
 

Pressure effects in the weak-field limit of f ðRÞ=R+αR2 gravity
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We investigate the linear regime of fðRÞ ¼ Rþ αR2 gravity for static, spherically symmetric and
asymptotically flat configurations of matter. We show that, in vacuum and deep inside the range of the extra
scalar degree of freedom, the post-Newtonian parameter γ is not equal to 1=2, as established in the
literature, but it assumes larger values depending on the pressure of the star. We provide an explicit
expression for γ in terms of the mass, of the integrated pressure of the star and of the ratio between the star’s
radius and the range of the extra degree of freedom. We corroborate our results by providing numerical
solutions for the case of a neutron star.
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I. INTRODUCTION

Among the numerous extensions of the theory of
General Relativity (GR), in the past two decades consid-
erable attention has been given to fðRÞ gravity (where R is
the Ricci scalar) as a possible alternative to dark energy,
and to explore modifications of gravity in the strong gravity
regime. The action describing this modification of GR is
obtained from the Einstein-Hilbert action by simply trading
R for a generic nonlinear function of it [1–4], that is,

S ¼ c4

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SM; ð1:1Þ

where GN is Newton’s constant and SM is the action for the
matter fields.
In the metric formalism of fðRÞ [5], which we adopt here,

this apparently innocent procedure spoils the feature of GR
of having field equations of second order. In metric fðRÞ the
evolution is in fact described by fourth-order differential
equations, which is in general worrying from the point of
view of Ostrogradsky instability [6]. It can be however
shown that one of the assumptions of Ostrogradsky’s
theorem (nondegeneracy) is violated [7], and that the theory
is safe. A generic prescription on the form of f, at least for
small modifications of GR, is that fRR > 0, in order to avoid
the Dolgov-Kawasaki instability [8].1

Awell-known property of R-regular fðRÞ theories is that
they can be mapped into a scalar-tensor theory (in fact, a
Brans-Dicke theory with parameter ω ¼ 0 and a nontrivial
potential), where the derivative fR corresponds to the scalar
component.2 In comparison to GR, this component there-
fore acts effectively as an extra degree of freedom. As
usual, it is possible to pass from the Jordan to the Einstein
frame by means of a conformal transformation. The
coupling of the scalar degree of freedom to the matter
sector, which is induced by the transformation, is at the
basis of the chameleon mechanism [9,10].
In this paper we focus on the linear regime of fðRÞ

gravity in a static, spherically symmetric and asymptoti-
cally flat configuration, providing a simple model for a star.
This regime has been extensively considered, although at
times with cosmological asymptotics, especially in con-
nection with Solar System tests (see e.g., [11–51]). Awell-
established conclusion in this regard is that, outside the star
and well within the range of the extra scalar degree of
freedom, the metric potentials display the Newtonian 1=r
behavior but have different magnitude. This difference is
encoded in the post-Newtonian parameter (PPN) γ, whose
value is found to be equal to 1=2 and therefore in clear
disagreement with observation (which confirms the GR
value γ ¼ 1within few parts in 105 [52]). An analysis of the
behavior of the PPN parameter γ in nonminimally coupled
models of gravity [which have a fðRÞ limit] can be found
in [53]. The behavior of the post-Newtonian parameters β*fulviosbisa@gmail.com
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1We indicate derivatives with respect to R with a subscript R.

2A fðRÞ theory is called R-regular if the second derivative fRR
never vanishes.
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and γ in a generic scalar-tensor theory, although with very
crude assumptions on the structure of the star, is studied
in [54,55].
The γ ¼ 1=2 result is based on the assumption of

negligible pressure of the spherically symmetric energy-
momentum configuration. Here we show that γ is in general
larger than 1=2when the pressure is taken into account. Our
analysis is limited to the model fðRÞ ¼ Rþ αR2,
also known as Starobinsky model [56], which is one of
the most successful models in inflationary cosmology [57].
Nevertheless, we expect our analysis to be relevant for any
fðRÞ theory such that f is analytic in R ¼ 0. We also
comment on a relativistic limit, i.e., when the spherical
configuration of energy momentum has a relativistic
equation of state, in which case the γ ¼ 1 limit is recovered.
Furthermore, we explore the role of mild nonlinear effects
on the behavior of gravity.
The paper is organized as follows: in Sec. II we set up

our notation and derive the equations of motions for our
system. In Sec. III we implement the linear approximation
of the latter equations and derive the external and internal
solutions. In Sec. IV we discuss the consistency of our
approximation and draw some conclusions about the
behavior of gravity. In Sec. V we support our analysis
by solving numerically the nonlinear equations of motion.
We present our conclusions and comments in Sec. VI.
We adopt the “mostly plus” signature ð−;þ;þ;þÞ and,

unless stated otherwise, we use units of measure
where c ¼ 1.

II. FIELD EQUATIONS

We consider the fðRÞ gravity model given by

fðRÞ ¼ Rþ αR2; ð2:1Þ

in the metric formalism. The field equations resulting from
the variation of the action with respect to the metric are the
following:

ð1þ 2αRÞRμν −
1

2
gμνðRþ αR2Þ − 2αð∇μ∇ν − gμν□ÞR

¼ 8πGNTμν; ð2:2Þ

where the connection is the Levi-Civita one, so the Ricci
scalar is a functional of the metric R ¼ R½gμν�, □ ¼
gμν∇μ∇ν is the (curved space) d’Alembert operator and

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSM

δgμν
: ð2:3Þ

Defining ζ ¼ ðfR − 1Þ=2, the fourth-order equation (2.2)
can be shown to be equivalent to the second-order system
for the metric gμν and the scalar field ζ [58]:

ð1þ 2ζÞGμ
ν ¼ −3m2ζ2δμν þ 2ðgμλ∇ν∂λ − δμν□Þζ

þ 8πGNTμ
ν; ð2:4Þ

□ζ −m2ζ ¼ 4πGN

3
T; ð2:5Þ

where T is the trace of the energy-momentum tensor and
we defined

m2 ≡ 1

6α
ð2:6Þ

as the mass associated to the scalar degree of freedom. The
metric and the scalar field are independent degrees of
freedom, as far as the initial value problem of the system
(2.4) and (2.5) is concerned, however when the solutions of
(2.4) and (2.5) are considered the scalar field is related to
the scalar curvature by ζ ¼ αR.

A. Static and spherically symmetric case

As a model for a nonrotating star, we assume a static,
spherically symmetric metric:

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð2:7Þ

and a perfect fluid-type energy-momentum tensor:

T0
0 ¼ −ρðrÞ; Tr

r ¼ Tθ
θ ¼ Tϕ

ϕ ¼ pðrÞ; ð2:8Þ

where ρ and p are the density and pressure of the star,
respectively, and they depend only on the radial coordinate.
The field equations can be straightforwardly computed

and read:

ð1þ 2ζ þ rζ0Þ 1

Br
A0

A

¼ 1þ 2ζ

r2

�
1 −

1

B

�
− 3m2ζ2 −

4

Br
ζ0 þ 8πGNp; ð2:9aÞ

ð1þ 2ζþ rζ0Þ 1

Br
B0

B

¼ 1þ 2ζ

r2

�
1

B
− 1

�
þ 3m2ζ2 þ 2

B

�
ζ00 þ 2

r
ζ0
�
þ 8πGNρ;

ð2:9bÞ

1

B

�
ζ00 þ

�
2

r
þ A0

2A
−

B0

2B

�
ζ0
�
¼ m2ζ þ 4πGN

3
ð3p − ρÞ;

ð2:9cÞ

where the prime denotes derivation with respect to r. Using
Eqs. (2.9a) and (2.9c), the Eq. (2.9b) can be cast in the form
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1þ2ζ

r
B0

B2
¼
�
1þ rζ0

1þ2ζþ rζ0

��
1þ2ζ

r2

�
1

B
−1

�
þ3m2ζ2

�

þ2m2ζþ 4

B
ζ02

1þ2ζþ rζ0

þ8πGN

�
1þ2ζ

1þ2ζþ rζ0
pþ2

3
ρ

�
: ð2:10Þ

III. LINEARIZATION OF THE FIELD EQUATIONS

We now want to study analytically the above system of
equations, in the linear regime. To this aim it is useful to
introduce the gravitational potentials Φ and Ψ:

AðrÞ ¼ 1þ 2ΦðrÞ; B−1ðrÞ ¼ 1þ 2ΨðrÞ: ð3:1Þ

Since we consider asymptotically flat solutions, we look for
(approximated) solutions of the equations above such that
ζ, Φ and Ψ decay to zero when r → ∞.

A. The scalar degree of freedom

Assuming that the following conditions hold:

jΦj ≪ 1; jΨj ≪ 1; rjΦ0 þ Ψ0j ≪ 1; ð3:2Þ

the evolution equation for the scalar degree of freedom,
Eq. (2.9c), can be greatly simplified as follows:

ζ00 þ 2

r
ζ0 −m2ζ ¼ 4πGN

3
ð3p − ρÞ; ð3:3Þ

and can be readily solved, since it does not contain the
gravitational potentials. The (asymptotically decaying)
Green’s function associated to the differential operator
acting on ζ is the following:

Gðr; r0Þ ¼ −
1

4πjr − r0j e
−mjr−r0j; ð3:4Þ

so that the complete solution of Eq. (3.3) which decays at
infinity reads

ζðrÞ ¼ GN

3

Z
V⋆

e−mjr−r0j

jr − r0j ðρðr
0Þ − 3pðr0ÞÞd3r0; ð3:5Þ

where the integration is performed on V⋆, the spherical
volume occupied by the star.
Since ρ and p depend only on the radial coordinate, the

angular integration in (3.5) can be performed exactly. This
is achieved by making explicit the modulus:

jr − r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0 cos β

q
; ð3:6Þ

where β is the angle between the directions of r and r0, and
then using the integral:

Z1

−1

dðcos βÞ e−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr02−2rr0 cos β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0 cos β

p ¼ e−mjr−r0j − e−mðrþr0Þ

mrr0
:

ð3:7Þ
1. External and internal solutions

Let us consider the region outside the star. The integra-
tion of Eq. (3.5) then gives

ζextðrÞ ¼
GN

3
ðM̃⋆ − 3P̃⋆Þ

e−mr

r
; ð3:8Þ

where we defined

M̃⋆ ≡ 4π

Zr⋆
0

sinhmr
mr

ρr2dr; P̃⋆ ≡ 4π

Zr⋆
0

sinhmr
mr

pr2dr;

ð3:9Þ

and indicated with r⋆ the radius of the star. The quantities
M̃⋆ and P̃⋆ are related respectively to the integrated density
and pressure of the star, and in fact reduce to them when
mr⋆ ≪ 1:

M̃⋆ ⟶
mr⋆≪1

M⋆ ≡ 4π

Zr⋆
0

ρr2dr; P̃⋆ ⟶
mr⋆≪1

P⋆ ≡ 4π

Zr⋆
0

pr2dr:

ð3:10Þ

In this case, which corresponds to the range of the scalar
degree of freedom being much larger than the radius of the
star, outside of the star there exists a region where the
exterior solution becomes3

r⋆ ≤ r ≪ m−1 ⇒ ζextðrÞ ¼
GN

3r
ðM⋆ − 3P⋆Þ: ð3:11Þ

It is suggestive to introduce a characteristic radius asso-
ciated with the extra scalar degree of freedom:

rζ ≡ 2GNðM̃⋆ − 3P̃⋆Þ; ð3:12Þ

which may be considered as the “Schwarzschild radius” of
ζ. In terms of rζ the external solution (3.8) reads

ζextðrÞ ¼
rζ
6r

e−mr: ð3:13Þ

Let us now consider the behavior of ζ inside the star.
Because of the absolute value jr − r0j appearing in (3.7), it
is convenient to split the radial integration into two parts.

3This result is equivalent to Eq. (13) of [48] specialized for the
Rþ αR2 model, apart from the fact that here the contribution due
to the pressure is taken into account.
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We then obtain

ζintðrÞ ¼
GN

3

�
e−mr

r
ðM̃ðrÞ − 3P̃ðrÞÞ þ sinhmr

mr
S̃ðrÞ

�
;

ð3:14Þ

where we defined

M̃ðrÞ≡ 4π

Zr

0

sinhmy
my

ρy2dy;

P̃ðrÞ≡ 4π

Zr

0

sinhmy
my

py2dy; ð3:15Þ

and

S̃ðrÞ≡ 4π

Zr⋆
r

e−myðρðyÞ − 3pðyÞÞydy: ð3:16Þ

Note that

M̃ðr⋆Þ ¼ M̃⋆; P̃ðr⋆Þ ¼ P̃⋆; S̃ðr⋆Þ ¼ 0; ð3:17Þ

so the expression (3.14) actually holds also outside the star
provided we define M̃ðrÞ, P̃ðrÞ and S̃ðrÞ to be continuous,
and constant outside the star. Furthermore, the limit of
(3.14) for r → 0 is well defined, since M̃ðrÞ=r → 0 and
P̃ðrÞ=r → 0, and we have

ζintð0Þ ¼
GN

3
S̃ð0Þ: ð3:18Þ

A word on the case of relativistic matter. It is apparent
that when p ¼ ρ=3 the functions M̃ðrÞ − 3P̃ðrÞ and S̃ðrÞ
vanish identically, and therefore the scalar degree of free-
dom vanishes identically as well (both inside and outside
the star). In this case, therefore, the scalar degree of
freedom is “masked.” We further comment on this point
in Sec. IV B 3.

B. The gravitational potentials

Let us consider the extra conditions

jζj ≪ 1; rjζ0j ≪ 1; rm2ζ2 ≪ jζ0j; ð3:19Þ

and suppose that the term containing ζ02 can be neglected
in Eq. (2.10). All these assumptions are to be discussed
more in detail below. Under this approximation the field
equations (2.9a) and (2.10) simplify to

rΦ0 ¼ −Ψ − 2rζ0 þ 4πGNr2p; ð3:20aÞ

ðrΨÞ0 ¼ −r2m2ζ −
4πGN

3
r2ð2ρþ 3pÞ: ð3:20bÞ

Knowing the explicit solution for ζ, we can straightfor-
wardly obtain those for the gravitational potentials Ψ
and Φ.

1. The potential Ψ
Let us start considering the internal solution for the

potential Ψ. Integrating Eq. (3.20b) from r ¼ 0 to a certain
radius r ≤ r⋆ we obtain

rΨðrÞ ¼ −m2

Zr

0

ζðyÞy2dy−GN

3
ð2MðrÞ þ 3PðrÞÞ; ð3:21Þ

where we assumed that rΨðrÞ → 0 for r → 0 (which should
be safe, since we expect the gravitational field to vanish at
the center of the star). Let us now define

ΞðrÞ≡ m2

GN

Zr

0

ζðyÞy2dy; ð3:22Þ

and adopt the notation4:

Ξ⋆ ≡ Ξðr⋆Þ: ð3:23Þ

Once the configuration of ρ and p is known, the function
ΞðrÞ can be computed (in principle exactly, but most likely
performing the integrations numerically) by employing
Eqs. (3.14)–(3.16). The solution for Ψ inside the star
can thus be written as

ΨintðrÞ ¼ −
GN

r

�
2

3
MðrÞ þ PðrÞ þ ΞðrÞ

�
: ð3:24Þ

The external (r ≥ r⋆) solution for Ψ can be obtained by
finding a primitive of the right-hand side of (3.20b) in
vacuum [since we know explicitly the external solution
(3.8) for ζ] and matching the resulting function with the
internal solution (3.24) at the star’s surface. We get

rΨextðrÞ ¼
rζ
6
½e−mrð1þmrÞ − e−mr⋆ð1þmr⋆Þ�

−GN

�
2

3
M⋆ þ P⋆ þ Ξ⋆

�
: ð3:25Þ

When r → ∞, the right-hand side of the above equation
tends to a finite value C:

4Note that Ξ⋆ is the amount of scalar curvature enclosed by the
star, divided by 6GN.
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C≡−GN

��
M̃⋆
3

− P̃⋆
�
e−mr⋆ð1þmr⋆Þþ

2M⋆
3

þP⋆þΞ⋆
�
;

ð3:26Þ

which defines a geometric mass Mg ¼ −C=GN distinct
from M⋆ or, equivalently, a new characteristic radius rg ≡
−2C for the gravitational potential. We can then write in a
more compact form the external solution for ΨðrÞ:

ΨextðrÞ ¼ ð1þmrÞ rζ
6r

e−mr −
rg
2r

; ð3:27Þ

from which it is evident that the external solution correctly
decays to zero asymptotically.

2. The potential Φ
Let us now consider the gravitational potential Φ.

Regarding the external solution, also in this case it can
be found by looking for a primitive of the Eq. (3.20a) in
vacuum [using the explicit external solutions (3.8) and
(3.27) respectively for ζ andΨ], and imposing it to decay to
zero asymptotically. We obtain

ΦextðrÞ ¼ −
rζ
6r

e−mr −
rg
2r

: ð3:28Þ

The internal solution can be expressed in terms of Ψ,
ζ and p (and so, ultimately, in terms of ρ and p) by
integrating Eq. (3.20a) and using Eqs. (3.14) and (3.24).
We get

ΦintðrÞ ¼ Φð0Þ −
Zr

0

ΨðyÞ
y

dy − 2ζðrÞ þ 2GN

3
S̃ð0Þ

þ 4πGN

Zr

0

pðyÞydy; ð3:29Þ

where the integration constant Φð0Þ has to be chosen so as
to match the external solution (3.28) at the star’s surface.
Again, although Φint is expressed exactly in terms of
(multiple integrations of) ρ and p, in practice it will be
computed by performing the integrations numerically.

IV. GRAVITY IN THE LINEAR REGIME

A. Consistency of the approximation

Let us comment now on the meaning and consistency of
the assumptions (3.2) and (3.19), which we may group as
follows:

jΦj ≪ 1; jΨj ≪ 1; jζj ≪ 1; ð4:1Þ

rjΦ0 þ Ψ0j ≪ 1; rjζ0j ≪ 1; rm2ζ2 ≪ jζ0j; ð4:2Þ

and on the assumption that the term containing ζ02 can be
neglected in Eq. (2.10).

1. External solutions

Let us consider the external solutions. From the expres-
sions (3.13), (3.27) and (3.28) it is apparent that the first
group of assumptions (4.1) is essentially equivalent (unless
mr⋆ is much bigger than one) to the condition of the
characteristic radii rζ and rg being much smaller than the
star’s radius,

rζ ≪ r⋆; rg ≪ r⋆: ð4:3Þ

It is not difficult to see that, in this case, the assumptions
(4.2) are automatically satisfied. Note in fact that

rjΦ0 þ Ψ0j ¼
���� rζ6r f1ðmrÞ − rg

r

����; rjζ0j ¼ rζ
6r

f2ðmrÞ;

rm2ζ2

jζ0j ¼ rζ
6r

f3ðmrÞ;

where we introduced the functions

f1ðxÞ ¼ x2e−x; f2ðxÞ ¼ ð1þ xÞe−x;

f3ðxÞ ¼
x2

1þ x
e−x:

Since f1, f2 and f3 are smaller than 1 on ½0;þ∞Þ, the
thesis follows.
When mr⋆ ≫ 1, instead, the condition rζ ≪ r⋆ becomes

superfluous, since the exponential e−mr suppresses all the
terms containing rζ. Therefore, in this case the assumptions
(4.1) and (4.2) are equivalent to the condition rg ≪ r⋆ only.
This is consistent with GR being recovered in the m → ∞
limit, since in GR the nonlinear terms in the equations of
motion are negligible whenever the characteristic radius
(i.e., the Schwarzschild one) is much smaller than the star’s
radius.
Regarding the role of the ζ02 term in Eq. (2.10), let us

consider the latter equation imposing the conditions (4.1)
and (4.2) but without neglecting ζ02. Instead of (3.20b), we
obtain

ðrΨÞ0 ¼ −r2m2ζ − 2r2ζ02 −
4πGN

3
r2ð2ρþ 3pÞ; ð4:4Þ

which can be readily integrated (in vacuum) to give

ΨextðrÞ ¼ ð1þmrÞ rζ
6r

e−mr −
rg
2r

þ ð2þmrÞ
�
rζ
6r

e−mr

�
2

:

ð4:5Þ
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By comparing (4.5) and (3.27), it is apparent that the term
in (2.10) containing ζ02 just produces a second order
correction to Ψext, which can be consistently neglected
whenever the conditions (4.1) hold.
We conclude that, as far as the external solutions are

concerned, only the weak-field conditions (4.1) need to be
assumed, since the conditions (4.2) and the negligibility of
the ζ02 term follow from them. In particular this implies that
the nonlinear terms in the equations of motion are negli-
gible whenever the characteristic radii rζ and rg are much
smaller than the star’s radius, which nicely generalizes the
analogous result which holds in GR.

2. Internal solutions

Regarding the internal solutions, the relationship
between the assumptions (4.1) and (4.2) is less clear.
This is so because the internal solutions depend on the
functions ρðrÞ and pðrÞ, instead of on the numbers rζ and
rg, and do so in a fairly complicated way.
On general grounds, we expect the scalar curvature ζ=α

to increase when we move inwards, towards the center of
the star. This expectation can be substantiated as follows.
Let us divide ζint into a “density” and a “pressure” part,

ζintðrÞ ¼ ζρintðrÞ − 3ζpintðrÞ; ð4:6Þ

where

ζρintðrÞ ¼
4πGN

3

�
e−mr

r

Zr

0

sinhmy
my

ρy2dy

þ sinhmr
mr

Zr⋆
r

e−myρðyÞydy
�
; ð4:7Þ

and ζpint is obtained by substituting ρ → p in the expression
above. Let us consider the case mr⋆ ≪ 1. It is then easy to
check that, if ρ and p are positive, then ζρint and ζpint are
positive and the derivatives ζρint

0 and ζpint
0 are negative,

so it follows that jζintj is decreasing in the direction of
increasing r. In the casemr⋆ ≫ 1, on the other hand, ζ=α is
approximately given by the GR relation ζ=α ¼ R ¼
8πGNðρ − 3pÞ. It is then evident that, if ρ and p are
positive and decreasing, then jζintj again is decreasing (in
the direction of increasing r). Since it is natural to expect ρ
and p to have the mentioned properties, the analysis of
these two limits indeed suggests jζintj to be decreasing.
Were this the case, the assumption jζj ≪ 1 (inside and
outside the star) would be implied by the condition

jζintð0Þj ¼
4πGN

3

Zr⋆
0

e−myðρðyÞ − 3pðyÞÞydy ≪ 1: ð4:8Þ

Overall it is likely that, to thoroughly understand the
relationship between the assumptions (4.1) and (4.2) inside
the star, a detailed discussion about the properties of ρ and
p is needed. Here we prefer not to embark in this
discussion, and simply limit our analysis to those configu-
rations where (4.1) and (4.2) hold, and where the term
containing ζ02 can be neglected in Eq. (2.10). We check
a posteriori, by numerical means, that these assumptions
are justified for the configurations analyzed in Sec. V.

B. The behavior of gravity

We are now in the position of drawing three interesting
conclusions.

1. Relationship between the masses

The first is a relationship between the geometric mass
Mg ¼ −C=GN and the masses M⋆ and M̃⋆ computed from
the density of the star. From Eq. (3.26) we have in fact

Mg ¼
�
M̃⋆
3

− P̃⋆
�
e−mr⋆ð1þmr⋆Þ þ

2M⋆
3

þ P⋆ þ Ξ⋆;

ð4:9Þ
so the geometrical mass takes into account the amount of
curvature inside the star (through Ξ⋆), its integrated density
and pressure, and depends explicitly on the range of the
extra scalar degree of freedom. The difference between the
two masses can be expressed as follows:

Mg −M⋆ ¼
�
M̃⋆
3

− P̃⋆
�
e−mr⋆ð1þmr⋆Þ−

M⋆
3

þP⋆ þΞ⋆:

ð4:10Þ

It is not immediately evident which mass is larger, since
both M̃⋆=3 − P̃⋆ and M⋆=3 − P⋆ are non-negative (for
nonexotic matter at least).
In the m → ∞ limit, which corresponds to the GR limit

α → 0, from Eq. (3.3) we recover the GR result ζ=α →
8πGNðρ − 3pÞ and, thus,

Ξ⋆ →
m→∞

M⋆
3

− P⋆ and Mg →
m→∞

M⋆; ð4:11Þ

as expected.5 In the opposite limit m → 0, which means
that the range of ζ tends to infinity, taking into account
(3.10) we get

5The result ζ=α → 8πGNðρ − 3pÞ when m → ∞ can also be
obtained from the expression (3.5), by recognizing an appropriate
realization of the Dirac delta inside the integral.
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Mg −M⋆ ⟶
m→0

Ξ⋆: ð4:12Þ

Since the expression (3.14) implies that ζ remains bounded
when m → 0, from the definition (3.22) it follows that in
this limit Ξ⋆ → 0 and therefore

Mg −M⋆ ⟶
m→0

0: ð4:13Þ

In the forthcoming paper [59] we discuss the magnitude
and physical meaning of the difference between Mg and
M⋆, focusing for the sake of concreteness on neutron stars
and their mass-radius relation.

2. The PPN gamma parameter

The second interesting conclusion that we draw from our
analysis is a prediction on the post-Newtonian parameter γ,

γ ¼ Ψ
Φ
; ð4:14Þ

which from Eqs. (3.27) and (3.28) can be expressed as
follows:

γ ¼ 3rg − rζe−mrð1þmrÞ
3rg þ rζe−mr ; ð4:15Þ

and explicitly

γ ¼ ðM̃⋆ − 3P̃⋆Þe−mr⋆ð1þmr⋆Þ þ 2M⋆ þ 3P⋆ þ 3Ξ⋆ − ðM̃⋆ − 3P̃⋆Þe−mrð1þmrÞ
ðM̃⋆ − 3P̃⋆Þe−mr⋆ð1þmr⋆Þ þ 2M⋆ þ 3P⋆ þ 3Ξ⋆ þ ðM̃⋆ − 3P̃⋆Þe−mr : ð4:16Þ

Well outside the range of the scalar degree of freedom, that
is for radii r ≫ m−1, we recover γ ¼ 1 as expected (the
spacetime being asymptotically flat).
Let us however suppose that mr⋆ ≪ 1, and consider the

region well inside the range of the scalar degree of freedom
(that is, r⋆ ≤ r ≪ m−1). Recalling Eq. (3.10) and the fact
that Ξ → 0 when m → 0, we get

γ ≃
2M⋆ þ 3P⋆
4M⋆ − 3P⋆

for r⋆ ≤ r ≪ m−1; ð4:17Þ

which in general is smaller than 1 but larger than 1=2,
unless the pressure vanishes. This relation generalizes the
results of various papers in the literature, for example [48–
50], which find γ ¼ 1=2 by neglecting the pressure. It is
worthwhile to recall that the condition of asymptotic
flatness is consistent for models where f is analytic in
R ¼ 0, while this is not true in models like, for example,
fðRÞ ¼ R − μ4=R. Therefore, our result should be properly
seen as a generalization of the results concerning the former
class of fðRÞ models.

3. Relativistic (conformal) matter

Note that, for a hypothetical star composed exclusively
of relativistic matter and radiation, we obtain γ ¼ 1
independently from the range of the extra scalar degree
of freedom. This agrees with our previous comment at the
end of Sec. III A 1, about the extra degree of freedom being
masked. Interestingly, we may expect the central part of a
neutron star to be described by the equation of state p ¼
ρ=3 when the central density is high enough, although with
certainty it will not be so for the outer layers [60]. While
this means that the masking of the scalar degrees of
freedom (DOF) cannot be relevant for ordinary stars, it

leaves open the possibility of this behavior being relevant
for exotic stars. In particular, the bag model for quark stars
[61–64] predicts an equation of state of the form
p ¼ ρ=3þ B, where B is the bag model constant, whose
value is taken to be about B ∼ 100 MeV4. In that case

γ ¼ M⋆ þ B⋆
M⋆ − B⋆

; ð4:18Þ

where B⋆ ≡ R
V⋆ BdV. Considering a star with the same

mass of the sun M⋆ ∼M⊙, we get

γ ∼ 1.2: ð4:19Þ

Both the conclusions γ ¼ 1 and ζ ¼ 0 could have been
foretold directly from the fourth order equation (2.2). Let us
consider the case of conformal matter (i.e., matter whose
energy-momentum tensor is trace-free). Taking first of all
the trace of the Eq. (2.2), we get the following second order
equation for R:

□R −m2R ¼ 0: ð4:20Þ

Considering static configurations, the only regular and
asymptotically decaying solution of the latter equation is
R ¼ 0. This conclusion relies crucially on the condition
T ¼ 0 being valid everywhere (i.e., also at the origin).
Inserting R ¼ 0 back into the Eq. (2.2) we get

Rμν ¼ 8πGNTμν; ð4:21Þ

which is Einstein’s equation in the presence of conformal
matter. This shows that, at least for static, regular and
asymptotically flat configurations, Starobinsky fðRÞ

PRESSURE EFFECTS IN THE WEAK-FIELD LIMIT … PHYS. REV. D 99, 104046 (2019)

104046-7



gravity gives the same predictions as GR when only
conformal matter is present.

V. NUMERICAL SOLUTIONS

In this section we support our analytic study in the linear
approximation with fully numerical solutions of the non-
linear system of Eq. (2.9). The part which especially calls
for confirmation is Sec. IVA 2, which concerns our
assumptions about the behavior of the fields Φ, Ψ and ζ
inside the star. While we showed that, outside the star, our
approximations follow from the weak-field conditions
jΦj ≪ 1, jΨj ≪ 1, and jζj ≪ 1, regarding the interior of
the star we just assumed this to be the case. It is important
to understand whether this indeed happens, and whether it
is a quite general property or not. To investigate this, and in
particular probe the generality of our assumptions, it is
convenient to consider a star configuration which is close to
the limit of validity of the linear approximation. For this
reason we decide to use neutron stars as a testbench for our
analysis.
This choice may seem questionable, since neutron stars

are naively associated with the idea of the gravitational field
being “strong.” Recall however that, for what concerns
static and spherically symmetric solutions in GR, the
nonlinear terms in the equations of motion become of
the same order of the linear ones at the Schwarzschild
radius, which means that outside a (static and spherically
symmetric) neutron star the former are subdominant
(although in general not negligible). To compromise with
the request of the linear approximation being valid, we
consider neutron stars with suitably small central density.
We model our star with the polytropic equation of state:

p ¼ kρ2; ð5:1Þ

with

k ¼ 4.012 × 10−4 fm3=MeV: ð5:2Þ

The choice of this equation of state, which admittedly
provides only an approximated description of a neutron star
[65], is justified because our main aim here is testing the
validity of the analysis of Secs. III and IV. For this reason
we do not feel it is necessary to use a more realistic Sly
equation of state [66].

A. Numerical strategy

As a preparation to the numerical integration, we recast
the system (2.9) in terms of dimensionless quantities. To
this aim, we choose to normalize the quantities under
consideration to the Sun’s half Schwarzschild radius:

r0 ≡GNM⊙

c2
≃ 1.5 km; ð5:3Þ

and to provide a transparent dimensional analysis we
temporarily reinstate the constant c. We therefore introduce
the dimensionless radial coordinate x ¼ r=r0, and work
with the following dimensionless quantities:

ρ̂ðxÞ ¼ GNr20
c4

ρðr0xÞ; p̂ðxÞ ¼ GNr20
c4

pðr0xÞ;

α̂ ¼ α

r20
; k̂ ¼ c4

GNr20
k ≃ 139; ð5:4Þ

along with ζ̂ðxÞ¼ζðr0xÞ, ÂðxÞ¼Aðr0xÞ and B̂ðxÞ¼Bðr0xÞ.
To find the numerical solutions we employ a shooting

method, imposing the initial conditions at the center of the
star. Note on this respect that, although the Eqs. (2.9) are
formally singular at r ¼ 0, they admit solutions which are
regular at the origin. It is not difficult to see that, asking the
pressure and the density at the center of the star to be finite,
solutions which are analytic in r ¼ 0 can exist only
provided

A0ð0Þ ¼ 0 Bð0Þ ¼ 1 B0ð0Þ ¼ 0 ζ0ð0Þ ¼ 0: ð5:5Þ

Furthermore, the Eqs. (2.9) are invariant under the rescaling
of A by an arbitrary constant. It follows that changing the
initial condition Að0Þ ¼ A0 results simply in a rescaling of
the function AðrÞ, while leaving BðrÞ and ζðrÞ unchanged.
We are therefore free to choose the initial condition A0 ¼ 1,
and a posteriori rescale the function AðrÞ such that it tends
to 1 far from the star. This leads us to consider the
conditions

Âð0Þ ¼ 1 B̂ð0Þ ¼ 1 ζ̂ð0Þ ¼ ζ̂0
dζ̂
dx

ð0Þ ¼ 0 ρ̂ð0Þ ¼ ρ̂0;

ð5:6Þ

where the pressure p̂ has not been included since it is
determined by ρ̂ via the equation of state. The central
density ρ̂0 and central curvature ζ̂0 are free parameters. We
choose the former a priori and then determine ζ̂0 via the
shooting, selecting the solution for ζ̂ which decays expo-
nentially to zero far from the star [meaning at x ≫

ffiffiffî
α

p
∼

ðmr0Þ−1] where the external solution Eq. (3.8) is valid. The
star’s radius is determined to be that for which ρ̂ becomes
negative.
There is a technical subtlety regarding the initial con-

ditions. Since the formal singularity at r ¼ 0 is problematic
for the numerical integrator, it is not possible to set the
initial conditions for the numerical code exactly at x ¼ 0.
We therefore use xi ¼ 10−5 as the initial radius for the
numerical code. Plugging into the Eqs. (2.9) the Taylor
expansion of Â, B̂, ζ̂, ρ̂ and p̂ around x ¼ 0, and working at
first order in xi, it can be seen that the conditions (5.6)
imply the following initial conditions:
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ÂðxiÞ ¼ 1; B̂ðxiÞ ¼ 1; ρ̂ðxiÞ ¼ ρ̂0; ζ̂ðxiÞ ¼ ζ̂0;

ð5:7Þ

and

dζ̂
dx

ðxiÞ ¼
1

6 × 105

�
ζ̂0
α̂
þ 8πρ̂0ð3k̂ρ̂0 − 1Þ

�
: ð5:8Þ

B. Numerical results

We choose for definiteness the model with α ¼ 107r20
and consider a neutron star with central density
ρ0 ¼ 4 × 1013 g=cm3. The star’s radius inferred from the
shooting is r⋆ ≃ 11.60r0, while the range of the scalar
degree of freedom is m−1 ≃ 7.746 × 103r0, so the ratio of
the former to the latter is mr⋆ ≃ 1.498 × 10−3. This implies
that we are in the regime where (4.17) should hold, that is
the regime where the range of the scalar degree of freedom
is much bigger than the star’s radius.

The behavior of the gravitational field is clearly illus-
trated in the Figs. 1(a) and 1(b). In Fig. 1(a) the gravita-
tional potentials, multiplied by r=r0, are plotted. In
agreement with the analysis of the previous sections, it
is apparent that there are two Newtonian regions, one for
r⋆ ≤ r ≪ m−1 and one for r ≫ m−1, with a non-Newtonian
transition region in between. This behavior is confirmed by
the plot of the PPN parameter γ, displayed in Fig. 1(b),
which tends asymptotically to unity as expected.
Noteworthy, the value of the γ parameter outside the star
is γ⋆ ≃ 0.5085, which is higher than 1=2 at the 1% level.
In Figs. 2(a) and 2(b) the gravitational potentials (this time

not multiplied by r=r0) and the scalar degree of freedom
ζ are plotted. It is easy to see that they are everywhere of
the order 10−2 or smaller, so they satisfy the weak field
conditions jΦj ≪ 1, jΨj ≪ 1 and jζj ≪ 1. In relation to the
discussion of Sec. IVA, the numerically inferred gravita-
tional radii are rζ ¼ 0.2503r0 and rg ¼ 0.2561r0, a factor
102 smaller than the star’s radius. According to our analysis,
this should imply the conditions (4.2) to be satisfied outside

(a) (b)

FIG. 1. The behavior of the gravitational field. The continuous vertical line marks the star’s surface while the dashed line marks the
range of the scalar DOF. (a) The gravitational potentials times r=r0. (b) The PPN parameter γ.

(a) (b)

FIG. 2. The amplitude of the gravitational potentials and the scalar DOF ζ. The meaning of the vertical lines is the same as above.
(a) The gravitational potentials. (b) The scalar DOF ζ.
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the star. Indeed, we verified numerically that all the terms
appearing in (4.2) are of order 10−2 or smaller. Most
importantly, this holds also inside the star, which confirms
our assumption about the internal behavior of the solutions
(see Sec. IVA 2). In particular ζ is indeed monotonically
decreasing, as suggested and motivated in the aforemen-
tioned section. Overall, these numerical results strongly
support the consistency of our approximations and the
validity of the analysis of Secs. III and IV.
Let us comment on the relation (4.17). The numerical

analysis gives the following estimates:

M⋆ ¼ 0.128682 M⊙ P⋆ ¼ 4.7918 × 10−4 M⊙

Ξ⋆ ¼ 4.11868 × 10−8 M⊙ ð5:9Þ

and indicates that M̃⋆ is equal to M⋆ to the fifth significant
digit (the same happens for P̃⋆ and P⋆). The smallness of
Ξ⋆, M̃⋆ −M⋆ and P̃⋆ − P⋆ is expected from (3.10) and
from the analysis of Sec. IV B 1, and implies that approxi-
mating (4.16) with (4.17) is justified in the context of the
linear approximation.

VI. CONCLUSIONS AND COMMENTS

In this paper we studied static, spherically symmetric and
asymptotically flat configurations of Starobinsky fðRÞ
gravity in the metric formalism. We focused on the
behavior of gravity in the linear regime in the presence
of a static star, without a priori assuming the pressure of the
latter to be negligible.
We found that the PPN parameter γ outside the star and

well inside the range of the scalar degree of freedom can be
larger than 1=2. We provided a relation which explicitly
expresses γ in terms of the mass, of the integrated pressure
of the star and of the ratio between the star’s radius and the
range of the extra degree of freedom. We showed explicitly
that at least two different, sensible notions of mass
(frequently used in the literature for analyzing e.g., the
stability of neutron stars) are possible in the context of the
fðRÞ model under consideration (and possibly also for
more general models). We derived an analytic formula
relating the two, showing, as expected, that they coincide in
the GR limit. Though aware that this might be an unrealistic
configuration, we also showed that in the limit where the
matter content forming the star tends to pure radiation, then
no effect from the extra scalar degree of freedom appears,
as if it were masked.
Our analysis and results are based on a set of assump-

tions, which include the usual weak-field conditions, whose
consistency was analytically proved only for the exterior
solutions of the fields. The interior ones are described by
semianalytic formulas and depend on integrals which can
be computed, in practice, only numerically. Therefore, in
order to assess the viability of our assumptions regarding
the interior of the star, we performed a numerical analysis

considering for concreteness the case of a neutron star. We
found that the conditions we assumed to hold inside the star
are indeed satisfied, thus providing firm ground to our
analytic study and results also in that range of radii.
It is worthwhile at this point to discuss how our analysis,

and in particular our choice of considering asymptotically
flat configurations, relates to that of [48], where a (homo-
geneous) cosmological background, with associated cosmo-
logical energy-momentum tensor, is included. Note that in
[48], whenever the gravitational field outside a star is
studied, the time dependence of the cosmological back-
ground is neglected (with the sensible justification that the
cosmological evolution is slow compared to the typical
timescales of, say, the Solar System). In this case, therefore,
the role of the cosmological background reduces purely to
setting the boundary conditions for the metric and the scalar
curvature, when the distance from the star tends to infinity.
Allowing for a nonzero cosmological value R0 for the scalar
curvature is indeed crucial for a generic fðRÞ theory, since
R ¼ 0 is not necessarily an allowed configuration of the
theory [for example, it is not allowed if fðRÞ contains
negative powers of R]. However, for the Starobinsky model
the cosmological background given by R0 ¼ 0 is an allowed
configuration. As a matter of fact, when the Starobinsky
model is studied in [48], they set to zero both the cosmo-
logical energy-momentum tensor and the background value
of the scalar curvature, that is they take R0 ¼ 0. This shows
that considering asymptotically flat solutions not only is
compatible with the approach of [48], being equivalent to
considering a homogeneous and static cosmological back-
ground with R0 ¼ 0, but actually fits nicely in that approach.
A natural further development of this work would be to

generalize its results for a generic function fðRÞ, at least
qualitatively [since a numerical analysis without specifying
a functional form for fðRÞ is impossible]. Moreover, in a
forthcoming paper [59] we are analyzing a realistic model
of neutron star, focusing on the mass-radius relation, in
order to understand how the use of the two definitions of
mass introduced in the present paper influence the analysis
of the properties of a neutron star and their estimation from
observational data.
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