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In the present paper, we consider the extended scalar-tensor Gauss-Bonnet gravity with a massive scalar
field. We prove numerically the existence of Gauss-Bonnet black holes for three different forms of the
coupling function including the case of spontaneous scalarization. We have performed a systematic study
of the black hole characteristics such as the area of the horizon, the entropy, and the temperature for these
coupling functions and compared them to the Schwarzschild solutions. The introduction of scalar field
mass leads to a suppression of the scalar field, and the increase of this mass brings the black holes closer to
the Schwarzschild case. For linear and exponential coupling, a nonzero scalar field mass expands the
domain of existence of black hole solutions. Larger deviations from the Schwarzschild solution are
observed only for small masses, and these differences decrease with the increase of the scalar field mass.
In the case of a coupling function which leads to scalarization, the scalar field mass has a significant
influence on the bifurcation points where the scalarized black holes branch out of the Schwarzschild
solution. The largest deviation from the case with a massless scalar field are observed for black hole masses
close to the bifurcation point.
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I. INTRODUCTION

Ones of the natural modifications of general relativity
(GR) are the extended scalar-tensor theories (ESTT) where
the usual Einstein-Hilbert action is supplemented with all
possible algebraic curvature invariants of second order and
a dynamical scalar field nonminimally coupled to these
invariants [1–4]. A particular sector of ESTT is the
extended scalar-tensor Gauss-Bonnet (ESTGB) gravity
for which the scalar field is coupled exactly to the
topological Gauss-Bonnet invariant. The field equations
of the ESTGB gravity are of second order as in general
relativity, contrary to the general ESTT where they are of
higher order. One of the most studied models in the last
decade within ESTGB gravity is the so-called Einstein-
dilaton-Gauss-Bonnet (EdGB) gravity, which is character-
ized by the coupling function αeγφ for the dilaton field, with
α and γ being constants. The nonrotating EdGB black holes
were studied perturbatively or numerically in Refs. [5–8]. It
was shown that the EdGB black holes exist when the black
hole mass is greater than a certain lower bound proportional
to the parameter α. The slowly rotating black holes in
EdGB gravity were studied in Refs. [8–10]. The rapidly

rotating EdGB black holes were constructed numerically in
Refs. [11–14]. The rotating EdGB black holes can exist
only when the mass and the angular momentum fall in a
certain domain, depending on the coupling constant.
Another very interesting fact about the EdGB black holes
is that they can exceed the Kerr bound for the angular
momentum. The ESTGB black holes were further studied
in Refs. [15–19]. The stability and the quasinormal modes
of EdGB black holes were examined in Refs. [20,21]. The
dynamical evolution in Gauss-Bonnet gravity and different
aspects of collapse were examined in Refs. [22–27].
Recently, the interest in ESTGB gravity was provoked

by the discovery of the spontaneous scalarization of the
Schwarzschild black holes within a certain class of ESTGB
gravity [28,29]. It was shown that in a certain class of ESTGB
theories there exist newblack hole solutionswhich are formed
by spontaneous scalarization of the Schwarzschild black
holes in the extreme curvature regime. In this regime, below
a certain mass, the Schwarzschild solution becomes unstable,
and a new branch of solutions with nontrivial scalar field
bifurcates from the Schwarzschild one. As a matter of fact,
more than one branch with a nontrivial scalar field can
bifurcate at different masses, but only the first one can be
stable. In contrastwith the standard spontaneous scalarization
of neutron stars [30] and black holes [31,32] in the standard
scalar-tensor theories, which is induced by the presence of
matter, in the case under consideration, the scalarization is
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induced by the curvature of the spacetime. The spontaneous
scalarization and the scalarized black holes in ESTGB
theories were studied in different aspects in many papers
[33–42].
The ESTGB black holes have been studied only in the

case when the scalar is massless. As a first step, this is quite
a natural assumption. However, a more realistic treatment
of the problem requires a massive scalar field and even a
scalar field with self-interaction as done in Ref. [43] for the
case of neutron stars. Indeed, certain sectors of extended
scalar-tensor theories arise naturally in string theory, and at
low energies, supersymmetry is broken, which leads to a
massive scalar field. The inclusion of scalar field mass can
change the picture considerably. It suppresses the scalar
field at a length scale of the order of the Compton
wavelength, which helps us reconcile the theory with the
observations for a much broader range of the coupling
parameters and functions.
The purpose of the present paper is to study the black

holes in ESTGB gravity with a massive scalar field. More
precisely, we construct numeral black holes solutions in
ESTGB gravity with linear and exponential coupling for
the scalar field and also study their basic properties. We
also study the spontaneous scalarization of Schwarzschild
black hole in ESTGB gravity and show that there exist
scalarized Gauss-Bonnet black holes with a massive scalar
field. Some basic characteristics of the Gauss-Bonnet black
holes with a massive scalar field are studied, too.

II. BASIC EQUATIONS AND SETTING
THE PROBLEM

The general vacuum action of ESTGB theories is
described by

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R− 2∇μφ∇μφ−VðφÞ þ λ2fðφÞR2
GB�;

ð1Þ

where R is the Ricci scalar curvature with respect to the
spacetime metric gμν, φ is the scalar field with a potential
VðφÞ and a coupling function fðφÞ depending only on φ, λ
is the Gauss-Bonnet coupling constant having dimension of
length, and R2

GB is the Gauss-Bonnet invariant.1 The field
equations derived by the action (1) are the following,

Rμν −
1

2
RgμνþΓμν ¼ 2∇μφ∇νφ− gμν∇αφ∇αφ−

1

2
gμνVðφÞ;

∇α∇αφ¼ 1

4

dVðφÞ
dφ

−
λ2

4

dfðφÞ
dφ

R2
GB; ð2Þ

where ∇μ is the covariant derivative with respect to the
spacetime metric gμν and Γμν is defined by

Γμν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨα

�
Rμν −

1

2
Rgμν

�

þ 4Rμα∇αΨν þ 4Rνα∇αΨμ − 4gμνRαβ∇αΨβ

þ 4Rβ
μαν∇αΨβ ð3Þ

with

Ψμ ¼ λ2
dfðφÞ
dφ

∇μφ: ð4Þ

In the preset paper, we shall focus on the simplest massive
potential, namely

VðφÞ ¼ 2m2
φφ

2; ð5Þ
where mφ is the mass of the scalar field.
We consider static and spherically symmetric spacetimes

as well as static and spherically symmetric scalar field
configurations. The spacetime metric can then be written in
the standard form

ds2 ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð6Þ
The dimensionally reduced field equations (2) are the
following,

2
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with

1The Gauss-Bonnet invariant is defined by R2
GB ¼ R2−

4RμνRμν þ RμναβRμναβ, where R is the Ricci scalar, Rμν is the
Ricci tensor, and Rμναβ is the Riemann tensor.
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Ψr ¼ λ2
dfðφÞ
dφ

dφ
dr

: ð11Þ

The boundary and the regularity conditions for the above
system of differential equations are as follows. As usual,
the asymptotic flatness imposes the following asymptotic
conditions:

Φjr→∞ → 0; Λjr→∞ → 0; φjr→∞ → 0: ð12Þ

The very existence of a black hole horizon at r ¼ rH
requires

e2Φjr→rH → 0; e−2Λjr→rH → 0: ð13Þ

The regularity of the scalar field and its first and second
derivatives on the black hole horizon gives one more
condition. From this condition, one can derive the con-
dition for existence of black hole solutions, namely

16ðmφλÞ2
�
dfðφÞ
dφ

�
2

H
φH

�
½ðmφrHÞ2φ2

H − 6�φH

�
dfðφÞ
dφ

�
2

H
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�
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dφ

�
H

�
rH
λ

�
2

þ φH

�
rH
λ

�
4
�

þ
�
rH
λ

�
6

− 24

�
dfðφÞ
dφ

�
2

H

�
rH
λ

�
2

≥ 0: ð14Þ

The mass of the black hole M is obtained through the
asymptotics of the function Λ or Φ, namely

Λ ≈
M
r
þOð1=r2Þ; Φ ≈ −

M
r
þOð1=r2Þ: ð15Þ

Concerning the asymptotic of the scalar field, we have

φ ∼
e−mr

r
: ð16Þ

III. NUMERICAL RESULTS

The system (7)–(10) is solved numerically using a
shooting method that is discussed in detail in Ref. [28].
The difference in the present case is the addition of scalar
field mass that makes the system of equations (7)–(10) stiff.
This complicates the numerical solution of the problem
significantly and requires careful adjustments of the
parameters of the code [43,44].
We will consider three different forms of the coupling

function fðφÞ. The first two cases are a linear and an
exponential coupling. The third coupling function is the
function that allows for spontaneous scalarization of the
Schwarzschild black hole in the ESTGB gravity with a
massless scalar field [28].

A. Black holes with linear coupling

We start our study with the simplest case of a linear
coupling function

fðφÞ ¼ φ ð17Þ

and potential having the form of Eq. (5). Thus, the free
parameters of the problem are the mass of the scalar field
and the parameter λ. The quantities presented below, such
as the black hole mass, radius of the horizon, etc., are scaled
with respect to λ.
In the left panel of Fig. 1, we plot the black hole radius

vs the black hole mass for different values of the scalar
field mass mφ. All these quantities are rescaled with
respect to the coupling constant λ as we commented, and
for simplicity, hereafter, we will refer to them without
mentioning the scaling explicitly. One can see that the
radius of the black hole is always smaller, compared to the
GR case. The deviation is maximal for small black hole
masses and decreases with the increase of the mass of the
black hole. When the massless field is exchanged with a
massive one, it is clear that, with the increase of the mass

FIG. 1. Left: The radius of the horizon vs the black hole mass for the linear coupling function (17). Both are rescaled with respect to the
coupling constant λ. Right: The value of the scalar field on the horizon vs the rescaled black hole mass. The notations on both panels are
identical. The results are for different values for the scaled mass of the scalar field λmφ in different colors and patterns.
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of the field, the radius converges to the Schwarzschild one
and the scalar field decreases as well. This is completely
expected since introducing a mass of the scalar field leads
to the fact that the scalar field is, loosely speaking,
confined within its Compton wavelength and higher
masses lead to smaller Compton wavelengths. For each
sequence of Gauss-Bonnet black holes, there exists a
minimal mass Mcrit below which no black hole solutions
exist because condition (14) is violated. Introducing a
scalar field mass leads to a decrease of Mcrit; i.e., the
domain of existence of black hole solutions expands, and
larger scalar field mass leads to smaller Mcrit.
In the right panel of Fig. 1, we present the value of the

scalar field on the horizon φH as a function of the black
hole mass. It is clear that φH decreases rapidly with the
increase of the black hole mass, which is in accordance
with the larger deviations from the Schwarzschild solution
in the black hole horizon for small masses M. In this
figure, we can observe as well the suppression of the
scalar field with the increase of mφ, that we com-
mented above.

In the left panel of Fig. 2, we plot the area of the horizon,
AH ¼ 4πr2H, rescaled by λ, vs the mass of the black hole. In
this case as well, the deviations from GR are larger only for
the smallest black hole masses for which the solutions in
ESTGB gravity exist, and they converge to GR when the
scalar field mass mφ increases. In the right panel, we plot
the area of the horizon, normalized to the Schwarzschild
area AH=ð16πM2Þ, which gives us a better representation of
the deviations from GR. The normalized area of the horizon
is smaller for the massless case, and it increases with the
increase of the scalar field mass, converging to the GR case.
In the left panel of Fig. 3, we plot the rescaled entropy of

the black hole as a function of its mass. We adopt the
entropy formula proposed by Wald [45,46], namely

SH ¼ 1

4
AH þ 4πλ2fðφHÞ: ð18Þ

In this case as well, minor deviations are observed,
increasing only for small masses. For better presentation
of the deviations from GR in the right panel, we

FIG. 2. Left: The area AH of the black hole horizon vs the mass of the black hole for the linear coupling function (17). Both are
rescaled with respect to the coupling constant λ. Right: The normalized, to the Schwarzschild limit, area of the horizon AH=ð16πM2Þ vs
the rescaled mass of the black hole. The notations in both panels are identical. The results are for different values for the scaled mass of
the scalar field λmφ in different colors and patterns.

FIG. 3. Left: The entropy of the black hole vs its mass for the linear coupling function (17). Both are rescaled to the coupling constant.
Right: The normalized, to the Schwarzschild limit, entropy on the horizon, SH=ð4πM2Þ, vs the rescaled mass of the black hole. The
notations on both panels are the same as in the figures above.
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plot the normalized to the Schwarzschild limit entropy,
SH=ð4πM2Þ, vs the black hole mass. In this normalization,
it is clear that the entropy of the Gauss-Bonnet black holes is
always larger than the entropy of the Schwarzschild black
hole, and it decreases with the increase of the mass of the
scalar field.
In Fig. 4, in the left panel, we plot the temperature of the

black hole vs its mass. The temperature is higher than in
the GR case for models with low mass, and it gets closer to
the GR one with the increase of the mass of the black hole.
As one can expect, the temperature converges to the
GR one with the increase of the mass of the scalar field.
In the right panel, for better presentation of the deviations
from GR, we plot the temperature normalized to the
Schwarzschild limit TH8πM.

B. Black holes with exponential coupling

Here, we present our numerical results for EdGB black
holes with a massive scalar field and coupling function
given by

fðφÞ ¼ 1

4
e2γφ ð19Þ

with γ being a parameter.
In Fig. 5, we present the radius of the black hole vs its

mass for different masses of the scalar field. In the left
panel, we present the results for three different values for
the parameter γ, namely γ ¼ 1, γ ¼ 2, and γ ¼ 3, and in the
right panel, we present the results only for γ ¼ 3. As one
can see, the behavior is qualitatively the same for all values
of γ and increasing γ leads to an increase of the threshold
mass below which no EdGB black holes exist. In the
massless limit, we could observe the existence of a
secondary branch of solutions after a minimum of the
mass is reached for all values of γ, even though in this
resolution only the secondary branches for γ ¼ 3 are clearly
visible. In the right panel, only the results for γ ¼ 3 are
presented in order to have better visibility of the mφ

dependence of the results. One can see that, with the
increase of the mass of the field, the secondary branch

FIG. 4. Left: The temperature of the black hole vs its mass for the linear coupling function (17). Both are rescaled to the coupling
constant. Right: The normalized, to the Schwarzschild limit, temperature on the horizon, TH8πM, vs the rescaled mass of the black hole.
The notations on both panels are the same as in the above figures.

FIG. 5. Left: Radius of the horizon vs the mass of the black hole for different values of the parameter γ for the exponential coupling
function (19). Both are rescaled with respect to the coupling constant λ. Right: Radius of the horizon vs the mass of the black hole for
γ ¼ 3. The notations on both panels are identical. The results are for different values for the rescaled, with the coupling constant, mass of
the scalar field λmφ in different colors and patterns.
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gradually disappears (it gets shorter). At the same time,
the minimal mass for which the EdBG solutions exist
significantly shifts to lower masses, and it tends to 0 in the
mφ → ∞ limit.
In Fig. 6, we plot the value of the scalar field on the

horizon as a function of the black hole mass. In this case as
well, the value of the scalar field decreases with the increase
of the black hole mass as well as with the increase of the
scalar field mass. In the case of γ ¼ 3, one can clearly see
that a minimum of the mass is reached, which marks the
existence of a second branch of solutions.
In Fig. 7, we plot the area of the horizon vs the black hole

mass in the left panel and the normalized area AH=ð16πM2Þ
vs the mass in the right panel. In the left panel, one can see
that the area of the black hole horizon is smaller than the
Schwarzschild one, and it converges to the GR one with the
increase of the scalar field mass. The secondary branches
are clearly distinguishable in this case as well, and the

behavior is the one we have already mentioned—the
second branch of solutions gradually disappears with the
increase of the scalar field mass. On the right, we print
the normalized area of the horizon vs the mass of the black
hole. This graph can be used for better representation of
how the deviations from GR change with the mass of the
scalar field and with the parameter γ.
In the left panel of Fig. 8, we plot the entropy on the

black hole horizon, calculated via the expression

SH ¼ 1

4
AH þ 4πλ2

�
fðφHÞ −

1

4

�
: ð20Þ

No significant deviations from GR are observed for the
range of masses for which solutions exist and for the scale
used in the graphs. In the right panel, we plot the
normalized entropy, SH=ð4πM2Þ, vs the black hole mass
in order to study in more details the deviations of the
entropy from the GR case. The differences with GR are
smaller, compared to the linear coupling. However, the
secondary branch of solutions is clearly visible on the
figure for high values of γ and low values of the scalar field
mass (part of the γ ¼ 2 case is zoomed in the small panel).
For all of the studied cases (both massless and massive), the
secondary branch has lower entropy compared to the main
branch, which leads to the conclusion that it is most likely
unstable, similarly to the massless case [21] (see also
Ref. [20]).
In Fig. 9 in the left panel, we plot the temperature of the

black hole vs its mass. The temperature is higher than
the GR case for models with low mass, and it gets closer to
the GR one with the increase of the mass of the black hole.
As one can expect, the temperature converges to the GR
one with the increase of the mass of the scalar field. The
secondary branches exist for all three values of γ just like in
the figures above, but they are not visible due to the scale of

FIG. 6. The value of the scalar field on the horizon vs the
rescaled mass of the black hole for the exponential coupling
function (19).

FIG. 7. Left: The area AH of the black hole horizon vs the mass of the black hole for the exponential coupling function (19). Both are
rescaled with respect to the coupling constant λ. Right: The normalized, to the Schwarzschild limit, arena of the horizon AH=ð16πM2Þ vs
the rescaled mass of the black hole. The notations on both panels are identical. The results are for different values of the parameter γ and
different values for the rescaled, with the coupling constant, mass of the scalar field λmφ in different colors and patterns.
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the figure. In the right panel, for better presentation of the
deviations from GR, we plot the temperature normalized to
the Schwarzschild limit, TH8πM. In this case, the secon-
dary branches can be distinguished in the figure for high
values for γ.

C. Spontaneously scalarized black holes

Here, we present our numerical results for ESTGB black
holes with a massive scalar field and coupling function
given by

fðφÞ ¼ 1

2β
ð1 − e−βφ

2Þ ð21Þ

with β > 0 being a parameter. This coupling function in the
case when the scalar field is massless allows for a
spontaneous scalarization of the Schwarzschild black hole
[28]. In our numerical solutions, we shall use β ¼ 12, but

similar results are observed for other values of β as well. We
refer the reader to Ref. [37] for an extensive discussion of
the influence of the parameter β on the properties of the
scalarized solutions in the massless case.
As we know from the massless scalar field case [28,37],

for such coupling in addition to the Schwarzschild
solution additional scalarized solutions branch out of the
Schwarzschild solution. These scalarized solutions can be
labeled with the number of zeros of the scalar field. As the
stability analysis of the solutions shows, though, only the
solution with no zeros of the scalar field is stable, while
the rest possessing one or more zeros in the radial direction
are always unstable [34]. For this reason, in the present
paper, wewill present only the solutions with no zeros of the
scalar field. We should note that the Schwarzschild solution
is also unstable for black hole masses below the mass
corresponding to the bifurcation point [37].
The points of bifurcation for different masses of the

scalar field can be best observed in Fig. 10 where the

FIG. 8. Left: The entropy of the black hole vs its mass for the exponential coupling function (19). Both are rescaled to the coupling
constant. Right: The normalized, to the Schwarzschild limit, entropy SH=ð4πM2Þ on the horizon vs the rescaled black hole mass. The
notations are the same as in the figures above.

FIG. 9. Left: The temperature of the black hole vs its mass for the exponential coupling function (19). Both are rescaled to the coupling
constant. Right: The normalized, to the Schwarzschild limit, temperature TH8πM on the horizon vs the rescaled black hole mass. The
notations are the same as in the figures above.
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horizon radius and the scalar field on the horizon are plotted
as functions of the black hole mass. In the figure, we have
plotted only the branches with φH > 0. Because of the Z2

symmetry of the dimensionally reduced field equations for
our coupling function (21) and the potential of the scalar
field (5), it is clear that solutions with an opposite sign of
the scalar field but with the same metric functions exist. As
one can see, the scalar field mass causes significant
deviations from the case with a massless scalar field mainly
for larger black hole masses close to the bifurcation point.
For small black hole masses, the solutions with zero and
nonzero mφ are almost indistinguishable from the mφ ¼ 0

case. The point of bifurcation moves to smaller black hole
masses with the increase of mφ. The shift of the bifurcation
point when a nonzero mφ is introduced was actually first
reported and examined in detail for scalarized neutron stars
in Ref. [43]. This shift of the bifurcation point and the
deviations from the massless scalar field case for larger
black hole masses can also be observed in Fig. 11, where

the area of the horizon as a function of the black hole mass
is plotted.
The entropy is calculated using the same formula as for

the linear coupling (18), and it is plotted in Fig. 12 for two
different normalizations. As one can see, the scalarized
black hole solutions always have larger entropy compared
to the Schwarzschild solution, and thus they are thermo-
dynamically favorable. This observation is true both for the
massless and the massive branches of solutions.
The temperature of the scalarized black holes, plotted in

Fig. 13, is always larger than the Schwarzschild one. For
large black hole masses close to the bifurcation point, the
temperature in the massive scalar field case is smaller than
the massless one, and this behavior changes with the
increase of the black hole mass.
Finishing this section, let us briefly comment on the

following. It was recently shown in Ref. [47] that within the
ESTGB theories exhibiting scalariztion a similar effect may
occur in a cosmological background, resulting in the

FIG. 10. Left: The radius of the horizon vs the black hole mass for the scalarized solutions. Both are rescaled with respect to the
coupling constant λ. Right: The value of the scalar field on the horizon vs the rescaled black hole mass. The notations on both panels are
identical. The results are for different values for the scaled mass of the scalar field λmφ in different colors and patterns.

FIG. 11. Left: The area AH of the black hole horizon vs the mass of the black hole for the scalarized solutions. Both are rescaled with
respect to the coupling constant λ. Right: The normalized, to the Schwarzschild limit, arena of the horizon AH=ð16πM2Þ vs the rescaled
mass of the black hole. The notations in both panels are identical. The results are for different values for the scaled mass of the scalar
field λmφ in different colors and patterns.
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instability of cosmological solutions. In particular, a
catastrophic instability could develop during inflation
within a period of time much shorter than the minimum
required duration of inflation.2 As a result, the standard
cosmological dynamics is not recovered. A possible res-
olution of this problem was very recently proposed in
Ref. [49]. According to the authors of Ref. [49], adding
mass and quartic self-interaction term in the potential for
the scalar field could suppress the tachyonic instability
during the inflation. In our opinion, the problem with the
cosmological instability requires deeper investigation. In
the present paper, we consider the ESTGB model exhibit-
ing scalarzation as an effective model operating only on
astrophysical scales without pretending to be a complete
theory explaining the early Universe and the dark energy

problem. We should also remember that the inflation is just
a hypothesis, not firmly established scientific fact, and in
general the inflation itself cannot be a criterion for adopting
or rejecting certain models.

IV. CONCLUSION

In the present paper, we have studied an extension of the
black holes in massless scalar-tensor Gauss-Bonnet gravity,
namely the inclusion of a scalar field mass. Thus, an
additional length scale of the problem was introduced,
and roughly speaking, the scalar field is confined within the
Compton wavelength. Such an effect can reconcile the
theory with the observations for a larger range of param-
eters compared to the massless scalar field case similar to
the standard massive scalar-tensor theories.
We focused on three different standard forms of the

coupling function—a linear coupling between the scalar
field and the Gauss-Bonnet invariant, an exponential one,

FIG. 12. Left: The entropy of the black hole vs its mass for the scalarized solutions. Both are rescaled to the coupling constant. Right:
The normalized, to the Schwarzschild limit, entropy on the horizon, SH=ð4πM2Þ, vs the rescaled mass of the black hole. The notations
on both panels are the same as in the figures above.

FIG. 13. Left: The temperature of the black hole vs its mass for the scalarized solutions. Both are rescaled to the coupling constant.
Right: The normalized, to the Schwarzschil limit, temperature on the horizon, TH8πM, vs the rescaled mass of the black hole. The
notations on both panels are the same as in the above figures.

2In Ref. [47], it is assumed that the scalarization field φ is not
the inflaton field. The case when the scalar field φ itself is the
inflanton field is studied in Ref. [48].
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and a coupling function which leads to spontaneous
scalarization. In the first two cases, we have similar
qualitative behavior both for the massless and for massive
scalar field with the important difference that for exponen-
tial coupling a secondary branch of black hole solutions for
small masses is observed.
We have examined different properties of the black hole

solutions—the horizon radius and area, the entropy, and the
black hole temperature. For the linear and the exponential
coupling, the differences with the Schwarzschild solutions
are negligible for large black hole masses, and they increase
with the decrease of the black hole mass. The introduced
scalar field mass has the effect of suppressing the scalar
field which brings the sequences of Gauss-Bonnet black
holes closer to the Schwarzschild solution. Thus, the
Schwarzschild solution is recovered in the limit when
the scalar field mass tends to infinity. For a fixed black
hole mass, the radius of the horizon decreases with respect
to the Schwarzschild solution.
In the case of a linear and exponential coupling function, as

we know from the massless scalar field case, there is a
threshold black hole mass below which black holes in EdGB
gravity do not exist. The inclusion of a scalar field mass leads
to a decrease of this threshold mass, and thus the domain of
existence of solutions is increased. The second branch of
solutions observed in the massless case for exponential
coupling shrinks with the increase of the scalar field mass,
and for large enough masses of the scalar field, we could no
longer observe it.Wehave studied the entropyof the solutions
as well. For all of the studied cases, the EdGB black holes
have larger entropy compared to the Schwarzschild black
holes. More importantly, the entropy of the secondary branch
of EdGB solutions is smaller than the entropy of the primary
branch, and this does not change with the introduction of a
scalar field mass, which points towards the conclusion that
the secondary branch is most likely unstable.

In the case of spontaneous scalarization, the scalar field
mass significantly alters the point of scalarization, bringing
it to lower masses with the increase of the scalar field mass,
and therefore the domain of existence of the scalarized
black hole shrinks. The black holes in both the massive and
the massless cases have larger entropy compared to the
Schwarzschild solution for the considered coupling func-
tion. Therefore, they are thermodynamically the preferred
solutions over the GR ones.
A possible extension of the studies in the present paper is

to explore models with various self-interaction terms
similar to Ref. [43]. An interesting venue of investigation
is to consider neutron stars in Gauss-Bonnet gravity with
massive and self-interacting scalar field. Such studies are
underway.
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Note added.—Recently, a preprint studying the spontane-
ous scalarization of black holes in Gauss-Bonnet gravity
with a massive and self-interacting term for a different
coupling function appeared on the arXiv [49].
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