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A general relativistic, stationary, and axisymmetric black hole in a four-dimensional asymptotically flat
spacetime is fully determined by its mass, angular momentum, and electric charge. The expectation that
astrophysically relevant black holes do not posses charge has resulted in a limited number of investigations
of moving and charged black holes in the dynamical, strong-field gravitational (and electromagnetic)
regime, in which numerical studies are necessary. Apart from having a theoretical interest, the advent of
multimessenger astronomy with gravitational waves offers new ways to think about charged black holes. In
this work, we initiate an exploration of charged binary black holes by generating valid initial data for
general relativistic simulations of black hole systems that have generic electric charge and linear and
angular momenta. We develop our initial data formalism within the framework of the conformal transverse-
traceless (Bowen-York) technique using the puncture approach and apply the theory of isolated horizons to
attribute physical parameters (mass, charge, and angular momentum) to each hole. We implemented our
formalism in the case of a binary system by modifying the publicly available TWOPUNCTURES and
QUASILOCALMEASURES codes. We demonstrate that our code can recover existing solutions and that it has
excellent self-convergence properties for a generic configuration of two black holes.
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I. INTRODUCTION

The successful detection of gravitational waves from the
inspiral and merger of binary black holes by the LIGO-
Virgo interferometers [1–5] was made possible not only by
technological advancements in instrumentation but also by
substantial improvements in theoretical modeling that
furnished the gravitational-wave templates necessary for
performing matched filtering [6–10]. To generate a bank of
complete template signals, the equations of general rela-
tivity have to be solved during the late compact binary
inspiral, merger, and postmerger phases because these
events involve extreme gravitational fields, the description
of which is not accurate with post-Newtonian methods.
Obtaining an analytic solution to describe these systems
during these dynamic stages is not possible. Therefore,
numerical integration of the full Einstein equations pro-
vides the only viable avenue for understanding such
relativistic astrophysical systems from first principles
and for helping to build gravitational-wave templates
during the most dynamical phases of their evolution.

Assuming that general relativity is the correct theory of
gravity, the problem of two black holes is solved by
integrating Einstein’s equations in vacuum. Despite the
simpler description of black hole spacetimes compared to
spacetimes with matter, it took decades for the field of
numerical relativity to mature enough to be able to stably
evolve two black holes until merger [11–13]. Some of the
issues that hindered the development were due to the highly
nonlinear character of the Einstein equations, the coordi-
nate freedom of general relativity, and the intrinsically
singular nature of black holes. However, since the 2005
breakthrough, numerical relativity has advanced consider-
ably with state-of-the-art codes that can simulate the
inspiral and merger of uncharged binary black holes and
extract gravitational waves with high precision (see, e.g.,
Refs. [14–20] and references therein). Numerical relativity
furnishes invaluable information for gravitational-wave
detection and analysis, which includes the development
of templates (see, e.g., Refs. [9,10,21,22]) and the accurate
parameter estimation of already detected events [23].
Apart from binary black holes, binary neutron stars and

binary black hole–neutron stars are also the most promising
gravitational-wave sources for currently operating interfer-
ometers [24]. In fact, among the 11 confirmed detections
of gravitational waves so far [5], event GW170817 is
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attributed to the inspiral and merger of a binary neutron
star [25] (although a binary black hole–neutron star cannot
be ruled out [26–29] as a possibility). A complete simu-
lation of compact binaries with matter requires the evolu-
tion of the spacetime coupled to matter, radiation/neutrinos,
and electromagnetic fields in conjunction with detailed
microphysics. A full solution including radiation/neutrinos
without approximation is impossible at this time, and even
with approximation, evolution of perfect fluids with
existing numerical schemes involves density floors and
other ad hoc prescriptions that are necessary to stabilize the
calculations (see, e.g., Refs. [30,31]) but are designed such
that their impact on the global solution is minimal.
However, this means that, in a sense, simulations involving
perfect fluids are not as “clean” as the ones in vacuum,
which do not require ad hoc prescriptions. Nevertheless,
many important results have been obtained through binary
neutron star and binary black hole–neutron star simulations
in full general relativity; see Refs. [32–38] for reviews (see
also Ref. [39] for other applications of numerical relativity).
Interesting spacetimes that are as clean as vacuum

spacetimes, but have received little attention in numerical
relativity, are those described by Einstein-Maxwell’s
theory. This theory involves only gravitational and electro-
magnetic fields, and the corresponding spacetimes are
referred to as electrovacuums or electrovacs. However,
force-free electrodynamics has received some attention
[40–47], but those simulations are not clean, in the sense
that when the force-free conditions are violated during the
evolution (typically in current sheets) one must interfere
and enforce them to continue the calculations. On the other
hand, electrovacuum spacetimes can be solved without
physical approximations or ad hoc prescriptions, as the
only assumption here is that electromagnetism and gravi-
tation are described by the source-free Einstein-Maxwell
equations. This simplification is the reason why these
spacetimes have attracted numerous theoretical and
analytic investigations for a long time, including the
celebrated Kaluza-Klein theory [48,49] unifying gravity
and electromagnetism.
Examples of interesting electrovacuum spacetimes are

those with electrically charged black holes.1 The case of a
single charged nonrotating black hole is analytically solved
by the Reissner-Nordström metric [50,51]. This solution
has been extended to nonvanishing angular momentum in
the Kerr-Newman spacetime [52], which generalizes the
uncharged rotating black hole solution found by Kerr [53].
Another interesting class of solutions with multiple black
holes is the static Majumdar-Papapetrou solution [54,55]
that describes nonspinning black holes of which the electric

repulsion and gravitational attraction balance, producing a
zero net force condition and thus equilibrium. The hypoth-
esis of staticity was relaxed to simple stationarity by
Refs. [56–58]. This list summarizes the known analytical
solutions of the source-free Einstein-Maxwell equations in
four-dimensional asymptotically flat spacetimes.
A reason why the source-free Einstein-Maxwell theory

has been primarily confined to the realm of theoretical
explorations is the fact that astrophysically relevant black
holes are not believed to be electrically charged, as the
charge would be neutralized by the surrounding plasma
[59] or as result of a pair production through a Schwinger-
like process [60]. Nonetheless, there are some viable
mechanisms to have a black hole with nonzero charge.
One example is the model proposed by Ref. [61], in which
the charge is retained due to the presence of an external
magnetic field. This is known as the “Wald mechanism.” It
was shown in Ref. [61] that if an asymptotically uniform
magnetic field B0 can be sustained, a black hole with mass
M spinning with angular momentum J would acquire an
electric charge Q ¼ 2B0J (measured in geometrized
units2), which we can rewrite as Q=M ¼ 2B0χM with χ ¼
J=M2 the black hole dimensionless spin parameter. Since
for black holes χ2 ≤ 1, there exists a maximum possible
charge-to-mass ratio in the Wald mechanism: ðQ=MÞ ≤
ðQ=MÞmax ≡ 2B0M [61]. In the case of a solar mass black
hole in the galactic magnetic field [62,63], the ratio has to
be Q=M ≤ 10−24. The charge-to-mass ratio quantifies the
deformation of the spacetime due to electromagnetism, so if
it is very small, it means that the spacetime is well
described by a vacuum (uncharged) black hole. Black
holes with massM ≳ 109M⊙ immersed in a magnetic field
of order 1011 G would be needed to reach values of Q=M
large enough to be relevant for the spacetime structure.
Fields of such strength are expected to be found only in
neutron stars. Based on the Wald mechanism, it has been
recently proposed that a binary black hole–neutron star
could provide a suitable environment to charge the black
hole itself [64]. A second case in which charged black holes
might occur in the Universe is immediately after the
collapse of a compact star when the resulting hole might
briefly retain some charge [65]. A similar scenario is the
collapse of magnetized stars [66], which was also consid-
ered as candidate for fast-radio bursts [67]. Finally, charged
black holes can emerge in more exotic theories associated
with “hidden” gauge fields and elementary particles with a
charge that is a fraction of the electron charge [68].
In spite of the apparently compelling reasons to believe

that astrophysical black holes have practically zero net

1It is also possible to include magnetic charges. This will not
be done in the study presented in this paper, so we always take the
term charge to mean electric charge. We note the extension of the
work to include magnetic charges would be straightforward.

2The conversion factor between our units and the International
System of Units (SI) is c2G−1

2ð4πε0Þ12 ¼ 1.16 × 1020 Ckm−1, so
1M⊙ ¼ 1.71 × 1020 C, with c being the speed of light in vacuum,
G being the gravitational constant, ε0 being the vacuum permit-
tivity, and M⊙ being the solar mass.
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charge compared to their mass, it is still worth studying the
source-free Einstein-Maxwell system to advance our com-
prehension of strong-field gravitation and electromagnet-
ism in this largely unexplored territory. The interplay
between electromagnetism and gravity in a highly dynami-
cal spacetime, which can be probed only with numerical
investigations, can offer a unique laboratory for both
theoretical and more exotic astrophysical studies. For
example, the inclusion of charge in highly relativistic
collisions of black holes (see, for example, Refs. [69–
72] for such studies with zero charge) would advance our
understanding in a new direction never explored before.
Another interesting application of dynamical electrovac-
uums is related to cosmic censorship. In a recent series of
papers, it was argued that strong cosmic censorship can be
violated by electrovacuums with a positive cosmological
constant [73–75]. In contrast, the case without cosmologi-
cal constant is not settled yet [76].
The coalescence and merger of charged black holes may

present new interesting phenomenology. For instance,
Ref. [77] proposed that the faint potential electromagnetic
counterpart to GW150914 [78,79] might have been the
result of the merger of charged black holes. Another
hypothesized mechanism along similar lines invokes mag-
netic reconnection [80]. Subsequently, Ref. [81] tested the
idea of Ref. [77] with relativistic simulations. However, the
setup considered by the authors had some limitations: only
equal-mass, equal-charge, nonrotating black holes were
studied, and the initial data did not satisfy the constraints of
the field equations. A more systematic study of this part of
the parameter space of charged black holes requires that
one starts with constraint-satisfying initial data for black
hole configurations with arbitrary charge, mass ratio and
linear and angular momenta.
The most common avenue for generating constraint-

satisfying initial data is provided by the 3þ 1 decom-
position of spacetime [82,83]. In this approach, one casts
the Einstein-Maxwell equations to an initial value problem
in which the four-dimensional spacetime is foliated by
successive time slices obtained via the dynamical evolution
of the system.3 When performing this decomposition, both
Maxwell’s and Einstein’s equations are split in two sets: the
evolution and the constraint equations. The former move
the system forward in time, whereas the latter must be
satisfied at all times and must be used to generate the initial
data for the evolution. In this paper, we primarily focus on
the constraint equations.
Einstein-Maxwell’s theory was first cast in a 3þ 1

decomposition by Ref. [85], and more than 25 years later,
Ref. [86] proved that the evolution equations are symmetric
hyperbolic and hence admit a well-posed initial value

problem. Moreover, the authors extended the work of
Ref. [87] to generate initial data for electrically charged
black holes at the moment of time symmetry (when the
spacetime is invariant with respect to time reversal). Recent
applications of this formalism are the head-on collisions by
Refs. [88,89] (the interested reader can find several cogent
additional reasons motivating the numerical study of
charged black holes in these references). In these works,
the authors evolved initial data generated with the same
formalism described by Ref. [86] and were mostly inter-
ested in comparing the electromagnetic and gravitational
emissions. Finally, the same group also investigated
numerically the nonlinear stability of a Kerr-Newman
black hole [90].
In this paper, we extend the work of Refs. [86,90] to

generate initial data for charged, rotating, and moving black
holes in a self-consistent way.4 We adopt the conformal
transverse-traceless formalism [91] treating the black holes
as punctures to solve for the metric and take advantage of
the Reissner-Nordström solution in isotropic coordinates to
solve for the electromagnetic fields. This strategy involves
two major challenges. The first is that nonlinear partial
differential equations have to be solved. This can be done
only numerically for generic binary black hole configura-
tions. To address this issue, we modify the TWOPUNCTURE
code [92] to solve the resulting elliptic differential
equations. The single-domain pseudospectral character
of the code results in an accurate solution, and it is quickly
convergent. The second challenge is that the physical
interpretation of the results is not transparent. The
parameters given as input for the algorithm (the bare
parameters, such as mass and charge) in general are not
actual physical quantities of the resulting black holes.
Hence, we apply the theory of isolated horizons [93],
which provides a quasilocal machinery for linking the
bare black hole parameters with the physical ones and is
suitable for simulations. We implement this numerically
by modifying the QUASILOCALMEASURES code [94].
We structure the paper as follows. In Sec. II, we review

the mathematical tools necessary for generating initial data
for charged black holes. In particular, we present the 3þ 1
decomposition of Einstein-Maxwell’s theory and review
the Reissner-Nordström solution in isotropic coordinates
and the formalism of isolated horizons. In Sec. III, we solve
the constraints with the conformal transverse-traceless
technique. Our numerical implementation and tests are
detailed in Sec. IV. Finally, Sec. V summarizes our findings
and describes possible future research directions.
In Appendix A, we prepared a summary of the important

equations and steps needed to generate initial data for
generic systems of charged black holes. The Appendix

3It is worth mentioning that another common approach to
building spacetimes in the computer is the generalized harmonic
formalism [11,84].

4We note that the formalism outlined in this paper applies not
only to electromagnetism but to any U(1) charge (such as the one
described in Ref. [68]).
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provides a distilled overview of the analytic content of this
paper. For the reader who is interested only in the gist of the
algorithm/equations and the results of our work, we suggest
they skip to Appendix A and then read Secs. IVA and IV B,
in which we present our results.

A. Notation and conventions

We assume that gravity and electromagnetism are
described by Einstein-Maxwell’s theory [59], and we
follow the same notation as in Ref. [95]. In particular,
we use Einstein’s summation convention, and the signature
of the metric is ð−;þ;þ;þÞ. We use geometrized units
with G ¼ c ¼ 1, where c is the speed of light in vacuum
and G is the gravitational constant. The unit of charge is
defined so that the proportionality constant in Coulomb’s
law is 1 (for more details, see Ref. [96]). Indices a, b, c, and
d run in the set f0; 1; 2; 3g, whereas the other latin letters,
such as i, j or k, run in the set f1; 2; 3g and refer to as
spatial components. Parentheses and brackets in the indices
mean symmetrization and antisymmetrization, respectively.
We also use the abstract index notation [59]. We reserve the
symbol ∇ for the four-dimensional covariant derivative
associated with the spacetime metric gab and D for the
three-dimensional covariant derivative, compatible with the
spatial metric γij. We denote the determinant of these
metrics as g ¼ det gab and γ ¼ det γij. We prepend the
symbol “(4)” to all the four-dimensional tensors, with the
exception of the metric gab. For the completely antisym-
metric Levi-Civita tensor, we use the convention that
ϵ1230 ¼ ffiffiffiffiffiffi−gp

, and ϵ123 ¼ ffiffiffi
γ

p
, and denote the Levi-Civita

symbol with ϵ̄ijk or ϵ̄ijk.

II. FORMALISM

In this section,we describe the theoretical tools thatwe use
later to generate initial data for arbitrary configurations of
charged black holes. Specifically, in Sec. II A, we survey the
3þ 1 decomposition of Einstein-Maxwell’s equations,
focusing on the constraint equations. Section II B reviews
the Reissner-Nordström solution for a single charged sta-
tionary black hole in isotropic coordinates. Section II C
summarizes the theory of isolated horizons, which we
employ to assign the black hole physical properties: mass,
charge, and angular momentum.

A. 3 + 1 decomposition of Einstein-Maxwell

In this paper, we study systems described by the source-
free Einstein-Maxwell equations [59]

ð4ÞRab −
1

2
gabð4ÞR ¼ 8πð4ÞTEM

ab ; ð1aÞ

∇a
ð4ÞFab ¼ 0; ð1bÞ

∇a
ð4Þ⋆Fab ¼ 0; ð1cÞ

where ð4ÞRab is the Ricci tensor associated with the metric
gab, ð4ÞR ¼ ð4ÞRa

a, ð4ÞFab ¼ 2 ð4ÞA½a;b� is the Maxwell field-

strength tensor, with ð4ÞAa the 4-potential, and ð4Þ⋆Fab is its
Hodge dual, defined by

ð4Þ⋆Fab ¼ 1

2
ϵabcdð4ÞFcd: ð2Þ

The electromagnetic stress-energy tensor is

4πð4ÞTEM
ab ¼ ð4ÞFac

ð4ÞFbdgcd −
1

4
gabð4ÞFcd

ð4ÞFcd: ð3Þ

Solving the coupled Einstein-Maxwell equations in four
dimensions is a challenging task. In particular, the form of
Eqs. (1) is not suitable for a numerical solution. Therefore,
we adopt the standard 3þ 1 decomposition to express the
equations as a Cauchy problem and cast them in a form
amenable for numerical integration [97].
Assuming that the spacetime is described by a globally

hyperbolic Lorentzian manifold M with metric tensor gab,
M can be foliated by a family of spacelike nonintersecting
hypersurfaces Σt, taken as level surfaces of a time function
t. Let na be the future-directed, timelike unit vector normal
to Σt. The projection operator along this vector is nanb,
whereas the one onto Σt is

γab ¼ δab þ nanb: ð4Þ
The induced metric on Σt is derived by applying twice the
projection operator on gab, which yields

γab ¼ gab þ nanb: ð5Þ
The induced metric is purely spatial (γabnb ¼ 0); it encodes
the intrinsic curvature of the hypersurfaces Σt and can be
used to defined a spatial covariant derivative Di on Σt.
Instead of working with the normal vector na, it is

convenient to use the normalized time vector

ta ¼ αna þ βa; ð6Þ
where α and βa are the lapse function and shift vector.
With these quantities, the spacetime metric assumes the
Arnowitt-Deser-Misner (ADM) form [82,98]

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð7Þ
The spatial metric is not sufficient to fully describe the

curvature properties of the four-dimensional spacetime.
The extrinsic curvature Kab supplies the missing informa-
tion by expressing how Σt is embedded in M and is
defined as

Kab ¼ −γacγbd∇cnd: ð8Þ
Just like the induced metric (which we will also refer to

as the 3-metric throughout), the extrinsic curvature is
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purely spatial. The Riemann tensor can be expressed in
terms of γij and Kij, and therefore Einstein’s equations can
be rewritten with only 3þ 1 quantities. The resulting 3þ 1
ADM (à la York) formalism [82,83] of general relativity
consists of four constraints and 12 evolution equations. The
constraints are the direct consequence of the integrability
conditions that γij and Kij have to satisfy to have Σt

properly embedded inM. On the other hand, the evolution
equations provide a prescription to move from one time
slice to the next, provided a gauge choice is made. The
evolution equations preserve the constraints; if the con-
straints are initially satisfied, they will always be satisfied.
However, when they are not satisfied, the simulated system
is not a solution of the Einstein equations. The same split
into evolution equations and constraint equations holds for
Maxwell’s theory, too. In complete analogy to Einstein’s
theory, Maxwell’s evolution equations preserve the
Maxwell constraints, if the constraints are initially satisfied.
For this reason, it is important to start with valid, constraint-
satisfying initial data. In this work, we focus only on the
constraint equations, precisely because our goal is the
generation of valid initial data for general relativistic
simulations in Einstein-Maxwell theory.
Let ð4ÞTEM

ab be the stress-energy tensor, and define

E ¼ nanbð4ÞTab
EM; ð9aÞ

Si ¼ −γijnað4ÞTEM
aj : ð9bÞ

The Einstein constraints then become [97]

Rþ K2 − KijKij ¼ 16πE; ð10aÞ

DjðKij − γijKÞ ¼ 8πSi; ð10bÞ

with R being the three-dimensional Ricci scalar associated
with γij and K being the trace of the extrinsic curvature.
Equation (10a) is known as theHamiltonian constraint, and
Eq. (10b) is known as the momentum constraints.
Equations (10) are not the only constraints in Einstein-

Maxwell’s theory. As for Einstein’s equations, a 3þ 1 split
of Maxwell’s equations must be performed.5 First, we
introduce the electric and magnetic fields as seen by normal
observers with 4-velocity na,

Ea ¼ ð4ÞFabnb; ð11aÞ

Ba ¼ ð4Þ⋆Fabnb ¼
1

2
ϵabcdnbð4ÞFcd; ð11bÞ

which are both purely spatial (naEa ¼ naBa ¼ 0). The
electromagnetic tensor becomes

ð4ÞFab ¼ naEb − nbEa þ ϵabcdBcnd; ð12Þ

and its dual is

ð4Þ⋆Fab ¼ naBb − nbBa − ϵabcdEcnd: ð13Þ

With these decompositions, Maxwell’s equations can be
expressed in terms of 3þ 1 quantities. As in the case of the
Einstein equations, the 3þ 1 split leads to evolution and
constraint equations. In particular, the electromagnetic
constraints are

DaEa ¼ 0; ð14aÞ

DaBa ¼ 0: ð14bÞ

The electromagnetic sector couples with the spacetime
through the stress-energy tensor Tab

EM, which is rewritten in
terms of the 3þ 1 variables as

4πTab
EM ¼ 1

2
ðnanb þ γabÞðEcEc þ BcBcÞ

þ 2nðaϵbÞcdEcBd − ðEaEb þ BaBbÞ; ð15Þ

where ϵbcd ¼ naϵabcd. Plugging Eq. (15) into the source
terms of Eqs. (9), we find

4πE ¼ 1

2
ðEiEi þ BiBiÞ; ð16aÞ

4πSi ¼ ϵijkEjBk; ð16bÞ

which are the familiar electromagnetic energy density and
Poynting vector.

B. Reissner-Nordström spacetime

The Reissner-Nordström spacetime [50,51] describes an
isolated nonrotating black hole with electric charge q and
mass m [59]. This solution will be the base of our
generalization to charged black hole systems. In Boyer-
Lindquist coordinates (t; r; θ;ϕ), the Reissner-Nordström
metric is given by

ds2 ¼ −
�
1 −

2m
r

þ q
r2

�
dt2 þ

�
1 −

2m
r

þ q
r2

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð17Þ
and the electromagnetic potential of the solution is

ð4ÞA ¼ −
q
r
dt: ð18Þ

In the following sections, we will adopt the puncture
approach, so we transform the Boyer-Lindquist coordinates
to isotropic ones. To do so, we define a new radial
coordinate R, satisfying

5A more detailed derivation of the three-dimensional Maxwell
equations from the four-dimensional ones can be found in the
Appendix of Ref. [86] (see also Ref. [99]).
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r ¼ R

�
1þm

R
þ R2

H

R2

�
; ð19Þ

with RH ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
the radius of the black hole horizon

in isotropic coordinates. The metric then assumes the form

ds2 ¼ −Ψ−4dt2 þ Ψ4δlkdxldxk; ð20Þ

with δlk being the flat Euclidean metric and Ψ being the
conformal factor defined as

Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm

R
þ R2

H

R2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ m

2R

�
2

−
�

q
2R

�
2

s
: ð21Þ

As is clear from Eq. (20), the spatial metric is manifestly
conformally flat in isotropic coordinates. Moreover, there is
no magnetic field, and the electric field has only an R
component,

ER ¼ Ψ−6 q
R2

: ð22Þ

As a result, the Poynting vector defined in Eq. (16b) is
identically zero everywhere.

C. Isolated horizons

Once the constraint equations are solved, it is important
to interpret the physical configuration to which the initial
data correspond. This can be achieved by locating the black
hole apparent horizons and applying the theory of isolated
horizons [93] (see Ref. [100] for a review). Isolated
horizons provide a quasilocal notion of the black hole
physical properties. In this section, we review basic
identities of the formalism, including, in particular, the
electric charge of the horizon, and the electromagnetic-field
contribution to angular momentum, elements that have not
received much attention in numerical relativity applica-
tions [94,101].
Isolated horizons have several desirable features. For

instance, they always lie inside the event horizon, to which
they reduce for stationary spacetimes, and they imply the
existence of a future singularity [102,103]. Most relevant
for our purpose, they provide well-defined notions of mass,
charge, and angular momentum. For spacetimes with
suitable symmetries, these quasilocal physical quantities
coincide with the global ones defined from conservation
laws (for example, via ADM integrals), as we verify this
explicitly for the Reissner-Nordström case in Appendix B.
However, in general, the quasilocal definitions and those at
infinity differ [93]. Furthermore, the formalism does not
provide a quasilocal definition of linear momentum due to
the lack of a meaningful notion of space-translational
symmetry in curved spacetime [100,104].

Here, we follow closely Ref. [94] in using isolated
horizons to assign black hole physical parameters. Given a
spatial section S of an isolated horizon, the variables we are
interested in are defined as follows. First, the areal radius is
given by

RS ¼
�
1

4π

Z
S
ϵ

�1
2

; ð23Þ

where ϵ is the area 2-form on the 2-surface, given by
ϵ ¼ 1

2

ffiffiffi
q

p
ϵ̄abdxa ∧ dxb, where qab is the induced metric on

the horizon, q ¼ detqab, and ϵ̄ab is the two-dimensional
antisymmetric symbol.

R
S ϵ is the surface area of the

horizon.
Next, the definition of the angular momentum is based

on an approximate rotational killing vector field φa on the
2-surface [93],

JS ¼ −
1

8π

Z
S
ðφ · ωÞϵþ 2ðφ · ð4ÞAÞð4Þ⋆F; ð24Þ

where ω is the form that satisfies the condition ta∇akb ¼
taωakb for any vector ta tangent to S, with kb being the
outgoing future-directed vector normal to S. By construc-
tion of kb, ω always exists [93]. The two terms in the right-
hand side of Eq. (24) are the gravitational and electromag-
netic contribution to the horizon angular momentum.
The charge is defined by means of Gauss’s law,

QS ¼ 1

4π

Z
S

ð4Þ⋆F; ð25Þ

and finally, the gravitational mass of the isolated horizon is
given by

MS ¼ 1

2RS
½ðR2

S þQ2
SÞ2 þ 4J2S�

1
2: ð26Þ

For Kerr-Newman black holes, this formula perfectly
reduces to the equation that relates total mass, irreducible
mass, charge, and angular momentum [105].
The definitions of angular momentum and charge

involve four-dimensional quantities, but during simulations
with the 3þ 1 formalism, it is more convenient to use 3þ 1
variables. In Ref. [94], it was shown that the gravitational
contribution to the horizon angular momentum can be
computed using an ADM-like formula,

JGRS ¼ −
1

8π

Z
S
ðφ · ωÞϵ ¼ 1

8π

Z
S
φaRbKabϵ; ð27Þ

where Ra is the spatial unit vector normal to S. The
electromagnetic component of the angular momentum
JEMS ¼ JS − JGRS depends on both ð4ÞA and ð4Þ⋆F. The first
is directly accessible if instead of the electric and magnetic
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fields one evolves the vector potential [106–110], whereas
the second has components

ð4Þ⋆Fab ¼ ð2n½aBb� − ϵabcEcÞ: ð28Þ

When integrated over a spatial 2-surface, the term 2n½aBb�
does not contribute because na ¼ ð−α; 0; 0; 0Þ. Therefore,
the electromagnetic contribution to the horizon angular
momentum becomes

JEMS ¼ −
1

4π

Z
S
ðφ · ð4ÞAÞ 1

2!
ϵabcEcdxa ∧ dxb; ð29Þ

where ϵabc ¼ ndϵabcd. By use of Eqs. (28) and (25) for the
charge becomes

QS ¼ 1

4π

Z
S

1

2!
ϵabcEcdxa ∧ dxb: ð30Þ

These definitions provide a complete characterization of
black holes during a general relativistic simulation with the
3þ 1 decomposition. An example of how the integrations
above are performed is in Appendix C.

III. SOLVING THE CONSTRAINT EQUATIONS

To solve the constraint equations, we adopt the con-
formal transverse-traceless approach, also referred to as the
Bowen-York technique [91]. The goal of this method is to
expose and specify degrees of freedom containing physical
information about the system by applying conformal
transformations on the spatial quantities and working
directly on the conformal variables instead of the physical
ones.
The first step in the method is to conformally decompose

γij by introducing the conformal factor ψ and metric γ̄ij,

γij ¼ ψ4γ̄ij: ð31Þ

In the following, we use an overbar to indicate conformal
quantities.
A common assumption when generating multiple black

hole initial data is that the spatial metric is conformally flat
[86,97,111,112]. In other words, we fix the conformal
three-dimensional metric γ̄ij to be the flat Euclidean metric
δij (in Cartesian coordinates). This choice greatly simplifies
computations, and it is a good approximation for the
systems we are interested in studying, in spite of the fact
that conformally flat spatial slices of the Kerr metric do not
exist [113]. Conformal flatness limits the maximum equi-
librium value that the black hole dimensionless spin can
attain [15,112], but values of order 0.9 are completely
achievable. Thus, we do not anticipate this approximation
to impose severe constraints on the equilibrium values of
the black hole spin and charge. Considering what happens
in the uncharged case [114,115], we expect that conformal

flatness will generate initial data with spurious gravitational
radiation in the charged black hole cases, too. Nonetheless,
this is not a major concern since in dynamical simulations
the system is evolved until this “junk” radiation propagates
away, and the fields relax to their quasiequilibrium values.
In addition to the conformal decomposition of the metric,

it is also useful to transform the extrinsic curvature Kij by
separating it into its traceless Aij and trace (K ¼ Ki

i) parts,

Kij ¼ Aij þ
1

3
γijK: ð32Þ

Following standard practice, we adopt the maximal slicing
condition K ¼ 0 [116] and introduce a conformal, traceless
extrinsic curvature Āij as

Kij ¼ Aij ¼ ψ−2Āij: ð33Þ

Then, Āij can be split into a transverse-traceless part and a
longitudinal part,

Āij ¼ Āij
TT þ Āij

L : ð34Þ

We set Āij
TT ¼ 0, which corresponds to suppressing the

radiative degrees of freedom, so

Āij ¼ Āij
L : ð35Þ

The longitudinal part can always be expressed in terms of a
vector V as

Āij ¼ Āij
L ¼ 2δikδjhVðh;kÞ −

2

3
δij∂kVk; ð36Þ

where Cartesian coordinates are adopted. Going back to
Eq. (33), the extrinsic curvature is given by

Kij ¼ ψ−2
�
2Vði;jÞ −

2

3
δij∂kVk

�
: ð37Þ

We already exploited much of the freedom we had in
specifying variables during the previous steps. Under these
assumptions, we just need the vector Vi and the conformal
factor ψ to fully determine γij and Kij, and the constraint
Eqs. (10) take the form

∇2ψ þ 1

8
ψ−7ĀijĀij þ 2πψ5E ¼ 0; ð38aÞ

ð∇2VÞi þ 1

3
δij∂jð∂kVkÞ − 8πψ10Si ¼ 0; ð38bÞ

where ∇2 ¼ ∂k∂k.
Next, we turn to the electromagnetic sector of the

problem. We rescale the electromagnetic fields as in
Ref. [86]

INITIAL DATA FOR GENERAL RELATIVISTIC SIMULATIONS … PHYS. REV. D 99, 104044 (2019)

104044-7



Ēi ¼ ψ6Ei; Ēi ¼ ψ2Ei;

B̄i ¼ ψ6Bi; B̄i ¼ ψ2Bi: ð39Þ

The factor ψ6 is chosen in order to have DiEi ¼ ψ−6∂iĒi,
where we used the fact that for any vector vi it holds true
that Divi ¼ γ−1=2∂ið ffiffiffi

γ
p

viÞ. The Maxwell constraints (14)
read

∂iĒi ¼ 0; ð40aÞ

∂iB̄i ¼ 0: ð40bÞ

These equations do not depend on the conformal factor
ψ , so the electromagnetic constraints can be solved
independently from the spacetime ones. Moreover, the
equations are linear; hence, we can superpose solutions.
Having fixed the conformal scalings of the Ei and Bi

fields, the source terms E and Si of the Einstein constraints
conformally transform as

E ¼ ψ−8Ē; ð41aÞ

Si ¼ ψ−10S̄i; ð41bÞ

where

4πĒ ¼ 1

2
ðĒiĒi þ B̄iB̄iÞ; ð42aÞ

4πS̄i ¼ ϵ̄ijkĒjB̄k: ð42bÞ

With these redefinitions, the Einstein constraints become

∇2ψ þ 1

8
ψ−7ĀijĀij þ 2πψ−3Ē ¼ 0; ð43aÞ

ð∇2VÞi þ 1

3
δij∂jð∂kVkÞ − 8πS̄i ¼ 0: ð43bÞ

The problem is now greatly simplified because the
momentum constraints do not depend on ψ , are linear in
Vi, and along with the Hamiltonian constraint have
decoupled from the Maxwell constraints.
Next, we exploit the linearity of Eq. (43b) by decom-

posing Vi as

Vi ¼ Vi
0;GR þ Vi

EM; ð44Þ

where Vi
0;GR solves the homogeneous Eq. (10b) (when

S̄i ¼ 0) and Vi
EM solves the inhomogeneous one.6 The

first term does not contain any reference to the

electromagnetic sector of the problem. Thus, as in
Ref. [92], we choose

Vi
0;GR ¼

XNp

n¼1

�
−
7

4

Pi
n

Rn
−
1

4
δjkx

j
nPk

n
xin
R3
n
þ ϵ̄ijkx

j
nSkn

R3
n

�
; ð45Þ

with Rn ¼ jx − xnj being the Euclidean coordinate dis-
tance from puncture n, where xn is the location of the nth
puncture, and Pi

n and Skn are its linear and angular momenta,
respectively. Equation (45) solves the homogeneous
version of Eq. (43b), and it is known that for suitable
single black hole solutions Pi

ADM ¼ Pi and JiADM ¼ Si,
with PADM and JADM being the ADM linear and angular
momenta evaluated at infinity [91,92], respectively. By use
of the decomposition (44), the momentum constraints
further reduce to three decoupled linear equations for
Vi
EM, effectively replacing Eq. (43b) with

∇2Vi
EM þ 1

3
δij∂jð∂kVk

EMÞ − 8πS̄i ¼ 0: ð46Þ

We also manipulate the Hamiltonian constraint (43a)
further by separating the singular part of the conformal
factor from the finite one u, motivating our ansatz based on
the conformal factor of the Reissner-Nordström spacetime
in Eq. (21),

ψ ¼
��

1þ uþ
XNp

n¼1

Mn

2Rn

�2

−
�XNp

n¼1

Qn

2Rn

�2�1
2

: ð47Þ

We introduce the following abbreviations for compactness:

η¼
XNp

n¼1

Mn

2Rn
; φ¼

XNp

n¼1

Qn

2Rn
; κ ¼ 1þ uþ η: ð48Þ

Therefore, the conformal factor becomes

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − φ2

q
: ð49Þ

Equation (47) is essentially an ansatz that states that our
solution is a superposition of Reissner-Nordström black
holes plus corrections (in u), which parallels what is
performed in the uncharged case [117].
Expanding Eq. (43a), we reach

κ∇2uþ ∂aκ∂aκ − ∂aφ∂aφ − ∂aψ∂aψ þ 1

8
ψ−6ĀijĀij

þ 2πψ−2Ē ¼ 0: ð50Þ

In deriving the last expression, we used the fact that the
Laplacian of η and φ is zero. Equation (50) is a second-
order, nonlinear elliptic partial differential equation in u
that depends on Vi

EM through the term ĀijĀij. Now, the

6The subscript 0 does not indicate any component, but it
reminds us that the field is a solution of the homogeneous
equation.
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momentum and Hamiltonian constraints (10) have been
reexpressed as elliptic equations (46) and (50) for Vi

EM and
u. The associated boundary conditions are found from the
assumption of asymptotic flatness so that u and Vi

EM have
to go to zero at spatial infinity. In this paper, we assume that
u and VEM are regular everywhere, and thus they can be
found with our numerical scheme.
The problem of generating valid initial data for multiple

charged black holes is now reduced to solving Eqs. (46) and
(50), which is done once Maxwell-compliant electromag-
netic fields are found. In this paper, we assume that each
puncture is endowed with a Reissner-Nordström electro-
magnetic field, and hence the total conformal electric field
is a superposition of Reissner-Nordström electromagnetic
fields in isotropic coordinates, i.e.,

Ēi ¼
XNp

n¼1

Qn

R2
n
R̂i
n; ð51Þ

where R̂n is the radial unit vector centered on the nth
puncture. In the case of a single, nonrotating black hole
with zero linear momentum, our choice of Reissner-
Nordström fields exactly produces a spatial slice of
that solution, since the constraints are solved by
VGR ¼ VEM ¼ 0, and u ¼ 0 [so ψ ¼ Ψ, where Ψ is given
in Eq. (21)]. For systems of spinning black holes with linear
momenta, the superposition of Reissner-Nordström fields is
a first approximation to the equilibrium electromagnetic
field generated by these configurations. As for the gravi-
tational fields generated in the puncture approach (and the
gauge fields), we expect that the time evolution will relax
our electromagnetic-field initial data to their quasiequili-
brium values on a light-crossing timescale. An advantage of
choosing Reissner-Nordström electromagnetic fields is that
they allow for a clear description of each black hole in the
system with a specific charge as the isolated horizon value
QS equals the “bare” charge entering Eq. (51). In addition,
since there is no magnetic field, the source term of Eq. (46)
vanishes, and so VEM ¼ 0 (even for multiple black holes
with linear and angular momenta). Thereby, this choice
ensures that there are no electromagnetic contributions
to the extrinsic curvature, implying that the parameters
entering Eq. (45) can be still interpreted as Pi

ADM ¼ Pi

and JiADM ¼ Si.
The choice of Reissner-Nordström electromagnetic

fields is by no means unique. Another possibility is
Kerr-Newman fields in quasi-isotropic coordinates. We
present a detailed discussion of this case and the complex-
ities associated with it in Appendix D.

IV. NUMERICAL IMPLEMENTATION

We implement the formalism outlined in the previous
sections by modifying the TWOPUNCTURES [92] and
QUASILOCALMEASURES open-source codes [94]. The

software is run within the CACTUS infrastructure [118],
and all physical variables are interpolated on a CARPET grid
[119,120]. Black hole apparent horizons are found with
AHFINDERDIRECT [121].
The main component in our software stack is

TWOCHARGEDPUNCTURES, which is used to generate
initial data for two punctures located at ð�b; 0; 0Þ, given
the bare black hole properties (Mn, Qn, Pi

n, Sin). This code
implements a pseudospectral collocation method that
solves the constraint equations (46) and (50) to find u
and Vi

EM.
In what follows, we adopt Reissner-Nordström electro-

magnetic fields. Since there is only an electric field, S̄i ¼ 0
in Eq. (46), and the momentum constraint is trivially
satisfied by Vi

EM ¼ 0. Hence, we only need to solve the
Hamiltonian constraint (50).
TWOCHARGEDPUNCTURES implements a single domain

pseudospectral method that covers all R3 with spatial
infinity on the grid. This region is parametrized by the
coordinates ðA;B;ϕÞ, with A;B ∈ ½−1; 1� and ϕ ∈ ½0; 2π�.
To be more specific, the code uses a system of bispherical
coordinates that transform to the usual Cartesian ones with
the law7

x ¼ b
ð1þ AÞ2 þ 4

ð1þ AÞ2 − 4

2B
1þ B2

; ð52aÞ

y ¼ b
4ð1þ AÞ

4 − ð1þ AÞ2
1 − B2

1þ B2
cosϕ; ð52bÞ

z ¼ b
4ð1þ AÞ

4 − ð1þ AÞ2
1 − B2

1þ B2
sinϕ; ð52cÞ

where the x axis is along the line connecting the two
punctures. Equations (52) describe a set of cylindrical-like
coordinates around the x axis with a radius that depends on
both A and B.
The coordinates ðA;B;ϕÞ live on a compact grid where

spatial infinity corresponds to A ¼ 1, which makes it
straightforward to impose the desired outer boundary
conditions (u → 0 at infinity). This condition is enforced
by solving the equations for an auxiliary variable U defined
as u ¼ ðA − 1ÞU. The code expands U in Chebyshev
polynomials along A and B and adopts a Fourier basis
along ϕ. The coordinates are discretized with nA, nB,
and nϕ grid points chosen as the zeros of Chebyshev
polynomials TnAðxÞ, TnBðxÞ and of the sine function
sin ðnϕϕÞ. The coefficients of the spectral expansion
are found by evaluating the relevant equation on the

7This parametrization is slightly different than what is done in
Ref. [92]. The spectral expansion used here treats A and B on
equal footing, i.e., the spectral decomposition in A and B uses the
same Chebyshev polynomial basis, unlike what is reported in
Ref. [92].
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collocations points and solving the corresponding multi-
dimensional nonlinear system with a modified Newton-
Raphson method [122] (more details on how this is done
can be found in Sec. II of the original paper [92]). We
consider the equations to be solved, when the residuals are
smaller than a threshold value. To choose this threshold
value, we solve for increasingly smaller values of this
threshold and compute the ADM and the horizon masses.
When these masses have converged to within one part in
106, we consider the solution converged.
With the equations solved and u known,

TWOCHARGEDPUNCTURES reverts back to the physical
fields using Eqs. (37), (39) (44), (45), and (47). We then
spectrally interpolate the physical fields on a CARPET grid
where AHFINDERDIRECT is subsequently run to locate the
apparent horizons. Once the horizons are found, we
compute the mass, charge, and angular momentum of each
black hole with our version of QUASILOCALMEASURES,
which we call QUASILOCALMEASURESEM and which
implements the formalism of isolated horizons for the full
Einstein-Maxwell theory as reviewed in Sec. II C.
Moreover, having the spectral expansion of the fields,
we can interpolate them at a very large radius to compute
the ADM mass and the linear and angular momenta.

A. Code validation

We validate our approach and numerical implementation
with a series of tests that is presented in the section.
We report our results in terms of the input bare mass M

of the punctures, which is the only mass known a priori. In
all the runs, we confine the black hole in a region where the
CARPET grid resolution is Δxi ¼ 0.0078M, which usually
guarantees that the diameter of the horizon is resolved
by about 100 points, making it easily found by
AHFINDERDIRECT. We also fix the resolution of the
AHFINDERDIRECT grid to be 79 points in the azimuthal
direction and 39 in the meridional direction. We have
confirmed that the resolution on the AHFINDERDIRECT grid
has a negligible impact in our results. In the cases presented
here, doubling the AHFINDERDIRECT grid resolution intro-
duces a variation in the computed parameters of order
0.01%. We compute ADM integrals by spectrally inter-
polating our fields on a sphere of radius 10000M, dis-
cretized with 256 points in both the meridional and
azimuthal directions.
As a first test, we made sure that our modified code with

zero charge, TWOCHARGEDPUNCTURES, produces the same
output as the standard open-source TWOPUNCTURES code.
This is not a trivial test because the equations used in our
code and in the original one are different, having different
numerical properties, even though they are mathematically
equivalent. In particular, our formulation is more suscep-
tible to numerical instabilities due to the finite-arithmetic
error in regions close to the puncture. The reason for this is
that our equations have terms that are not present in the

original code but that should perfectly cancel out when
Q ¼ 0. Such a numerical cancelation near the punctures is
not trivial. However, the result of the test with different
spectral resolutions shows that the two implementations
agree at the round-off-error level for punctures with no
charge.
Another key test that our code successfully passes

consists in recovering the only conformally flat analytical
solutions known: the Reissner-Nordström and the case of
two black holes with the same charge-to-mass ratio (see
Appendix E for more details), both of which are found with
u ¼ 0. We find the solution u ¼ 0 is recovered to machine
precision everywhere outside the horizons, and it is non-
identically zero only very close to the punctures, again due
to numerical precision.
The next test for TWOCHARGEDPUNCTURES is repro-

ducing the numerical solution found by Ref. [86] for two
nonrotating black holes with opposite charge-to-mass ratio
starting at rest. Figure 1 reports the value of u along the x, y,
and z axes for a system of two punctures with the same
mass but opposite charge (Q1 ¼ −Q2 ¼ 0.5M). We graphi-
cally superposed our plot with Fig. 1 in Ref. [86], finding
perfect agreement.

FIG. 1. u along the different coordinate axes (solid line for the x
axis and dotted and dashed linnes for the y and z axes,
respectively) for two punctures with equal mass and opposite
charge Q1 ¼ −Q2 ¼ 0.5M located on the x axis at �2M. This
configuration is generated with a spectral grid resolution
nA ¼ nB ¼ nφ ¼ 64. We graphically compared our solution to
the solution in Ref. [86] and found that the curves shown here
perfectly match the solution of Ref. [86]. The horizons have areal
radius RS1

¼ RS2
¼ 0.387M as defined by Eq. (23). The vertical

dotted lines represent the coordinate radius of the horizons as
found by AHFINDERDIRECT. We note that the black hole horizons
in binary black holes are generally nonspherical; see, e.g.,
Ref. [123].
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Continuing the progression of complexity in the con-
sidered systems, we generate a single puncture with angular
momentum but no linear momentum and one with linear
momentum but no angular momentum (Figs. 2 and 3,
respectively). In these single–black hole cases, we compare
the horizon mass with the ADM mass measured at infinity,
and we find agreement of order 0.1% even with resolution
as low as n ¼ 16. The same is true for the ADM angular
momentum and the horizon spin, as computed with
QUASILOCALMEASURESEM. We repeated these two tests
by aligning the linear and angular momentum vectors once

along the x direction and once along the z direction to
ensure that the built-in asymmetry in the coordinates
[Eqs. (52)] does not spoil expected symmetries in sym-
metric configurations. By doing this, we find that the
solutions are rotationally invariant to better than one part in
106 for a resolution n ¼ 32 or higher.

B. Convergence

Finally, we considered the generic system shown in Fig. 4.
This is formed by two equal-mass black holes with charge
Q1 ¼ −0.3M and Q2 ¼ 0.5M. Both black holes are spin-
ning with angular momentum Sz1 ¼ Sz2 ¼ 0.5M2. The black
holes also have linear momentum Px

1 ¼ Pz
2 ¼ −0.5M. The

solution for u for this system is depicted in Fig. 5. With
QUASILOCALMEASURESEM, we find that the quasilocal
angular momenta (charges) agree with their bare counter-
parts towithin one part in 104 (108).We find that the mass of
the first horizon is 1.187M and the second is 1.202M. The
total (ADM) mass of the system is 2.337M, and the differ-
ence between this value and the sumof the individualmasses
is the binding energy.
This system is used to study the self-convergence

properties of the code. In particular, we consider the
maximum relative error of u with respect to a reference

FIG. 2. u along the coordinate axes for a single puncture with
charge Q ¼ 0.5M rotating around the z axis with angular
momentum Sz ¼ 0.5M2. The plot corresponds to spectral grid
resolution nA ¼ nB ¼ nϕ ¼ 64. The horizon has areal radius
RS ¼ 0.433M. The different styles of curves have the same
meanings as in Fig. 1.

FIG. 3. u along the coordinate axes for a single puncture with
charge Q ¼ 0.5M with linear momentum Pz ¼ 0.5M. The plot
corresponds to spectral grid resolution nA ¼ nB ¼ nϕ ¼ 64. The
horizon has areal radius RS ¼ 0.421M. The different styles of
curves have the same meanings as in Fig. 1.

FIG. 4. Electric-field lines on the x − z plane for two charged
punctures. The first (left) black hole has charge Q1 ¼ −0.3M,
linear momentum Px

1 ¼ −0.5M, and spin angular momentum
Sz1 ¼ 0.5M2. The second (right) black hole has Q2 ¼ 0.5M,
linear momentum Pz

2 ¼ −0.5M and spin angular momentum
Sz2 ¼ 0.5M2. The black disks depict the apparent horizon of each
black hole, which set the scale in the plot. This is the test case
used in the self-convergence test reported in Fig. 6.
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solution at high resolution N. For this, we sampled u on a
set of points T and computed the infinity norm

kΔN
n ukT∞ ¼ max

x∈T

���� unðxÞ − uNðxÞ
uNðxÞ

����: ð53Þ

We choose T as the set of points in which spheres of radii
1M, 2M, 5M, 10M, 100M, and 1000M intersect the
coordinate axes for x > 0; y > 0; z > 0.
We set as a reference solution (N) one obtained at high-

resolution with nA ¼ nB ¼ nϕ ¼ n ¼ 64, which is between
n ¼ 50 and n ¼ 70 that were used for self-convergence
tests in the original TWOPUNCTURES code [92]. Here, we
simply choose resolutions which are multiples of 4, but our
results do not depend on this choice. Our convergence test
(Fig. 6) shows that the algorithm is robust; u quickly
converges to its high-resolution value. The code converges
approximately at sixth order. We also verified that the
code exhibits the same convergence properties when we
repeat the convergence test with Q1 ¼ Q2 ¼ 0, which also
agree with the convergence properties of the original
TWOPUNCTURES code [92]. The convergence of u also
results in excellent convergent behavior for both the ADM
mass and momenta and the horizon properties as computed
by QUASILOCALMEASURESEM.

V. CONCLUSIONS

Gravitational waves offer new opportunities to study the
Universe that are not accessible with electromagnetic or
neutrino astronomy. In this landscape, numerical-relativity
simulations are a powerful tool to gain insight into the
properties and the characteristics of both the waves and
their sources. The majority of numerical-relativity simu-
lations of black holes to date do not treat the electric charge.
This is because it is believed that astrophysically relevant
black holes should have a charge that is negligibly small
compared to the mass. For this reason, there are no studies
of highly dynamical electrovacuum spacetimes that involve
the inspiral and merger of binary black holes with charge
and spin. Nevertheless, electrovacuum spacetimes are of
great interest, having both a theoretical appeal and exotic
astrophysical applications.
In this paper, we initiated an effort toward solving the

coupled Einstein-Maxwell equations in a dynamical and
fully general relativistic regime. The first step to perform
this type of simulations is the generation of valid initial
data. Here, we employed the conformal transverse-traceless
approach to build a formalism for generating initial data for
multiple black holes with charge and angular and linear
momenta. Moreover, we applied the theory of isolated
horizons to attribute the physical mass, charge, and angular
momentum to the horizon, providing a solid understanding
of the physical content of our initial data. We implemented
the formalism in a software based on the TWOPUNCTURE

FIG. 5. u along the coordinate axes for two punctures with
charge Q1 ¼ −0.3M and Q2 ¼ 0.5M. The first black hole has
linear momentum Px

1 ¼ −0.5M and spin angular momentum
Sz1 ¼ 0.5M2. The second black hole has linear momentum Pz

2 ¼
−0.5M and spin angular momentum Sz2 ¼ 0.5M2. The electric-
field lines are reported in Fig. 4. The plot corresponds to spectral
grid resolution nA ¼ nB ¼ nϕ ¼ 64. This system is used for the
self-convergence test in Fig. 6. The horizons have radii RS1

¼
0.412M and RS2

¼ 0.373 and quasilocal masses MS1
¼ 1.187M

and MS2
¼ 1.202M. The different styles of curves have the same

meanings as in Fig. 1.

FIG. 6. Convergence properties of the algorithm measured by
computing the maximum relative error on ukΔ64

n ukT∞ over the test
set T (formed by points at distances 1M, 2M, 5M, 10M, 100M,
and 1000M on the different coordinate axes). See Fig. 4 for the
geometric setup and black hole parameters used for this test. The
dashed line shows that the code is approximately sixth-order
convergent. All the other physical properties (such as the ADM
mass and momenta and the horizon quantities) inherit this
excellent convergence behavior from u.
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and the QUASILOCALMEASURES open-source codes, veri-
fying our implementation with a series of tests involving
analytical or previously known results. The algorithm was
found to recover the expected solutions and showed
excellent convergence properties.
With the valid initial data for charged, rotating, and

moving punctures, it is now possible to simulate dynamical
evolution of several systems that have never been taken in
consideration, such as ultrarelativistic head-on collision
and the quasicircular or eccentric inspiral and merger of
two black holes. For a first application of the formalism
outlined in this paper, we plan to study in the near future the
case of charged and spinning black holes in quasicircular
orbit. Some of these simulations are already underway and
will be presented in forthcoming work.
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APPENDIX A: ALGORITHM AND
IMPORTANT EQUATIONS

In this Appendix, we sketch the algorithm and summa-
rize the important equations to generate initial data for
3þ 1 evolutions of arbitrary systems ofN black holes with
electric charge and linear and angular momenta using the
conformal transverse-traceless decomposition. In the fol-
lowing, n is used to index the nth black hole in the system
that is n ∈ f1;…;N g. Unless otherwise specified, sums in
this Appendix are over all punctures. We also assume that
each black hole is endowed with Reissner-Nordström
electromagnetic fields ðĒi; B̄iÞ associated with electric
charge Qn. The steps in generating the initial data are as
follows:
(1) Choose the bare parameters Mn, Qn, Sin, Pi

n, and xn
for each black hole, respectively representing mass,
charge, angular momentum, linear momentum, and
position.

(2) Compute the conformal electromagnetic fields
ðĒj

n; B̄
j
nÞ for each black hole. Under the assumption

of Reissner-Nordström fields, we obtain

Ēj
n ¼ Qn

R2
n
R̂i
n; ðA1Þ

B̄j
n ¼ 0; ðA2Þ

with Rn ¼ jx − xnj being the Euclidean coordinate
distance from puncture n and R̂i

n being the

corresponding unit vector. Then, superpose the
conformal electromagnetic fields of all black holes,

Ēj ¼
X

Ēj
nðQn;xnÞ; ðA3Þ

B̄j ¼
X

B̄j
nðQn;xnÞ: ðA4Þ

(3) Solve the inhomogeneous momentum constraint
for Vi

EM,

ð∇2VEMÞi þ
1

3
δij∂jð∂kVk

EMÞ − 8πS̄i ¼ 0; ðA5Þ

with

4πS̄i ¼ ϵ̄ijkĒjB̄k ðA6Þ
and imposing as a boundary condition that Vi

EM → 0
at spatial infinity.
Given our choice for the electromagnetic fields

[Eq. (A1)], S̄i ¼ 0, so VEM ¼ 0 is a solution of the
momentum constraint (A5).

(4) Compute the total auxiliary vector Vi,

Vi ¼ Vi
GR þ Vi

EM; ðA7Þ

with

Vi
GR ¼

X�
−
7

4

Pi
n

Rn
−
1

4
δjkx

j
nPk

n
xin
R3
n
þ ϵ̄ijkx

j
nSkn

R3
n

�
:

ðA8Þ

(5) Solve the Hamiltonian constraint for u, imposing
u → 0 at spatial infinity,

κ∇2uþ ∂aκ∂aκ − ∂aφ∂aφ − ∂aψ∂aψ

þ 1

8
ψ−6ĀijĀij þ 2πψ−2Ē ¼ 0; ðA9Þ

with

κ ¼ 1þ uþ η; ðA10Þ

η ¼
X Mn

2Rn
; ðA11Þ

φ ¼
X Qn

2Rn
; ðA12Þ

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − φ2

q
; ðA13Þ

Āij ¼ 2Vði;jÞ −
2

3
δij∂kVk; ðA14Þ
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4πĒ ¼ 1

2
ðĒiĒi þ B̄iB̄iÞ: ðA15Þ

(6) With ψ now known, compute the physical fields that
are necessary for the evolution:

Ei ¼ ψ−6Ēi; ðA16Þ

Bi ¼ ψ−6B̄i; ðA17Þ

γij ¼ ψ4δij; ðA18Þ

Kij ¼ ψ−2
�
2Vði;jÞ −

2

3
δij∂kVk

�
: ðA19Þ

(7) Find the isolated horizons Sn, and compute the
associated physical properties

QSn
¼ 1

4π

Z
Sn

ð4Þ⋆F; ðA20Þ

RSn
¼

�
1

4π

Z
Sn

ϵ

�1
2

; ðA21Þ

JSn
¼ −

1

8π

Z
Sn

ðφ · ωÞϵþ 2ðφ · ð4ÞAÞð4Þ⋆F; ðA22Þ

MSn
¼ 1

2RSn

½ðR2
Sn

þQ2
Sn
Þ2 þ 4J2Sn

�12; ðA23Þ

where ð4Þ⋆F is the dual of the electromagnetic tensor,
ϵ is the horizon surface 2-form, ð4ÞA is the electro-
magnetic vector potential, φ is the approximate
rotational Killing vector on Sn, and ω is defined
in the main text [see Eq. (24)]. QSn

, RSn
, JSn

, and
MSn

are, respectively, the charge, radius, angular
momentum, and mass of the nth horizon.

APPENDIX B: ISOLATED HORIZON IN THE
REISSNER-NORDSTRÖM SOLUTION

The goal of this Appendix is to show that the formalism
of isolated horizons produces the expected black hole
properties in the case of the Reissner-Nordström solution.
This can be proven starting from metric (17), which we
rewrite here for convenience,

ds2 ¼ −
�
1 −

2m
r

þ q
r2

�
dt2 þ

�
1 −

2m
r

þ q
r2

�
−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ; ðB1Þ

with electromagnetic potential

ð4ÞA ¼ −
q
r
dt: ðB2Þ

In this case, a spherical surface with coordinate radius rþ ¼
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
is a Killing horizon, which implies that it is

an isolated horizon. This is because every Killing horizon
which is topologically S2 × R is an isolated horizon [93].
Therefore, the metric qab induced on the spatial section of
the horizon is simply the metric on a spherical surface
[ds2 ¼ qabdxadxb ¼ r2ðdθ2 þ sin2θdϕ2Þ], and the value of
RS defined by Eq. (23) coincides with rþ itself, since the
radial coordinate in Eq. (B1) is the areal radius. In this case,
the rotational vector φ in (24) is taken to be the generator of
the azimuthal symmetry on the sphere, which is also a
Killing vector of the entire spacetime. Hence, we find that
φ · ð4ÞA ¼ 0 as ð4ÞA has only a temporal component and φ
has only a spatial component. Moreover, since the future-
directed vector ka orthogonal to S has only radial and
temporal components, and any ta tangent to S has only
azimuthal and meridional components, ta∇akb ¼ 0. By
construction, we also have ta∇akb ¼ taωakb ¼ 0, which
implies that ωa ¼ 0, because the equation is zero for each
ta. Hence, by use of Eq. (24), we conclude that JS ¼ 0.
To compute charge and mass, we need the electromag-

netic tensor, which is given by

ð4ÞF ¼ dð4ÞA ¼ −
q
r2
dr ∧ dt ¼ q

r2
dt ∧ dr; ðB3Þ

and its dual

ð4Þ⋆F ¼ ffiffiffiffiffiffi
−g

p q
r2
dθ ∧ dφ ¼ q sin θdθ ∧ dφ: ðB4Þ

The integration of ð4Þ⋆F=4π over any sphere of coordinate
radius r results in exactly q, so Eq. (25) implies QS ¼ q.
Finally, from Eq. (26), the horizon mass is

MS ¼
ðR2

S þ q2Þ
2RS

¼ 2mðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ

2ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ

¼ m: ðB5Þ

For a Reissner-Nordström black hole, m and q are
interpreted as the spacetime total energy and electric
charge, respectively [59]. Therefore, in this case, the bare
mass (charge), the isolated horizon mass (charge), and the
physical mass (charge) all coincide.

APPENDIX C: COMPUTING THE CHARGE
OF AN ISOLATED HORIZON

In this Appendix, we discuss how we perform the
computation of the horizon charge. To compute the charge
of the horizon, we need to perform the following integra-
tion (see Sec. II C):
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QS ¼ 1

4π

Z
S

1

2!
ϵabcEcdxa ∧ dxb: ðC1Þ

This quantity is coordinate independent, so choosing
Cartesian coordinates ðxaÞ ¼ ðx; y; zÞ, we can write

QS ¼ 1

4π

Z
S

ffiffiffi
γ

p ðEzdx ∧ dyþ Exdy ∧ dz − Eydx ∧ dzÞ;

ðC2Þ

with γ being the determinant of the spatial metric. We
introduce a parametrization of S with polar coordinates
ðθ;ϕÞ around the origin ðx0; y0; z0Þ,

8<
:

xðθ;ϕÞ ¼ x0 þ sðθ;ϕÞ sin θ cosϕ
yðθ;ϕÞ ¼ y0 þ sðθ;ϕÞ sin θ sinϕ
zðθ;ϕÞ ¼ z0 þ sðθ;ϕÞ cos θ

; ðC3Þ

with sðθ;ϕÞ being suitable smooth function. This is always
possible since by hypothesis S has spherical topology and
by construction QS does not depend on the parametriza-
tion. Then, the first term in Eq. (C2) can be written as

Z
S

ffiffiffi
γ

p
Ezðx; y; zÞdx ∧ dy

¼
Z
θ

Z
ϕ

ffiffiffi
γ

p
Ezðθ;ϕÞj det Jxyðθ;ϕÞjdθ dϕ; ðC4Þ

where Jxyðθ;ϕÞ is the Jacobian of the transformation (C3)
involving the coordinates x and y,

Jxyðθ;ϕÞ ¼
� ∂θxðθ;ϕÞ ∂ϕxðθ;ϕÞ
∂θyðθ;ϕÞ ∂ϕyðθ;ϕÞ

�
:

The remaining terms in Eq. (C2) are dealt with accordingly.
In QUASILOCALMEASURESEM, we use the parametriza-

tion sðθ;ϕÞ provided by AHFINDERDIRECT, and we com-
pute the derivatives in the Jacobians using a centered,
second-order accurate finite-difference scheme.

APPENDIX D: KERR-NEWMAN SPACETIME

In this Appendix, we review the Kerr-Newman space-
time and discuss challenges associated with using the Kerr-
Newman electromagnetic fields as source terms in the
Hamiltonian and momentum constraints.
The Kerr-Newman black hole with mass m, electric

charge q, and angular momentum am in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ is [59]

ds2 ¼ −
Δ − a2 sin2 θ

ρ2
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

− 2a sin2 θ
ðr2 þ a2 − ΔÞ

ρ2
dt dϕ

þ ðr2 þ a2Þ2 − Δa2 sin2 θ
ρ2

sin2 θdϕ2; ðD1Þ

with

ρ2 ¼ r2 þ a2 cos2 θ; ðD2aÞ

Δ ¼ r2 − 2mrþ a2 þ q2: ðD2bÞ

The electromagnetic vector potential is

ð4ÞA ¼ −
qr
ρ2

ðdt − asin2θdϕÞ: ðD3Þ

Following the usual procedure for generating puncture
initial data, we transform to quasi-isotropic coordinates by
introducing a new radial coordinate R as in Ref. [90]

r ¼ R

�
1þm

R
þ R2

H

R2

�
; ðD4Þ

with RH ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2

p
being the radius of the black

hole horizon in the new coordinate system. The metric
takes now the form

ds2 ¼ ð−α2 þ βϕβ
ϕÞdt2 þ 2βϕdϕdtþ γlkdxldxk; ðD5Þ

where

γlkdxldxk ¼ Ψ4½dR2 þ R2dθ2 þ R2sin2θdϕ2

× a2hR4sin4θdϕ2�; ðD6Þ

where Ψ is the conformal factor; l; k ∈ fR; θ;ϕg; and α, β,
γ, and h are functions of ðR; θ;ϕÞ, with

Ψ4 ¼ ρ2=R2; ðD7aÞ

α ¼ ρ6ðRþ RHÞðR − RHÞ
Rϒ

; ðD7bÞ

βϕ ¼ −aσ sin2 θ; ðD7cÞ

βϕ ¼ βϕ=γϕϕ; ðD7dÞ

h ¼ ð1þ σÞ=ðρ2R2Þ; ðD7eÞ

σ ¼ 2mr − q2

ρ2
; ðD7fÞ
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ϒ ¼ ρ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2ð1þ σ sin2θÞ

q
; ðD7gÞ

γϕϕ ¼ sin2 θðr2 þ a2ð1þ σ sin2 θÞÞ: ðD7hÞ

The nonzero components of the electromagnetic fields
are8

ER ¼ qRð2r2 − ρ2Þðr2 þ a2Þ
ϒ

; ðD8aÞ

Eθ ¼ −
2a2qðR − RHÞðRþ RHÞr cos θ sin θ

Rϒ
; ðD8bÞ

BR ¼ 2aqRrðr2 þ a2Þ cos θ
ϒ

; ðD8cÞ

Bθ ¼ aqðR − RHÞðRþ RHÞð2r2 − ρ2Þ sin θ
Rϒ

: ðD8dÞ

The conformal fields are obtained by scaling byffiffiffi
γ

p ¼ ϒρ−4R−1 sin θ,

ĒR ¼ qð2r2 − ρ2Þðr2 þ a2Þ sin θ
ρ4

; ðD9aÞ

Ēθ ¼ −
2a2qðR − RHÞðRþ RHÞr cos θ sin2 θ

ρ4R2
; ðD9bÞ

B̄R ¼ 2aqrðr2 þ a2Þ cos θ sin θ
ρ4

; ðD9cÞ

B̄θ ¼ aqðR − RHÞðRþ RHÞð2r2 − ρ2Þ sin2 θ
ρ4R2

: ðD9dÞ

In these coordinates, the conformal fields are regular for
R → 0 (in this limit, ρ ∼ r ∼ 1=R).
However, Eqs. (46) and (50) are in Cartesian coordi-

nates. Transforming to Cartesian coordinates as in flat
spacetime, the conformal fields are obtained as

Ēi ¼ ∂xi
∂R

ĒR

R2 sin θ
þ ∂xi

∂θ
Ēθ

R2 sin θ
; ðD10aÞ

B̄i ¼ ∂xi
∂R

B̄R

R2 sin θ
þ ∂xi

∂θ
B̄θ

R2 sin θ
; ðD10bÞ

where here i ∈ fx; y; zg and the factor of R2 sin θ is the
determinant of the Jacobian of the transformation and
ensures that the resulting fields Ēi and B̄i satisfy the
Maxwell constraints

∂iĒi ¼ 0; ðD11aÞ

∂iB̄i ¼ 0: ðD11bÞ

In these coordinates, the fields are singular when
x; y; z → 0. Given this singular behavior, Vi

EM is expected
to be singular as well near the punctures because the source
of the momentum constraint (46) diverges with a high
power of R. This is precisely what we find when we
implement our algorithm with the Kerr-Newman electro-
magnetic fields. In particular, for a single Kerr-Newman
black hole without linear momentum, the singular source
terms are S̄x and S̄y, which at leading order for x; y; z → 0
scale as

S̄x ∼
aq2y

RHðx2 þ y2 þ z2Þ52 ; ðD12aÞ

S̄y ∼ −
aq2x

RHðx2 þ y2 þ z2Þ52 : ðD12bÞ

A possible approach to dealing with the singular source
would be to separate the singular part of the solution from
the regular one, as is done for the Hamiltonian constraint.
However, this approach typically requires a known analytic
solution, and this does not seem possible within the
approach of conformal flatness because the Kerr-
Newman solution does not admit conformally flat spatial
slices. In future work, we will explore potential solutions to
these challenges by lifting the conformal flatness
approximation.

APPENDIX E: GENERALIZED
MAJUMDAR-PAPAPETROU

Here, we show that our formalism recovers spatial slices
of a generalized Majumdar-Papapetrou solution found by
Ref. [86] when each black hole is at rest and nonspinning
and all black holes have the same charge-to-mass ratio.
This happens because under these assumptions the momen-
tum constraint is trivially satisfied, and the Hamiltonian one
is solved by u ¼ 0, as we verify in what follows.
Given our definitions of η and φ [Eqs. (48)], if the

charge-to-mass ratio is fixed to λ for every black hole, then
φ ¼ λη. Moreover, with our choice of Reissner-Nordström
fields, there are no magnetic fields, so the electromagnetic
energy is 8πĒ ¼ 4∂aφ∂aφ, where the factor of 4 arises

8Our expression for Eθ differs from the corresponding one in
Eq. (3.5) of Ref. [90] by a factor of r=R. We find that the electric-
field components listed in Ref. [90] do not satisfy Maxwell’s
equations and that Gauss’s law yields a value for the charge that is
correct for spherical surfaces, but the value is different on
nonspherical surfaces, e.g., ellipsoidal ones. We have checked
that our electric fields satisfy Maxwell’s equations, and as a
result, Gauss’s law yields the correct electric charge even on
nonspherical surfaces. We conclude that Eθ in Ref. [90] has a
typographical error.
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from the fact that φ is not the electrostatic potential, but it is
half of it. Plugging the ansatz u ¼ 0 into the Hamiltonian
constraint [Eq. (50)] yields

∂aκ∂aκ − ∂aφ∂aφ − ∂aψ∂aψ þ ψ−2∂aφ∂aφ ¼ 0: ðE1Þ

But ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ϕ2

p
; thus, multiplying the last equation by

ψ2 and expressing the derivatives of ψ in terms of κ and ϕ
and their derivatives yields

ð1 − κ2Þ∂aφ∂aφ − φ2∂aκ∂aκ þ 2κφ∂aκ∂aφ ¼ 0: ðE2Þ

Plugging κ ¼ 1þ η ¼ 1þ φ=λ and ∂aκ ¼ ∂aφ=λ into this
last expression, after some algebra, we find that the
Hamiltonian constraint is satisfied. If we choose λ ¼ 1,
we find

γij ¼
�
1þ

XNp

n¼1

Mn

Rn

�
δij; ðE3Þ

which describes a spatial slice of the Majumdar-Papapetrou
spacetime with N extremal black holes [54,55].
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