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It has recently been shown that nontrivial couplings between a scalar and the Gauss-Bonnet invariant can
give rise to black hole spontaneous scalarization. Theories that exhibit this phenomenon are among the
leading candidates for testing gravity with upcoming black hole observations. All models considered so far
have focused on specific forms for the coupling, neglecting scalar self-interactions. In this work, we take
the first steps towards placing this phenomenon on a more robust theoretical footing by considering the
leading-order scalar self-interactions as well as the scalar Gauss-Bonnet coupling. Our approach is
consistent with the principles of effective field theory and yields the simplest and most natural model. We
find that a mass term for the scalar alters the threshold for the onset of scalarization, and we study the mass
range over which scalarized black hole solutions exist. We also demonstrate that the quartic self-coupling is
sufficient to produce scalarized solutions that are stable against radial perturbations, without the need to
resort to higher-order terms in the Gauss-Bonnet coupling function. Our model therefore represents a
canonical model that can be studied further, with the ultimate aim of developing falsifiable tests of black
hole scalarization.
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I. INTRODUCTION

The era of gravitational-wave observations has arrived.
For the first time we can see the Universe in gravitational
waves as well as optically, and this new window affords us
the opportunity to test gravity in extreme spacetimes for
the first time. The LIGO/Virgo Collaboration has already
detected ten black hole (BH) mergers [1,2] and one neutron
star merger [3]. The latter has proved incredibly powerful
for testing and constraining the infrared modifications
of gravity [4–10] (if the modifications are important for
the late-time cosmology [11]), but ultraviolet (UV)

modifications are more difficult to test. This is partly
due to the numerical and theoretical challenges that arise
when extending computations of merger events to theories
beyond general relativity (GR), but also due to a theoretical
roadblock: the no-hair theorems [12–14] (see, e.g.,
Refs. [15–19] for reviews). These preclude the existence
of nontrivial scalar hair (or scalar charges) for BHs, and so
the dynamics of theories including new scalar degrees of
freedom (i.e., scalar-tensor theories) is similar to GR. One
possible way forward is to instead use neutron stars as
probes of UV modifications of GR [15,20–28]. These are
far more complicated objects, since the equation of state
for nuclear matter is presently unknown, and, unlike BHs,
neutron stars have higher-order multipole moments that
give rise to strong tidal effects. On the observational side,
LIGO/Virgo has observed more BH mergers than neutron
star mergers [2], and this may well remain the case, even as
more gravitational-wave detectors come online and the
existing ones are upgraded to improved sensitivities.
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A. Black hole spontaneous scalarization
and effective field theory

The considerations above have motivated a theoretical
effort to find UV modifications of GR that can circumvent
the no-hair theorems by violating some of their assump-
tions. Some of these theories exhibit spontaneous BH
scalarization [29,30], a phenomenon where both the GR
BH solution and novel BH solutions with scalar hair can
exist. The phenomenon has been predicted for static [29,30]
and, more recently, charged [31,32] BHs. This allows for the
possibility that, even if all LIGO/Virgo detections to date
have been compatible with GR, future detections could be
consistent with scalarized BH solutions.
The fundamental interaction responsible for scalarization

is the coupling between a scalar field ϕ and the Gauss-
Bonnet invariant G ¼ R2 − 4RabRab þ RabcdRabcd, so that
the action has the form

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R

8πG
−
1

2
∇aϕ∇aϕþ fðϕÞG

�
; ð1Þ

where we are using units where ℏ ¼ c ¼ 1, so that the
Planck mass MPl ¼ ð8πGÞ−1=2. In subsequent sections we
will switch to units where 8πG ¼ c ¼ 1, which is more
suited to (and more common in) the study of BH solutions.
In Eq. (1) we have chosen the same normalization and
conventions as in Ref. [33] (modulo an overall sign in the
definition of the Riemann tensor) and in Refs. [30,34–36],
while the scalar field ϕDY in Refs. [29,37] has a different
normalization: ϕDY ¼ ϕ=2. A canonically normalized sca-
lar field ϕcan is such that ϕcan ¼ ϕ=

ffiffiffi
2

p
.

Reference [30] proved a no-hair theorem for stationary,
asymptotically flat black holes in scalar Gauss-Bonnet
theories. The theorem assumes a massless scalar with no
self-interactions1 and relies on the following conditions: the
function fðϕÞ has a stable minimum at some constant
ϕ ¼ ϕ̄, and

f;ϕϕðϕ̄ÞG < 0: ð2Þ

Scalarization may occur when this condition is violated. In
particular, GR BHs correspond to solutions with ϕ ¼ ϕ̄, but
if Eq. (2) is violated, then the scalar has a tachyonic mass
and this configuration may be unstable. Due to nonlinear
effects, the existence of the instability depends on the
specific BH mass and model parameters. When the GR
solutions are unstable, the field rolls away, and the BH
acquires scalar hair. Apart from the condition (2), there is
no guiding principle for choosing fðϕÞ. The patent choice
fðϕÞ ¼ ϕ2=2M2 [30] (where M is a new mass scale)

produces scalarized BHs that are unstable to radial pertur-
bations [37]. This can be resolved by including higher-order
terms, in particular fðϕÞ ¼ ϕ2=2M2 þ cϕ4=M4 [35,36],
or by assuming a more complicated function: for example,
exponential couplings fðϕÞ ¼ expðβϕ2=2M2Þ with both
positive and negative signs for β have been considered in the
literature [29,38].
These solutions are somewhat unsatisfactory from a

theoretical perspective. Since we lack a UV completion
for these models, it would be more appropriate to construct
the theory using the principles of effective field theory
(EFT) [39–41]. From this perspective, relying on higher-
order corrections to the coupling function in order to
stabilize the BH solutions implies that higher-dimensional
operators are competing with (supposedly leading) lower-
dimensional operators. This suggests that operators that
have been omitted can be just as important, and therefore
these solutions are outside the range of validity of the EFT.
Moreover, without any enhanced symmetry protecting the
form of special choices of the coupling functions (and the
action in general), it is likely that these theories are radiatively
unstable. We note that there is currently no known enhanced
symmetry of the exponential or quartic couplings, though
this is by nomeans a proof that there cannot be one. Similarly,
it is possible that such couplings arise as a truncation of a
UV-complete theory and just appear fine-tuned from an IR
perspective [42].
In the coming decade and beyond, LIGO/Virgo will be

upgraded to higher sensitivities, and additional detectors
will come online. Hundreds or thousands of detections are
anticipated, and it therefore behooves us to make theoretical
predictions from robust models that are stable from a QFT
point of view. The main purpose of this paper is to take a
first step towards placing the phenomenon of BH sponta-
neous scalarization on a more robust theoretical foundation
by constructing the theory using EFT principles.
When viewed as an EFT, spontaneous scalarization is a

phenomenon occurring in theories where a Z2-symmetric
scalar (i.e., the action is invariant under ϕ → −ϕ) is
coupled to a massless spin-2 particle. We should therefore
build our action out of operators that are invariant under this
symmetry. In particular, the leading-order (relevant and
marginal) operators are not Gauss-Bonnet couplings, but
rather a mass term and a quartic self-interaction.2 One
should supplement these with irrelevant operators sup-
pressed by some cutoff scale M, which will include a
quadratic scalar Gauss-Bonnet coupling at lowest order.
For this reason, we will mainly study the action

1Generalizing this theorem to the theory studied in this work
would require imposing additional conditions on the scalar
potential.

2The leading-order scalar-graviton coupling is ϕ2R, but this
does not lead to BH scalarization, so we will not include it in this
work. This operator does not contribute to the scalar’s equation of
motion on a Ricci-flat GR solution, which means it cannot alter
the threshold for the onset of BH scalarization. Note, however,
that it can contribute to the effective mass on a scalarized BH or a
neutron star background.
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S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

PlR −
1

2
∇aϕ∇aϕ

−
1

2
μ2ϕ2 −

1

2
λϕ4 þ ϕ2

2M2
G
�
: ð3Þ

Later on, we will also include the quartic scalar Gauss-
Bonnet coupling in order to provide a different and well-
studied stable model against which we can compare the
effects of the self-interactions. This coupling is higher
order, and it will not give the leading-order effect from an
EFT perspective, but it is included for the purpose of
comparison with previous studies [29,30,36,37]. Boson star
and BH solutions have recently been studied in a similar
class of theories [43,44]. Scalar-tensor theories with a self-
interacting potential, but without a Gauss-Bonnet term,
were considered in Refs. [45–47].
Of course, there are other operators that one could write

down, such as a term ∝ϕ6 in the potential or scalar-
curvature couplings such as ϕ2R, but in this work we will
restrict our focus to understanding how scalarization works
when only the leading-order operators (including the
leading-order scalar Gauss-Bonnet coupling) are included,
since this is the minimal input required to produce the
phenomenon. We postpone the more arduous task of
determining the unique set of dimension-six operators that
contribute to this theory, and a full explorative study of the
resultant parameter space, for future work.

B. Executive summary

In this article we study the existence, stability, and
properties of scalarized BHs in the theory defined by the
action (3), including the subtleties and conceptual issues
that arise due to the inclusion of a mass for the scalar. We
refer the reader to Ref. [30] for a detailed presentation of
BH scalarization and to Refs. [35–37] for a discussion of
the details to analyze their stability.
We find (as previously noted in Ref. [44]) that including

a mass term for the scalar alters the threshold for the onset
of scalarization. Most notably, we find that the quartic self-
interaction is sufficient to stabilize some scalarized BHs,
and higher-order scalar Gauss-Bonnet couplings are not
required. For this reason, and because the theory is a robust
EFT, the action (3) represents the leading canonical model
with which to study spontaneous BH scalarization.
The action in Eq. (3) uses units where ℏ ¼ c ¼ 1, which

are useful for understanding the theory from an EFT
perspective. For the purposes of calculating, it is more
convenient to use geometrized units where 8πG ¼ c ¼ 1.
Furthermore, we will rescale the field so that ϕ is
dimensionless by defining (before the change of units)
ϕ ¼ MPlφ. In the new units, the action (3) reads

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇aφ∇aφ − VðφÞ þ fðφÞG

�
; ð4Þ

where the potential is

VðφÞ ¼ 1

2
μ2φ2 þ 1

2
λφ4; ð5Þ

the coupling function is

fðφÞ ¼ 1

8
ηφ2; ð6Þ

and η has units of ½Length�2. Note that the parameters μ and
λ appearing in the potential (5) have units of ½Length�−1 and
½Length�−2, respectively. In order to compare our results
with those of Ref. [36], in part of our analysis we will also
include a quartic term in the coupling function, i.e.,
fðφÞ ¼ ηφ2=8þ ζφ4=16, where ζ has units of ½Length�2
(seeAppendixB). Finally, note that in thisworkwewill only
consider μ2 > 0. One could consider μ2 < 0, which would
give a global minimum of the potential at some φ ≠ 0. This
sign choice would require the addition of a cosmological
constant to cancel the net vacuum energy at the new
minimum in order for the theory to admit asymptotically
flat spacetimes. Since the aim of this work is to discern the
effects of the scalar self-interactions on the canonical model
of spontaneous scalarization, we prefer not to include this
more technical and quantitatively different possibility.
With these conventions in place, we now summarize

the main results of this work. First, we introduce the
dimensionless mass and scalar charge of the solutions:

M̂≡M=η1=2; Q̂≡Q=η1=2; ð7Þ

as well as the dimensionless coupling parameters:

μ̂≡ μη1=2; λ̂≡ λη; ζ̂ ≡ ζ=η: ð8Þ

For the purpose of understanding the changes introduced
by the scalar potential, it will be useful to introduce an
effective potential, which is spacetime dependent:

VeffðφÞ ¼
1

2

�
μ2 −

η

4
G
�
φ2 þ 1

2
λφ4: ð9Þ

The equation of motion for the scalar is □φ ¼ Veff;φðφÞ.
In particular, there is an effective mass for the scalar about
the point φ ¼ 0:

m2
eff ¼ μ2 −

η

4
G; m̂eff ¼ meff=η1=2; ð10Þ

where we have defined a dimensionless effective mass for
later convenience. Close to the BH, the contribution of the
Gauss-Bonnet invariant dominates, and the Schwarzschild
solution is unstable due to a tachyonic instability (recall
that G ∼M2=r6 for the Schwarzschild metric). This
gives rise to spontaneous scalarization. Further away, the
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Gauss-Bonnet contribution is negligible, and the effective
mass is positive.
A summary of our results is as follows:
1. Effects of the mass term (left panel of Fig. 1): The

main effect of the mass term is to alter the threshold for
the onset of scalarization, as already noted in Ref. [44]. The
dimensionless mass threshold M̂, belowwhich scalarization
is possible, is studied in Sec. III, and it is plotted as a function
of μ̂ in the left panel of Fig. 1 for solutions where the radial
profile of the scalar field has no nodes (black, solid line) or
one node (red, dashed line). Only the nodeless solutions are
radially stable. Note that M̂ is a decreasing function of μ̂.
This can be qualitatively understood from the effective
potential (9): m̂eff grows with μ̂ (at fixed G), so that the
tachyonic instability responsible for scalarization is harder
to realize.
2. Effects of the quartic self-interaction (right panel of

Fig. 1): The quartic self-interaction stabilizes scalarized BH
solutions with respect to radial perturbations. At fixed μ̂,
all scalarized solutions with λ̂ < λ̂crit are unstable, and we
conjecture that gravitational collapsewill generally lead to a
Schwarzschild solution, since these are always stable for
M̂ > M̂t. (We remind the reader that M̂t is the λ-independent
threshold for scalarization, determined using linear pertur-
bation theory and ignoring gravitational backreaction,
below which stable scalarized BHs can exist.) This corre-
sponds to the region on the right of the dotted vertical lines in
Fig. 5 below. When λ̂ > λ̂crit, stable scalarized BH solutions
are possible: these are the solid lines on the left of the dotted
vertical lines in Fig. 5, and we conjecture that they are the
end state of gravitational collapse. The threshold value
λ̂critðμ̂Þ is shown in the right panel of Fig. 1. Qualitatively,
this can be understood as follows: For scalarized solutions,
the effective mass for the scalar [Eq. (10)] is tachyonic, at

least in some region of spacetime, and therefore the scalar
tends to grow from its scalarized value. Introducing a quartic
term in the effective potential (9) bounds the effective
potential from below, so that there is a stable minimum
about which the effective mass (10) is positive and the
solution is globally stable. This is also the reason why a
quartic Gauss-Bonnet coupling can stabilize the scalarized
solutions [35,36], although in the Gauss-Bonnet case the
coefficient of the φ4 term is also spacetime dependent.
The existence of a global stable minimum should resolve

the concerns raised in Ref. [48], where it was shown that
quantum fluctuations could trigger the tachyonic instability
during inflation. In our model, the field would begin, and
remain, at the global minimum for the duration of inflation
and play no role in its dynamics (the field’s mass would be
much larger than the Hubble scale so that the field does not
fluctuate). That being said, inflation occurs at energies far
higher than the cutoff of the effective field theory for
spontaneous scalarization (10−20 GeV for scalarized solar
mass BHs), and it is not clear that the range of validity of
any current model exhibiting scalarization can be extended
to the early Universe.
3. Mass range for scalarization and maximum scalar

charge (Fig. 2): For any given choice of the theory
parameters ðμ̂; λ̂Þ, marginally stable scalarized BH solu-
tions correspond to a minimum in the BH mass M̂ and a
maximum in the scalar charge Q̂: cf. again Fig. 5 below.
(This maximum charge refers to stable BHs; unstable BHs
can have larger charges, but they are unphysical.) In the left
panel of Fig. 2 we focus on nodeless solutions, and we plot
(i) the λ̂-independent threshold mass M̂ ¼ M̂tðμ̂Þ, below
which scalarization is possible (thick, gray line), and (ii) the
minimum dimensionless mass M̂minðμ̂Þ, below which both
Schwarzschild and scalarized BH solutions are unstable,
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FIG. 1. Left: Critical threshold for scalarization as a function of dimensionless mass μ̂ for the scalarized solutions with n ¼ 0 and
n ¼ 1 nodes in the scalar profile. Scalarized solutions with n > 0 are unstable under radial perturbations. The scalarization threshold is
independent of λ̂, and stable scalarized solutions may exist for masses M̂ below the lines (for n ¼ 0). Conversely, the Schwarzschild
solution is stable for masses larger than the n ¼ 0 threshold and unstable for masses below this value. Blue dots mark the values of μ̂
studied more in detail in Fig. 3. Right: Phase diagram for stable, scalarized BH solutions in the ðμ̂; λ̂Þ plane. All scalarized BH solutions
in the gray region are radially unstable.
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for selected values of λ̂. The mass range in which stable,
scalarized BH solutions can exist becomes narrower as μ̂
increases.
Summarizing, for M̂ > M̂t, the Schwarzschild solution is

stable, while scalarized BH solutions are unstable to radial
perturbations; for M̂min < M̂ < M̂t, there is at least one
stable n ¼ 0 scalarized BH, while the Schwarzschild
solution (and the n > 0 scalarized BH solutions) are
unstable; and finally, for M̂ < M̂min, all BH solutions are
unstable. The existence of a minimum BH mass is a
common feature in theories with scalar Gauss-Bonnet
coupling (see, e.g., the cases of Einstein-dilaton Gauss-
Bonnet gravity [33,49] and of shift-symmetric Gauss-
Bonnet gravity [50]), although in theories that do not
exhibit scalarization (such as these), the minimum mass is
due to the inability to satisfy a regularity condition at the
horizon.
The right panel of Fig. 2 shows the maximum dimen-

sionless scalar charge Q̂maxðμ̂Þ for selected values of λ̂. The
most relevant feature here is that, for all values of λ̂ that we
investigated, Q̂maxðμ̂Þ has a local maximum ∼0.15: this
near-universal maximum value of the scalar charge is of
phenomenological interest, because the dipolar radiation in
BH binaries (which is potentially measurable by gravita-
tional-wave interferometers) is proportional to the differ-
ence between the BH charges [15,51,52].

C. Plan of the paper

The paper is organized as follows: In Sec. II, we present
the equations of motion resulting from the action (4) and
analyze their properties. In Sec. III, we investigate the effect
of a nonzero scalar mass on the threshold for the onset of
scalarization. We accomplish this by studying the limit in
which the scalar is decoupled from the metric equations of
motion—i.e., we consider the linearized field equations for
a scalar field propagating on a Schwarzschild background.
In Sec. IV, we move beyond this “decoupling limit” and

solve the coupled metric-scalar equations numerically in
order to confirm the results of our linear analysis. We also
calculate the properties of the scalarized solutions, includ-
ing their stability to radial perturbations. The study of radial
perturbations in scalar Gauss-Bonnet theories is by now
standard (cf. Refs. [35–37]), so we do not rederive the
formalism in this work. In Sec. V, we summarize our results
and discuss possible directions for future work.

II. FIELD EQUATIONS AND
SCALARIZED SOLUTIONS

The modified Einstein equations can be obtained by
extremizing the action (4) with respect to the metric and the
scalar field, with the result

Gab ¼ Tφ
ab −

1

2
Kab; ð11Þ

□φ ¼ V;φ − f;φG; ð12Þ

where

Tφ
ab ¼

1

2
∂aφ∂bφ −

1

2
gab

�
1

2
ð∂cφÞ2 þ VðφÞ

�
; ð13Þ

Kab ¼ 2gcðagbÞdϵedjg∇h½�Rch
jgf;φ∇eφ�; ð14Þ

where VðφÞ is given in Eq. (5), fðφÞ ¼ ηφ2=8þ ζφ4=16,
and �Rab

cd ¼ ϵabefRefcd.
As discussed in Refs. [29,30], Schwarzschild solutions

exist in scalar Gauss-Bonnet theories provided that there
is some φ̄ such that f;φðφ̄Þ ¼ 0. In our model, φ̄ ¼ 0.
Allowing for a nonzero value of the background scalar may
have important phenomenological consequences for gravi-
tational-wave astronomy, as pointed out in the context of
Einstein-Maxwell dilaton theory [53], and we plan to revisit
this assumption in future work.

0.00 0.05 0.10 0.15 0.20 0.25
0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.06

0.08

0.10

0.12

0.14

0.16

FIG. 2. Mass and charge of the marginally stable scalarized BHs. These represent the minimum mass and maximum charge that stable
scalarized BHs can have. Blue dots are the marginally stable solutions explored in Fig. 5.
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We focus on static, spherically symmetric BHs. In this
case, the line element and the scalar field read

ds2 ¼ −AðrÞdt2 þ BðrÞ−1dr2 þ r2dΩ2; ð15Þ

φ ¼ φ0ðrÞ; ð16Þ

where dΩ ¼ dθ2 þ sin2 θdϕ2 is the line element on a 2-
sphere. The field equations can be obtained by substituting
Eqs. (15) and (16) into Eqs. (11) and (12). We show the
equations in Appendix A. We also make them available
online through a Mathematica notebook [54].
The field equations must be supplemented by boundary

conditions. Spherically symmetric BHs have an event
horizon rh where the functions A and B vanish and the
scalar field tends to a constant:

Aðr ≈ rhÞ ≈ a1ðr − rhÞ þO½ðr − rhÞ2�; ð17Þ

Bðr ≈ rhÞ ≈ b1ðr − rhÞ þO½ðr − rhÞ2�; ð18Þ

φ0ðr ≈ rhÞ ≈ φ0h þO½ðr − rhÞ�: ð19Þ

These conditions impose a restriction on the derivative of
the scalar field at the horizon:

dφ0

dr

����
r¼rh

¼ a−1ðbþ c
ffiffiffiffi
Δ

p
Þ; ð20Þ

where a, b, and c are functions of rh, φ0h, and of the
parameters of the theory. The explicit expression of these
functions is given in Appendix A. The important quantity
is Δ, which is given by

Δ¼ 1−6
φ0h

r4h
ðηþζφ2

0hÞ2
�
1−

1

2
φ2
0hðηþ ζφ2

0hÞðμ2þ2λφ2
0hÞ

−
r2h
6
φ2
0hðμ2þλφ2

0hÞ
�
1þ 1

16r2h
ðηφ0hþζφ3

0hÞ2×

×

�
−
24

r2h
þμ2φ2

0hþλφ4
0h

��	
: ð21Þ

When Δ < 0, it is not possible to enforce regularity at the
horizon. Reference [50] studied this regularity condition for
shift-symmetric scalar Gauss-Bonnet gravity, showing that
the BH becomes a naked singularity when the condition is
violated. Thus, Δ > 0 is a necessary condition for the
existence of BH solutions.
By expanding the field equations for large r we obtain

Aðr ≫ rhÞ ≃ 1 − 2M=r; ð22Þ

Bðr ≫ rhÞ ≃ 1 − 2M=r; ð23Þ

φ0ðr ≫ rhÞ ≃Qe−μr=r; ð24Þ

where M is the ADM mass, Q is an integration constant,
and we have set the cosmological value of the scalar field
to zero. In the μ → 0 limit, the scalar field decays like
φ ∼ 1=r, and the constant in front of 1=r is typically
referred to as the “scalar charge.” Strictly speaking,Q is not
a conserved charge (even when μ ¼ 0), but we will follow
conventions and refer to it as such from here on.
Typically, in scalar-tensor theories one must set the

scalar field’s mass such that the force range is submicron
[for Oð1Þ couplings], or else the theory will fail laboratory
and Solar System tests of GR [55–63]. Therefore, one
would expect the spacetime outside the BH to rapidly
approach the Schwarzchild metric, thereby suppressing any
deviations from GR. This logic follows from scalar-gravity
couplings of the form φR, which, in the absence of any
screening mechanisms, give rise to Yukawa forces. The
coupling considered in our model ηφ2G is expected to
appear at high post-Newtonian order in the weak-field limit
(provided η=M2

⊙ is not too large), and therefore the theory
is compatible with Solar System tests of GR [64,65].
Furthermore, since it is unlikely that weakly gravitating
objects like the Sun and the Earth are scalarized, gravity in
the Solar System should behave identically to GR. For
these reasons, we will not place any restrictions on the mass
of the field in this work. One could imagine completing the
EFT by adding a term proportional to φ2R into the action,
which is not forbidden by the symmetries, and which we
have ignored in this work for the sake of simplicity. Such
couplings could give rise to Yukawa-like forces, but (again)
only if the Sun or the Earth is scalarized, which is unlikely
to be the case, with the exception of extreme couplings
[66,67]. The situation would be different if the asymptotic
field value were different from zero.

III. SCHWARZSCHILD RADIAL STABILITY
AND THE SCALARIZATION THRESHOLD

In Sec. IV, wewill explore the BH solutions of the theory.
Before doing so, we first wish to understand whether such
solutions can exist as a result of instabilities of the ordinary
Schwarzschild solution to linear perturbations.
The Schwarzschild metric with a vanishing scalar

field is a solution of Eqs. (11) and (12). We can study the
radial stability of the Schwarzschild spacetime by consid-
ering perturbations of the field equations of the form
φ ¼ εφ1ðrÞe−iωt=r, where ε is a small bookkeeping param-
eter. From the scalar field equation (12) we find

d2φ1

dr2�
þ ðω2 − VeffÞφ1 ¼ 0; ð25Þ

where

Veff ¼
�
1 −

rh
r

��
rh
r3

þ μ2 −
3ηr6h
r6

�
: ð26Þ
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This equation involves only the field’s mass μ and the
strength of the Gauss-Bonnet coupling η. Therefore, higher-
order terms in the scalar potential and in the coupling
function do not have any influence on the stability of the
Schwarzschild spacetime. In particular, the threshold for
scalarization is independent of λ.
To investigate the radial stability of the Schwarzschild

spacetime, we solve Eq. (25) by requiring that the field
vanish at the BH horizon and at infinity [36]. Since the
equation is real, the eigenvalue ω2 is also real, and ω2 < 0
corresponds to unstable modes [36,37,68]. The critical
threshold value M̂ ¼ M̂t for which scalarization can occur
corresponds to solutions of Eq. (25) with eigenvalueω ¼ 0,
indicating a transition between stable and unstable states.
The condition ω2 ¼ 0 is satisfied by different values of M̂,
corresponding to scalarized solutions with n ¼ 0; 1;…
nodes in the scalar field profile. We denote the threshold
value for the n ¼ 0 solution by M̂t.
In the left panel of Fig. 1, we show M̂t as a function of the

mass μ̂ of the field (we also show the threshold values for the
n ¼ 1 solution, which, as discussed in the Introduction, is
always smaller than the threshold mass M̂t for n ¼ 0). One
can see that the threshold for scalarization M̂t decreases with
increasing μ̂. This can be understood by considering the
effective mass for the scalar given in Eq. (10): larger values
of μ require the product ηG to be larger in order to induce the
tachyonic instability. The instability is therefore harder to
realize for larger scalar masses.
By solving Eq. (25) we can also investigate the insta-

bility timescale as a function of M̂. In Fig. 3, we show the
normalized frequency for unstable modes, 2MωI, as a
function of the parameter M̂. The Schwarzschild solution is
stable (ωI < 0) in the region M̂ > M̂t, where M̂t is the
value corresponding to the intersection of 2MωI with the x
axis of this plot. The three cases studied here correspond
to the blue dots in the left panel of Fig. 1. It is therefore
plausible that hairy solutions should exist in the region

M̂ < M̂t, where the Schwarzschild BH is unstable. This
expectation will be confirmed in Sec. IV below.

IV. SCALARIZED BLACK HOLE SOLUTIONS
AND RADIAL STABILITY

In this section, we solve the fully nonlinear equations to
construct scalarized solutions, and we check their stability
under linear radial scalar and tensor perturbations. This is
accomplished as follows: First, we integrate the field
equations outwards starting from the horizon, where we
impose the conditions (17)–(20). By matching the numeri-
cal solutions with Eqs. (22)–(24) in the far region (r ≫ rh),
we can extract the BH mass M̂ and the scalar charge Q̂.
This procedure gives us the unperturbed solution. Next, we
check stability. The linearized field equations for radial
perturbations follow from the ansatz

φ ¼ φ0 þ ε
φ1

r
; ð27Þ

ds2¼ ½Aþ εFtðt;rÞ�dt2þ½B−1þ εFrðt;rÞ�dr2þ r2dΩ2;

ð28Þ

where ðA;B;φ0Þ are functions of rwhich satisfy the zeroth-
order (background) field equations. By inserting Eqs. (27)
and (28) into the field equations (11) and (12) and
expanding up to first order, one can show that the equations
for the perturbation functions reduce to a single second-
order equation of the form

hðrÞ ∂
2φ1

∂t2 −
∂2φ1

∂r2 þ kðrÞ ∂φ1

∂r þ pðrÞφ1 ¼ 0 ð29Þ

(see Appendix A and the supplemental Mathematica note-
book [54]), where the coefficients ðh; k; pÞ depend only on
the background quantities and on r (cf. Refs. [33,36,37]).
Equation (29) can be further manipulated to reduce it to a
Schrödinger-like form, but since this step is not necessary to
analyze the stability of the system and generates more
complicated coefficients, we prefer not to display it here (see
Ref. [37] for details). A mode analysis can be performed
by looking for solutions of the form φ1ðt; rÞ ¼ φ1ðrÞe−iωt,
and by imposing the requirement that φ1ðrÞ vanish at the
horizon and at infinity when searching for unstable modes.
These requirements (as in Sec. III) result in an eigenvalue
problem for ω2 < 0.
Before applying this process in general, it is instructive to

perform a preliminary comparative study in order to discern
how self-interactions affect the stability of scalarized sol-
utions. InFig. 4,we fix μ̂ ¼ 0.05 and compare the normalized
imaginary mode for the scalarized solutions with the corre-
sponding calculation for the Schwarzschild case, as presented
in Fig. 3. When λ̂ ≤ 0.2, both the modes of the scalarized
solutions (dashed red) and the Schwarzschild modes (solid

0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0
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0.2

0.3

0.4

FIG. 3. Frequency of the unstable modes of Schwarzschild BHs
in our theory. The frequency becomes zero at M̂ ¼ M̂t.
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gray) converge to zerowhen M̂ ¼ M̂t. However, for λ̂ > 0.2,
the modes tend to zero when M̂ ¼ M̂min and Q̂ ¼ Q̂max, and
we find no unstable modes for BHs with M̂ > M̂min and
Q̂ < Q̂max. We note also that the unstable mode frequencies
typically decrease as λ̂ increases, implying stability on longer
timescales. Qualitatively similar conclusions apply to other
values of μ̂.
The main results of our integrations are presented in

Fig. 5, where we show scalarized solutions in the ðM̂; Q̂Þ
plane for representative values of μ̂ and λ̂. The dotted
vertical line represents the threshold for the stability
of the Schwarzschild solution, M̂ ¼ M̂t. Solid lines cor-
respond to radially stable solutions, while dashed lines
correspond to radially unstable solutions. Note that we use
different conventions for radial stability with respect to

Refs. [36,37], where solid and dashed lines have the
opposite meaning.
When λ̂ ¼ 0, all scalarized solutions are in the region

M̂ > M̂t, where the Schwarzschild solution is stable. These
scalarized solutions are radially unstable, and it is plausible
that Schwarzschild BHs will be the end state of gravita-
tional collapse. As λ̂ increases, the solutions move into the
region where M̂min < M̂ < M̂t; the minimum mass M̂min
corresponds to the blue dots in Fig. 5. Schwarzschild BHs
are unstable in this region, so the BH can support a
nontrivial scalar provided the scalarized solutions are
stable. For M̂ < M̂min, both Schwarzschild and scalarized
BHs are unstable. It would be interesting to study the end
point of gravitational collapse for objects with masses
lighter than M̂min. This would require a significant input
from numerical relativity along the lines of Ref. [69], which
clearly lies beyond the scope of this work, so we postpone it
for a future study. A treatment of Oppenheimer-Synder
collapse similar to Ref. [70] may also be enlightening.
Our analysis reveals that the quartic self-interaction can

stabilize scalarized solutions with a quadratic scalar Gauss-
Bonnet coupling up to some maximum scalar charge Q̂,
beyond which the solutions are unstable. Interestingly, it is
possible to have two scalarized solutions (in addition to the
unstable Schwarzschild solution) at fixed M̂, provided that
λ̂ is large enough. In such cases, the solution with larger
Q̂ is unstable, and it is expected to decay to the solution
with smaller Q̂, which is stable.
The main result of this section is that we do not need

more exotic scalar Gauss-Bonnet couplings to stabilize the
scalarized solutions: leading-order scalar self-interactions
are sufficient. From an EFT perspective, these models are
better motivated.

0.45 0.50 0.55 0.60 0.65
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 4. Unstable modes of scalarized BHs, compared with the
Schwarzschild case (gray solid line), for the representative case
μ̂ ¼ 0.05.
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FIG. 5. Charge-mass diagram for scalarized solutions with a quadratic scalar Gauss-Bonnet coupling (ζ ¼ 0) and the scalar potential
of Eq. (5). The threshold mass M̂t corresponds to the dotted vertical line. For M̂ > M̂t, scalarized solutions are radially unstable, while
the Schwarzschild solution is stable. When λ̂ is large enough, we can have solutions with M̂ < M̂t. In this region there are two branches
of scalarized BH solutions: the upper branch (dashed lines) is unstable to radial perturbations, whereas the lower branch (solid lines) is
stable. Blue dots mark solutions with marginal stability, which correspond to the minimum mass, maximally charged scalarized BH for
the given ðμ̂; λ̂Þ.
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V. DISCUSSION AND CONCLUSIONS

Black hole spontaneous scalarization is so far the only
known mechanism that allows BHs to possess scalar hair
only if their mass is below a certain threshold. Theories that
allow for this phenomenon are prime candidates for
modeling deviations from GR that have so far avoided
detection but can be tested using current and future
gravitational-wave observations. It therefore behooves
the theoretical community to devise robust, stable theories
that exhibit BH scalarization. To date, all studies in
the literature are not consistent effective field theories,
since they ignore leading-order terms that are compatible
with the underlying symmetries of the theory. The
aim of the present work is to take the first steps towards
realizing the phenomenon within robust and well-motivated
theories.
In this paper, we have presented the simplest model that

exhibits spontaneous scalarization by viewing the
theory as one of a Z2-symmetric scalar and writing down
all of the leading-order (relevant and marginal) operators,
as well as the leading-order coupling of the scalar to the
Gauss-Bonnet invariant required to produce scalarized
BHs. In practice, this is tantamount to including a mass
and quartic self-interaction for the scalar, so that the theory
includes a massive scalar with a ϕ4 potential and a
quadratic coupling of the scalar to the Gauss-Bonnet
invariant.
Our analysis has revealed that spontaneous scalarization

persists in this bottom-up construction. We have demon-
strated that static scalarized solutions exist and, further-
more, that they are stable to radial perturbations. This
model (possibly augmented by a φ2R coupling, and other
dimension-six operators) therefore represents the leading
candidate model with which to explore spontaneous
scalarization. In future studies, we intend to take this
program forward by studying rotating BHs and neutron
stars, and by understanding the stability and dynamics of
these compact objects in full generality. The ultimate
aim of this program is to predict theoretically sound
observational signatures that can be used to test GR in
the strong-field regime with upcoming gravitational-wave
observations.
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APPENDIX A: SPHERICAL BLACK HOLES IN
SCALAR GAUSS-BONNET GRAVITY

From the nontrivial components of the zeroth-order
Einstein equations, we obtain

ðt;tÞ∶Bfðφ0
00Þ2½16ðB−1Þf;φ0φ0

−r2�þ16ðB−1Þφ0
00f;φ0

−4g
−4B0½2ð1−3BÞφ0

0f;φ0
þr�−r2Vðφ0Þþ4¼0; ðA1Þ

ðr; rÞ∶ 1

4
AfB½4 − r2ðφ0

00Þ2� þ r2Vðφ0Þ − 4g
þ BA0½2ð1 − 3BÞφ0

0f;φ0
þ r� ¼ 0; ðA2Þ

ðθ;θÞ∶ −rBA00ðr−4Bφ0
0f;φ0

Þþ4rB2A0φ0
00f;φ0

−
1

2
r2A½Bφ0

02þVðφ0Þ�

þ 1

2A
½rBA02ðr−4Bφ0

0f;φ0
Þ�

þA0
�
rB½4Bφ0

02f;φ0φ0
−1�−1

2
rB0ðr−12Bφ0

0f;φ0
Þ
	

− rAB0 ¼ 0; ðA3Þ

where a prime indicates differentiation with respect to r.
The equation for the background scalar field is

ABφ0
00 þ1

2
φ0

0
�
BA0 þA

�
4B
r
þB0

��
þ 4

r2
½ðB−1ÞBA00f;φ0

�

−
1

2r2A
f4A0½ðB−1ÞBA0 þAð1−3BÞB0�f;φ0

þ r2A2V;φ0
g¼ 0: ðA4Þ

The equations above can be recast as a system
of three differential equations: two first-order equations
for A and B, and one second-order equation for φ0.
These equations are integrated as explained in Sec. II, in
units such that rh ¼ 1, changing the parameters ðη; ζ; λ; μÞ
in each integration. As noted in Ref. [30], only some
values of the parameters allow for scalarized solutions.
With these we construct the background solutions shown
in Fig. 5.
Specializing to the quartic coupling and the quartic

potential, the coefficients appearing in the condition on

SELF-INTERACTIONS AND SPONTANEOUS BLACK HOLE … PHYS. REV. D 99, 104041 (2019)

104041-9



the scalar field derivative at the horizon of Eq. (20) are
given by

a ¼ φ0h

rh
ðηþ ζφ2

0hÞ
�
−4þ 2φ2

0hðζφ2
0h þ ηÞð2λφ2

0h þ μ2Þ

þ φ2
0h

r2h
ðλφ2

0h þ μ2Þ½r4h − φ2
0hðζφ2

0h þ ηÞ2�
	
; ðA5Þ

b ¼ φ2
0hr

2
hðλφ2

0h þ μ2Þ − 4; ðA6Þ

c ¼ 4 − φ2
0hr

2
hðλφ2

0h þ μ2Þ þ 3φ4
0h

r2h
ðζφ2

0h þ ηÞ2ðλφ2
0h þ μ2Þ

−
1

4
φ6
0hðζφ2

0h þ ηÞ2ðλφ2
0h þ μ2Þ2

− 4φ2
0hðζφ2

0h þ ηÞð2λφ2
0h þ μ2Þ: ðA7Þ

The equations describing the perturbations can be
obtained by expanding the Einstein-scalar system up to first
order. The nonzero components of the perturbed Einstein
equations are ðt; tÞ, ðt; rÞ, ðr; rÞ, and ðθ; θÞ. Additionally, we
have onemore equation from the first-order expansion of the
scalar field equation. These five equations can be manip-
ulated to obtain Eq. (29) with a procedure similar to the one
presented in Refs. [37,68]. Instead of showing the explicit
form of the differential equations, which are rather lengthy,
we provide a companion Mathematica notebook which
shows the nontrivial components of the first-order Einstein
equations and the procedure to obtain Eq. (29) from these
equations [54].

APPENDIX B: SELF-INTERACTIONS WITHIN
QUARTIC GAUSS-BONNET COUPLING

Reference [36] showed that scalar Gauss-Bonnet theo-
ries with V ¼ 0 and a quartic coupling term

fðφÞ ¼ 1

8
ηφ2 þ 1

16
ζφ4; ðB1Þ

with ζ=η < 0, can also generate stable BH solutions. A
natural question is whether the combined effects—the
quartic potential and the quartic coupling—can work
together to stabilize BHs. While this is out of the scope
of the EFT picture, with the quartic coupling being
a subleading operator compared with the quartic self-
interaction, here we investigate this issue as a complement
to our main results.
In Fig. 6, we show the scalarized BH solutions consid-

ering ðμ̂; λ̂Þ ¼ ð0.05; 0.4Þ for different values of ζ̂. As
expected, the quartic term in the coupling still helps to
generate stable BH solutions, even when the self-interaction
potential is present. We note that this case also exhibits a
minimum mass M̂min and a maximum charge Q̂max, unlike
theories with V ¼ 0: cf. Fig. 2 of Ref. [36].
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