nontrivial solitons at

z ¼ z1, z2, z3 and z4 with the BZ vectors mð1Þ
0a ¼

ðC1; 1; 0Þ, mð2Þ
0a ¼ ð0; C2; 1Þ, mð3Þ

0a ¼ ð1; 0; C3Þ and

mð4Þ
0a ¼ ð0; C4; 1Þ, respectively, where the constants

C1, C2, C3 and C4 are often called BZ parameters.
Then, using the BZ vectors and the inverse matrix

of the generating matrix whose spectrum parameter
λ is substituted into μk, we can construct the three-
dimensional vectors ma

ðkÞ,

mðkÞ
a ¼ mðkÞ

0b ½Ψ0ðμk; ρ; zÞ�ba: ð4Þ

Thus, we obtain the metric of the four-soliton
solution as

gab ¼ ðg̃0Þab −
X4
k;l¼1

ðg0Þacmc
ðkÞðΓ−1Þklmd

ðlÞðg0Þbd
μkμl

;

ð5Þ

Γkl ¼
ma

ðkÞðg̃0Þabmb
ðlÞ

ρ2 þ μkμl
: ð6Þ

Note that in the original BZ’s procedure, gab does
not satisfy the normalization condition detðgabÞ ¼
−ρ2 (in the final step one must normalize gab),
whereas in the Pomeransky’s procedure, gab
automatically satisfies the condition without such
a normalization process. The two-dimensional
conformal factor f ≔ gρρð¼ gzzÞ for the new sol-
ution is obtained from the factor f0 for the
seed as

f ¼ f0
detΓ
detΓ0

; ð7Þ

where the matrix Γ0 ¼ ðΓ0klÞ is obtained by putting
Ci ¼ 0 in Eq. (6).

III. BOUNDARY CONDITIONS

The four-soliton solution that we have obtained in
the previous section has nine parameters ðzi; Ci; kÞ but
the general choice of these parameters cannot guarantee the
horizon topology of a lens space, regularity and even
asymptotic flatness. In order that the four-soliton solution
describes a physically interesting solution, we need to
impose suitable boundary conditions at infinity, on the
horizon, and on a symmetry of axis: (i) The spacetime is
asymptotically flat at infinity. (ii) The spacetime has a
smooth horizon whose spatial topology is the lens space
Lð2; 1Þ ¼ S3=Z2. (iii) The spacetime has no curvature
singularities, no conical singularities, no Dirac-Misner
strings, and besides, no orbifold singularities at isolated
points on the axis. In what follows, using the rod structure
[15], we show that there indeed exist the parameter regions
where all these boundary conditions are satisfied.

A. Rod diagram

To ensure that the spacetime is asymptotically flat, the
two semi-infinite rods ð−∞; z1� and ½z4;∞Þ must have the
rod vectors (0,0,1) and (0,1,0), respectively. At a glance,
this seems not to be satisfied for the obtained metric, but we
can confirm that it is automatically satisfied under the
global rotation g → ATgA, where A is a 3 × 3 matrix that
satisfies the condition detA ¼ 1 and is written as

A ¼ ζ

0
BBB@

ζ−1 C3ð−C2z12z34−C4z14z23Þ
C1C3z1ðC2z34þC4z23Þþz3z24

2C1z1z3ðC2−C4Þz13
C1C3z1ðC2z34þC4z23Þþz3z24

0 1 − C1C2C3C4z1z24þz3ðC2z21þC4z14Þ
C1C3z1ðC2z34þC4z23Þþz3z24

0 − C1C2C3C4z1z24þz3ðC2z21þC4z14Þ
C1C3z1ðC2z34þC4z23Þþz3z24

1

1
CCCA; ð8Þ

where zij ≔ zi − zj, and ζ, which is determined from detA ¼ 1, can be written as

ζ ¼ −½C1C3z1ðC2z43 þ C4z32Þ þ z3z42�
× ½z3ðC2z21 − C4z41 − z42Þ − C1C3z1ðC2C4z42 þ C2z43 þ C4z32Þ�−1

2

× ½z3ðC2z21 − C4z41 þ z42Þ − C1C3z1ðC2C4z42 − C2z43 − C4z32Þ�−1
2: ð9Þ

(i) The semi-infinite rod z ∈ ð−∞; z1� has the rod vector

v1 ¼
�

2z1z3z31C1ðC2 − C4Þ
z1C1C3ðz32C4 þ z43C2Þ þ z3z42

;
−z1z42C1C2C3C4 þ z3ðz21C2 − z41C4Þ

z1C1C3ðz32C4 þ z43C2Þ þ z3z42
; 1

�
:
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After the global rotation, v01 ¼ A−1v1 becomes proportional to (0,0,1). Moreover, the condition for conical
singularities not to exist on the rod is given by

m1 ≔ lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2f

g0ijðv01Þiðv01Þj
s

¼ 1; ð10Þ

which determine k as

k2 ¼ −
z23z

2
42

z3ðC2z21 − C4z41 − z42Þ − C1C3z1ðC2C4z42 þ C2z43 þ C4z32Þ
×

1

z3ðC2z21 − C4z41 þ z42Þ − C1C3z1ðC2C4z42 − C2z43 − C4z32Þ
: ð11Þ

(ii) The semi-infinite rod ½z4;∞Þ has the rod vector

v4 ¼
�

C3ðC2z21z43 þ C4z41z32Þ
C1C3z1ðC2z43 þ C4z32Þ þ z3z42

; 1;
−C1C2C3C4z1z42 þ z3ðC2z21 − C4z41Þ

C1C3z1ðC2z43 þ C4z32Þ þ z3z42

�
: ð12Þ

After the global rotation, v04 ¼ A−1v4 becomes proportional to (0,1,0). The condition (11) automatically guarantees
the absence from the conical singularities on the axis rod. In what follows, we define ðϕ0

1;ϕ
0
2Þ by ∂=∂ϕ0

1 ≔ v04
and ∂=∂ϕ0

2 ≔ v01.
(iii) The finite rod ½z1; z2� has the rod vector

v12¼
�

2z3ðC2−C4Þz21z31z41
C3z21z41ðC2z43þC4z32Þþ2C1z1z3z31z42

;
C2z21ð2C1z1z3z31−C3C4z41z42Þ−2C1C4z1z3z31z41

C3z21z41ðC2z43þC4z32Þþ2C1z1z3z31z42
;1

�
: ð13Þ

To eliminate the naked curvature singularities on ½z1; z2�which indeed exists for the seed solution, we require that the
finite rod ½z1; z2� should be parallel to the semi-infinite rod ð−∞; z1�. It can be easily shown that this can be
accomplished if we impose the condition

C1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z21z41
2z21z31

r
: ð14Þ

It turns out that after the global rotation, v012 ¼ A−1v12 becomes proportional to (0,0,1).
(iv) The timelike finite rod ½z2; z3� has the following rod vector:

v23 ¼
�
1;
−2C1z1z3z31ðz32 þ C2C4z41Þ þ C3C4z32z42z41

−2z3z31z41ðC2C4z21 þ z32Þ
;
2C1C2z1z3z31z42 þ C3z41z32ðC2C4z21 − z43Þ

−2z3z31z41ðC2C4z21 þ z32Þ
�
: ð15Þ

After the global rotation, v023 ¼ A−1v23 becomes proportional to ð1;Ω1;Ω2Þ, where Ω1 and Ω2 are the angular
velocities along ∂ϕ1

0 and ∂ϕ2
0 , respectively, and are given by

Ω1 ¼
Ω̃1

D1

; ð16Þ

Ω2 ¼
Ω̃2

D2

; ð17Þ

where
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Ω̃1 ¼ −4C1z1z33z
2
31z42 þ C3

3C
2
4z21z32z

2
41ðC4z32 þ C2z43Þ

þ 2C1C2
3C4z1z3z31z41½C2ðz32 − z21Þz43 þ C4z32ð−z21 þ z32 þ z42Þ�

þ 2C3z23z31z41½−C2z21z43 þ C4ðz232 þ z242 − z243 þ z1z42 þ z2z21 − z3z41Þ�; ð18Þ

Ω̃2 ¼ −4C1z1z33z
2
31z42½−C2

2C4z21z41 þ C4z41z32 þ C2ðC2
4z

2
14 þ z1z32 þ z2z43 − z4z42Þ�

þ 2C3z23z31z41½C3
2C4z221z41z43 þ C2C4z21z32ð−C2

4z
2
41 − z21z43 þ z32z41Þ − z32fz242z43 þ C2

4z41ðz21z32 − z242Þg
− C2

2z21f−z43ðz21z32 þ 2z242Þ − C2
4z41ðz21z32 − z41z43 − z242Þg�

− C3
3z21z41z32½C2

4z
2
32z41z43 − C3

2C4z21z41z243 − C2C4z41z32f−2z243 þ C2
4ðz21z32 þ z242Þg

þ C2
2z41z43fz243 − C2

4ðz21z32 þ z242Þg�
− 2C1C2

3z1z3z31z41z42½−C3
4z41ðz232 þ C2

2z21z23Þ þ 2C4ðz232 − C2
2z21z32Þz43

− C2C2
4f−C2

2z21z41z43 þ z32z42ðz41 þ z43Þg þ C2z43ð2z32z43 − C2
2z21z43Þ�; ð19Þ

ζD1 ¼ ζD2ðz42ðC2
2z21 þ z32ÞÞ−1

¼ −2C1C3
3C

2
4z1z31z41z32ðC4z41z32 þ C2z21z43Þ

þ 2C2
3C4z3z31z41½−C4z41z232 þ C2z21ðC2

4z41z42 þ z232 − z242Þ� − 4z33z
2
31z41ð−C2

4z41 þ C2C4z21 þ z42Þ
− 4C1C3z1z23z

2
31½C2z42z43 − C3

4z41z41 þ C4z41z42 − C2C2
4z41ð−z21 þ z42Þ�: ð20Þ

(v) The finite rod ½z3; z4� has the rod vector

v34 ¼
�

−C3z41z43ðC2C4z21 þ z32Þ
C2ðC1C3z1z42z43 − C4z3z21z41Þ þ z3z41z43

;−
C1C3z1z34ðC2C4z41 þ z32Þ þ C4z3z41z42
C2ðC1C3z1z42z43 − C4z3z21z41Þ þ z3z41z43

; 1

�
: ð21Þ

After the global rotation, the rod vector v034 ¼ A−1v34 is proportional to ð0; 2;−1Þ if the constants ðCi; ziÞ satisfy

C4 ¼ −
C1C2z1ð2z23z31 þ C2

3z32z43Þ þ C2
2C3z3z21z42 þ C3z3z32z42

C1z1ðC3z232 þ C2
2C

2
3z21z42 − 2z23z31Þ

; ð22Þ

and

2z42ð−C2
4z41 þ z43ÞðC1C2C3z1 þ z3ÞðC1C2C3z43z1 þ z41z3Þ

− C2
1C

2
3z

2
1z34fC2

2C4ðz1z43 − z2z42 þ z32z4Þ − C2z23ðC2
4z14 þ z34Þ − C4z223g

þ C1C3z1z24z3ðC2
2z12 þ z23ÞðC2

4z14 þ z34Þ þ z14z23f−C2
2C4z212 þ C2z12ðC2

4z14 þ z34Þ
þ C4ðz1z43 − z2z42 þ z32z4Þ ¼ 0: ð23Þ

In fact, under these conditions, v034 ¼ ðv034t; v034ϕ1
0 ;−1Þ is written as

v034t ¼ ½−2C2
1C2C3z21z31z3ðC2 − C4Þ − C1z1fC2

3ðC2
2C4z21z42 þ C2z32z43 þ C4z232Þ − 2z23z31ðC2 − C4Þg

þ C3z3ðC2
2z

2
21 − C2C4z21z41 − z32z42Þ�ζ½ðC1C2C3z1 þ z3Þf−C1C3z1ðC2z43 þ C4z32Þ − z3z42g�−1 ð24Þ

¼ 0; ð25Þ

and
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v0
34ϕ1

0 ¼ ½C2
1C

2
3z

2
1z34fC2

2C4ðz1z43 − z2z42 þ z32z4Þ − C2z32ðC2
4z41 þ z43Þ − C4z232g

þ C1C3z1z42z3ðC2
2z21 þ z32ÞðC2

4z41 þ z43Þ
þ z41z23f−C2

2C4z221 þ C2z21ðC2
4z41 þ z43Þ þ C4ðz1z43 − z2z42 þ z32z4Þg�

× ½z42ð−C2
4z41 þ z43ÞðC1C2C3z1 þ z3ÞðC1C2C3z43z1 þ z41z3Þ�−1

¼ 2: ð26Þ

Moreover, the conical singularities are free on z ∈ ½z3; z4� if the constants satisfy

m34 ≔ lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2f

g0ijðv034Þiðv034Þj
s

¼ 1; ð27Þ

which gives

m2
34 ¼

z242ðC2
4z41 − z43Þ2ðC1C2C3z1 þ z3Þ2ðC1C2C3z43z1 þ z41z3Þ2

z41z43½z3ðC2z21 − C4z41 − z42Þ − C1C3z1ðC2C4z42 þ C2z43 þ C4z32Þ�2

×
1

½z3ðC2z21 − C4z41 þ z42Þ − C1C3z1ðC2C4z42 − C2z43 − C4z32Þ�2
¼ 1: ð28Þ

B. Summary

The physical requirements of asymptotic flatness, regularity on the rods and horizon topology of the lens space Lð2; 1Þ
impose the conditions (11), (14), (22), (23) and (28) on the parameters. In combination with the gauge degree of freedom
z → zþ α, these reduce the independent parameters from nine to three. These correspond to physical degree of freedom,
mass and two angular momenta. The Arnowitt-Deser-Misner (ADM) mass and two ADM angular momenta are given by,
respectively,

M ¼ 3πm
8D

; J1 ¼
πj1
4D

; ð29Þ

J2 ¼
π

4

2C3ðz32 þ C2
2z21Þð2z23z31 þ C2

3z32z43Þz42z32ζ2
−C2

3z
2
32 þ 2z23z31 − C2

2C
2
3z21z42

; ð30Þ

where

m ¼ 2z31z42½C2
2z21f2z23z31 þ C2

3ðC2
4z41z42 − z243Þg þ C2

3C
2
4z

2
32z41 þ 2z31z23ðz42 − C2

4z41Þ�; ð31Þ

j1 ¼ 2z42½2C2
2C3C4z21z31z41z23ðz242 þ z232 − 2C2

4z41z42Þ þ C3C4z32z41fC2
3C

2
4z

3
32z41 þ 2z31z23ð−C2

4ðz42 þ z32Þ þ z242Þg
þ C2C3

3C
2
4z41z43 þ 2C3

2C3z221z31z
2
3f2C2

4z41z42 − z43ðz42 þ z43Þg − 2C2C3z21z31z23f−C2
4ðz232 þ z242Þ þ z242z43g

þ C2
2C

3
3C4z21z32z41z43ðC2

4z32 þ z43Þ þ C3
2C

3
3z

2
21z

2
43ðC2

4z32 þ z43Þ�
þ 2C1z42½−4C2

2z1z
3
3z21z

2
31ðC2C4z21 − 2C2

4z41 þ z42 þ z43Þ − 4C2C4z1z33z
2
31ðC2

4z
2
41 þ z21z32 − z41z43Þ

− 2z1z3z31fC2
3C

2
4z

3
32z41 þ 2z23z31ð−C2

4z41ðz42 þ z32ÞÞ þ z242g − 2C3
2C

2
3C4z1z3z21z31fC2

4z41z
2
42 þ z43ðz32z21 − z242Þg

þ 2C2
2C

2
3z1z3z21z31f−C2

4z41ðz232 þ z243Þ þ z243g þ 2C2C2
3C4z1z3z31z32f−z43ð2z242 − z1z43 þ z2z41 − z3z21 þ z4z32Þ

− C2
4z41ðz242 þ z41z43Þg�; ð32Þ

D ¼ C2
3z21z41fðC2z43 þ C3z32Þ2 − C2

2C
2
4z

2
42g − 2z31z23fðC2z21 þ C4z41Þ2 − z242g

− 4C1C3z31z42fC2C4ð−C2z21 þ C4z41Þ − C4z32 − C2z43g: ð33Þ

STATIONARY AND BIAXISYMMETRIC FOUR-SOLITON … PHYS. REV. D 99, 104053 (2019)

104053-7



IV. LIMITS TO SIMPLE SOLUTION

A. A black lens with a single angular momentum

For simplicity, we analyze a rotating black lens with only
a single angular momentum, where note that “a single
angular momentum” does not mean “a single angular
velocity.” In fact, the solution with a single angular
momentum has two nonvanishing angular velocities.
One such solution can be obtained by taking the three-
soliton limit of C3 ¼ 0, and one finds that the conditions
(22), (23) and (28) reduce, respectively, to

C4 ¼ C2; ð34Þ

z21C3
2 þ 2z41C2

2 þ z32C2 − 2z43 ¼ 0; ð35Þ

z41ðz41C2
2 − z43Þ2

ð1 − C2
2Þ2z43z242

¼ 1: ð36Þ

It should be noted that this solution is different from the
Chen-Teo’s solution with a single angular momentum in
Ref. [23], since how to add back nontrivial solitons differs
in what follows. They removed a trivial soliton with (0,0,1)
from z ¼ z2 and then added the nontrivial soliton with
ðC2; 0; 1Þ at z ¼ z2, whereas after we remove the trivial
soliton with (0,0,1) from z ¼ z2, we add back the nontrivial
soliton with ð0; C2; 1Þ at z ¼ z2.

1. C-metric representation

For the present purpose, it is more convenient to use
so-calledC-metric coordinates ðx; yÞ rather than the canoni-
cal coordinates ðρ; zÞ. The relation between these coordi-
nates is given by

ρ ¼ 2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−GðxÞGðyÞp
ðx − yÞ2 ; ð37Þ

z ¼ κ2ð1 − xyÞf2þ μðxþ yÞg
ðx − yÞ2 ; ð38Þ

where

GðξÞ ≔ ð1 − ξ2Þð1þ μξÞ; ð39Þ

and μ and κ are constants, which satisfy the inequalities

0 ≤ μ < 1; κ > 0: ð40Þ

To fix the gauge freedom z → zþ α, let the turning points
ðz1; z2; z3; z4Þ be

z1 ¼ cκ2; z2 ¼ −μκ2; z3 ¼ μκ2; z4 ¼ κ2: ð41Þ

Then, we can write ðμ2; μ3; μ4Þ in the simple forms without
the square root as

μ2 ¼ −
2κ2ð1 − xÞð1þ yÞð1þ μyÞ

ðx − yÞ2 ; ð42Þ

μ3 ¼ −
2κ2ð1 − xÞð1þ yÞð1þ μxÞ

ðx − yÞ2 ; ð43Þ

μ4 ¼ −
2κ2ð1 − y2Þð1þ μxÞ

ðx − yÞ2 : ð44Þ

Before performing the global rotationmentioned previously,
the metric of the rotating black lens with the horizon
topology of Lð2; 1Þ takes the following form:

ds2 ¼ −
Hðx; yÞ
Hðy; xÞ ½dtþ ω1dϕ1 þ ω2ϕ2�2

þ Fðx; yÞ
ðx − yÞ2Hðx; yÞ dϕ

2
1 −

Fðy; xÞ
ðx − yÞ2Hðx; yÞ dϕ

2
2

þ 2
Jðx; yÞ

ðx − yÞ2Hðx; yÞ dϕ1dϕ2

þ κ2Hðy; xÞ
4ð1 − C2

2Þð1 − μÞðx − yÞ2
�

dx2

GðxÞ −
dy2

GðyÞ
�
; ð45Þ

where

ω1 ¼
2κ2C1cðc − μÞð1þ yÞ

Hðx; yÞ ½−C4
2ð1 − cÞðcþ μÞð1þ xÞ2

þ C2
2f−2ð1 − μÞð2 − μÞ − μ2xðyð1 − xÞ þ 1þ xÞ þ μð2x2 þ xyþ x − yÞ

þ cð5 − 4μ − μx2ð1þ yÞ þ ð1 − μÞxð3 − yÞ þ yÞg þ 4ð1 − μÞ4�;

ω2 ¼ −
2κ2C1C2cðc − μÞð1þ yÞ

Hðx; yÞ ½C2
2fμ2ðxyþ 1Þð1 − xÞ þ μðx2 − xyþ 5xþ y − 2Þ þ 4

þ cðð1 − 2μþ μyÞx2 þ ðð1 − μÞy − 3μ − 1Þx − yþ μ − 4Þg − 2ð1 − μÞðμðx2 þ 2x − 1Þ þ 2Þ�;
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and the functions Hðx; yÞ, Fðx; yÞ, and Jðx; yÞ are written, respectively, as

Hðx; yÞ ≔ C4
2½−c3ðxþ 1Þ2ð1þ yÞ − c2ðxþ 1Þ2ð1þ yÞðμð1þ yÞ − 1Þ

− cμðxþ 1Þ2ð1þ yÞððμ − 1Þy − 1Þ þ μ2ðxþ 1Þ2yð1þ yÞ�
þ C2

2½c2ð1þ yÞf4μþ xðμððx − 1Þyþ xþ 3Þ þ y − 3Þ − y − 5g
þ cf−13μþ ðμ − 1Þμx2ð1þ yÞ2 þ 2xðμðμþ yð2μþ 3μy − yþ 2Þ − 1Þ þ 2Þ
þ μð5μþ yðμðyþ 2Þ þ 3y − 2ÞÞ þ 8yþ 12g
− μ2fðxðxþ 3Þ þ 4Þy2 þ 2xðxþ 5Þyþ ðx − 1Þx − 4yþ 8g
− μ3ðx − 1Þðy − 1Þ2 − 4μðxþ 2y − 3Þ − 8� − 4cðμ − 1Þ2ð1þ yÞ þ 4ðμ − 1Þ2ðμðy − 1Þ þ 2Þ;

Fðx; yÞ
κ2

≔ −2C4
2½ð1 − cÞð1þ xÞ3ðcþ μÞðcþ μxÞð1 − y2Þð1þ μyÞ�

þ C2½c2fð−5þ xð−3þ yÞ − yÞð1þ yÞ þ ð1þ yÞð4þ xð3þ xþ ðx − 1ÞyÞÞμg
þ cf4ð3þ xþ 2yÞ þ ð−13 − 2xðy − 1Þ2 − 2yþ 3y2 − x2ð1þ yÞ2Þμ
þ ð5þ 2yþ y2 þ x2ð1þ yÞ2 þ xð2þ 4yþ 6y2ÞÞμ2g − ðx − 1Þðy − 1Þ2μ3 þ ð−8 − ðx − 1Þxþ 4y

− 2xð5þ xÞy − ð4þ xð3þ xÞÞy2Þμ2 − 4ð−3þ xþ 2yÞμ − 8�
þ 8ð−1þ y2Þð1 − μÞ2ð2 − cð1þ xÞ þ ðx − 1ÞμÞð1þ yμÞ; ð46Þ

Jðx; yÞ
κ2

¼ −2C3
2ð−1þ cÞð1þ xÞðx − yÞð1þ yÞðcþ μÞ½−4þ f2þ x2ð−1þ yÞ − 5y − y2 þ xð−5þ y2Þgμ

þ f−1þ yþ x2ð−1þ yÞy − xð−1þ 4yþ y2Þgμ2� þ 4C2ðx − yÞð1 − μÞ½2ðcð1þ xÞð1þ yÞ − 2ðxþ yÞÞ
− f2þ 4x2 − 2yþ 4y2 þ cð1þ xÞð1þ xð−3þ yÞ − 3yÞð1þ yÞ þ 2xð−1þ 5yÞgμ
þ f−1 − 2yþ 3y2 þ xð−2þ 4y − 6y2Þ − x2ð−3þ 6yþ y2Þ þ cð1þ xÞð1þ yÞð1 − yþ xð−1þ 3yÞÞgμ2
− ð1 − xÞð−1þ xð−1þ yÞ − yÞð1 − yÞμ3�: ð47Þ

From Eq. (35), z1 can be written in terms of the other parameters as

z1 ¼
z2C3

2 þ 2z4C2
2 þ z32C2 − 2z43

C3
2 þ 2C2

2

; ð48Þ

so that the substitution into Eq. (36) gives

z42C3
2 − z32C2 þ 2z43
z43ðC2 þ 2Þ2 ¼ 1: ð49Þ

It can be shown that Eqs. (48) and (49) have three different roots for ðC2; z1Þ, which can be expressed in terms of only
ðμ; κÞ as

z1 ¼ κ2μ; ð50Þ

C2 ¼ −1; ð51Þ

and

z1 ¼
κ2μð−9þ 7μ� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8μ2

p
Þ

9ð1 − μÞ ; ð52Þ
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C2 ¼
z42 þ 5z43 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 þ z23 þ 34z2z3 þ 36z42z43

p
2z32

¼ 3 − 2μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8μ2

p
2

: ð53Þ

Because of our assumption z1 < z2 ¼ −κ2μ, we must take

z1 ¼
κ2μð−9þ 7μ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8μ2

p
Þ

9ð1 − μÞ ; ð54Þ

C2 ¼
3 − 2μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8μ2

p
2μ

: ð55Þ

2. Asymptotic charges

The mass and two angular momenta are given, respec-
tively, by

M ¼ 3π

4
z31; J1 ¼ −π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21z31z41ð1−C2

2Þ
2

r
; J2 ¼ 0:

ð56Þ

The dimensionless angular momenta and horizon area are
given by

j ≔
ffiffiffiffiffiffiffiffi
27π

32

r
J1

ðGMÞ32 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21z41ð1 − C2

2Þ
z231

s
;

j2 ≔
ffiffiffiffiffiffiffiffi
27π

32

r
J2

ðGMÞ32 ¼ 0; ð57Þ

ah ≔
ffiffiffiffiffiffiffiffiffiffi
27

162π

r
Ah

ðGMÞ32 ¼
2

ffiffiffi
2

p jz21C2
2 þ z32j ffiffiffiffiffiffiffiffiffiffiffiffi

z32z41
p

z31z42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − C2

2Þ
p : ð58Þ

3. Phase diagram

From Fig. 5, we see that the dimensionless angular
momentum j is a monotonically increasing function of μ
and j → 1

2
ffiffi
2

p at μ → 0, and j → 1 at μ → 1. Figure 6

illustrates the relation between j and the dimensionless
horizon area ah, where the black and blue curves corre-
spond to the Myers-Perry (MP) black hole with a single
angular momentum and the Emparan-Reall (ER) black
ring, respectively, and the red curve corresponds to the
black lens with a single augular momentum. The ER (thin)
black ring has no upper bound for j, whereas the black lens
has the upper bound j ¼ 1 (at μ ¼ 1). The MP black hole
has a zero lower bound for the angular momentum j,
whereas the black lens has the nonzero lower bound j ¼
1=2

ffiffiffi
2

p
(at μ ¼ 0) as the MP black hole does. It turns out

from these graphs that the dimensionless horizon area of
the black lens is always larger than that of the MP black
hole (within the range of 1=2

ffiffiffi
2

p
< j < 1) and ah vanishes

at j → 1 (μ → 1), which corresponds to the limit to the
singular extreme MP black hole, and take the finite value
2

ffiffiffi
3

p
at j → 1=2

ffiffiffi
2

p
(μ → 0), which is a singular solution

without a horizon. Moreover, it can be seen that there
indeed exists the parameter region such that ah of the black
lens can exceed to those of the other three solutions, the
black hole and thin/fat black rings.

4. CTCs and curvature singularities

We wish to require absence of CTCs in the domain of
outer communication. The necessary and sufficient con-
ditions to ensure that CTCs do not exist in the domain of
outer communication is such that the following two-
dimensional matrix always becomes nonnegative in the
region:

g2 ¼
� gϕ0

1
ϕ0
1

gϕ0
1
ϕ0
2

gϕ0
1
ϕ0
2

gϕ0
2
ϕ0
2

�
; ð59Þ

namely, CTCs do not exist if and only if

det g2 ≥ 0; Trg2 ≥ 0: ð60Þ

We have numerically studied the positivity for various
values of μ and the normalized κ (as κ ¼ 1) in the ðρ; zÞ
plane. In Fig. 7, the point ðρ; zÞ ¼ ð0; 1Þ and the interval onFIG. 5. Relation between μ and j.

FIG. 6. The curves ah vs j for the five-dimensional Myers-
Perry black hole, the Emparan-Reall black ring and the rotating
black lens. The black curve and blue curve correspond to the MP
black hole and the ER black ring, respectively and the red curve
corresponds to the black lens.
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the z axis fðρ; zÞjρ ¼ 0;−n=10 ≤ z ≤ n=10g represent the
turning point (ðρ; zÞ ¼ ð0; z4Þ) and the Killing horizon,
respectively, for μ ¼ n=10ðn ¼ 1; 4; 7; 9Þ. In each figure,
the white region represents the CTC region, which always
appears around the turning point ðρ; zÞ ¼ ð0; z4Þ. We have
confirmed that regardless of the values of μ, the white
region which surrounds the point ðρ; zÞ ¼ ð0; z4Þ exists
outside the horizon. As a consequence, it can be seen that
the existence of CTCs outside the horizon seems to be
unavoidable.
Next, let us see if curvature singularities exist inside or

outside the horizon. For this purpose, we consider where
one of the scalar invariants, for instance, Kretschmann
invariant RμνρσRμνρσ, diverges in the ðρ; zÞ plane. One can
find from a direct computation that it diverges at the points

ðx; yÞ satisfying Hðy; xÞ ¼ 0, which is denoted by the red
curve in each part of Fig. 7. It can be seen from these
figures that Hðyðρ; zÞ; xðρ; zÞÞ ¼ 0 holds just on the
spherical boundary of the CTC region around the point
ðρ; zÞ ¼ ð0; z4Þ. Therefore, it can be concluded that the
black lens with a single angular momentum unavoidably
has curvature singularities outside the horizon and on the
spherical boundary of the CTC region.

B. Static solution

Finally, we consider the static limit of the four-soliton
solution z1 → z2, C3 → 0, in which case it follows from
Eq. (14) that C1 → 0 holds. In terms of the C-metric, the
metric takes the following simple form:

FIG. 7. In each part, the white region represents the CTC region for μ ¼ n=10ðn ¼ 1; 4; 7; 9Þ. There exist curvature singularities on the
red curve (spherical surface) which is the boundary of the CTC region. The point ðρ; zÞ ¼ ð0; 1Þ and the interval ðρ ¼ 0;−n=10 ≤
z ≤ n=10Þ represent the nut and the Killing horizon, respectively.
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ds2 ¼ −
1þ μy
1þ μx

dt2 þ 2κ2ð1þ μxÞ½C2
4ð1 − x2Þð1þ μyÞ2 þ ð1 − μÞ2ðy2 − 1Þ�

ðx − yÞ2½ð1 − μÞ2 − C2
4ð1þ μxÞð1þ μyÞ� dϕ2

1

þ 2κ2ð1þ μxÞ½C2
4ðy2 − 1Þð1þ μxÞ2 − ð1 − μÞ2ð1 − x2Þ�

ðx − yÞ2½ð1 − μÞ2 − C2
4ð1þ μxÞð1þ μyÞ� dϕ2

2 − 4
κ2C4ð1 − μÞð1þ μxÞ½xþ yþ μð1þ xyÞ�
ðx − yÞ½ð1 − μÞ2 − C2

4ð1þ μxÞð1þ μyÞ� dϕ1dϕ2

þ 2κ2ð1þ μxÞ½ð1 − μÞ2 − C2
4ð1þ μxÞð1þ μyÞ�

ð1 − C2
4Þð1 − μÞðx − yÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
; ð61Þ

where it should be noted that C2 automatically disappears.
In the limit, the condition (22) is automatically satisfied,
and two equations (23) and (28) are simplified, respec-
tively, as

2μC4

ð1 − μÞ − C2
4ð1þ μÞ ¼ 2; ð62Þ

½1 − μ − C2
4ð1þ μÞ�2

ð1 − C2
4Þ2ð1 − μ2Þ ¼ 1: ð63Þ

From Eq. (62), μ can be written as

μ ¼ −C2
4

C2
4 þ C4 − 2

; ð64Þ

and then Eq. (63) becomes

C4

2C2
4 þ 5C4 þ 2

¼ 1; ð65Þ

which gives C4 ¼ −1. This result contradicts with Eq. (63).
Therefore, this implies that when Eq. (62) holds, Eq. (63)
cannot be satisfied. We can interpret physically that the
static black lens needs conical singularities on the rod
½z3; z4� to support the horizon against gravitational attrac-
tion. It may be of interest to investigate such a static black
lens even though it has conical singularities. From Eq. (62),
C4 can be solved as

C4 ¼ C4� ≔
−μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3μ2

p
2ð1þ μÞ : ð66Þ

Hence, the static black lens solution has two branches
according to the choice of C4. It can be shown numerically
that for C4 ¼ C4þ, CTCs do not exist, whereas for
C4 ¼ C4−, there always exists the CTC region which
surrounds the point ðρ; zÞ ¼ ð0; z4Þ. It can be shown that
after performing the global rotation, this solution coincides
with the static limit of the Chen-Teo’s solution [23] in
which the parameters a, c, n and the angular coordinates
(ψ , ϕ) are replaced, respectively, with C4, μ, −2, and
(−ϕ0

1, −ϕ0
2).

V. SUMMARY

Using the ISM for the five-dimensional vacuum Einstein
equations and starting from the same seed as for the black
ring construction, we have obtained the four-soliton sol-
ution, which includes an asymptotically flat, stationary
and biaxisymmetric black hole with the horizon topology
of Lð2; 1Þ ¼ S3=Z2. The solution has nine parameters
ðCi; zi; kÞ which obey to five constraint equations imposed
from the physical requirements. Therefore, except for the
gauge freedom z → zþ α, the remaining degrees of free-
dom reduce to 3, which physically correspond to the mass
and two angular momenta. The rod diagram of the obtained
solution is the same as that of the Kunduri-Lucietti’s
supersymmetric black lens except for the horizon rod
rather than that of Chen-Teo’s solution. We wish to
emphasize that the rod diagram is different from that
of Chen-Teo’s solution in whether the orientation of the
finite rod between the horizon and the nut is ð0; 2; 1Þ or
ð0; 2;−1Þ, where Chen and Teo considered the former,
whereas we have chosen the latter. We have also shown that
there is the parameter region such that on the axes of
symmetry there exist no curvature singularities, no conical
singularities, and no orbifold singularities.
Since the metric of the four-soliton solution takes a

considerably complicated form even in the C-metric
representation, we have analyzed, in particular, the static
case and the case of a single angular momentum, which
corresponds to a two-soliton solution and a three-soliton
solution, respectively. We have discussed the phase dia-
gram of the black lens with a single angular momentum in
comparison with those of the MP black hole with a single
angular momentum and the ER black ring. In contrast to the
ER (thin) black ring, the angular momentum for the black
lens has the upper bound, and in contrast to the MP black
hole with a single angular momentum, it has a certain
nonzero lower bound. We have shown that there exists the
parameter region such that the four different solutions, the
black hole, thin/fat black ring and the black lens, exist for
the same asymptotic charges (mass and an angular momen-
tum). Unfortunately, we have found that for the case of
single angular momentum, the existence of CTCs and
curvature singularities around the nut cannot be avoidable.
The static black lens solution whose horizon topology is
Lð2; 1Þ ¼ S3=Z2 can be obtained by simply setting z1 ¼ z2
and C3 ¼ 0. We have shown that the solution always has
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conical singularities between the horizon and the nut, but
there are two possibilities for this static solution. One has
an unavoidable CTC region which includes the nut, while
the other does not admit any CTCs in the domain of outer
communication.
The four-soliton solution with C3 ≠ 0, which we have

obtained in Sec. II, has much more complicated metric than
the three-soliton solution with C3 ¼ 0 even if we use the
C-metric representation. This makes it difficult that we even
numerically check the existence of CTCs and regularity for
the far region from the rods and horizon through the whole
parameter region. We have numerically found that for the
four-soliton solution, there also exist the parameter region
where there are neither conical singularities nor curvature
singularities on the axis and horizon, but it seems that CTCs
inevitably appear around the nut for several special sets of
the parameters. To see if there are CTCs for the whole
parameter region is our remaining future study.
From our results in this paper, we cannot conclude

immediately that a supersymmetry plays an essential role in
the existence of a regular black lens without naked CTCs

simply because such a black lens has been found only
within a class of supersymmetric solutions so far. As for the
supersymmetric solutions [25,26], the existence of mag-
netic fluxes rather than an electric charge seems to be
essential to support the horizon of the black lens. Therefore,
it may be also possible that a non-BPS black lens with a
magnetic flux exists in five-dimensional minimal super-
gravity. Moreover, it may be an interesting issue whether a
vacuum solution of the more general horizon topology
Lðp; qÞ (p, q: coprime integers) exists under the same
symmetry assumptions, since it was shown in Ref. [27] that
such a general black lens cannot exist, at least, within a
class of asymptotically flat, stationary and biaxisymmetric
supersymmetric solutions in five-dimensional minimal
supergravity. These issues deserve further study.
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