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Strong gravitational lensing from black holes results in the formation of relativistic images, in particular,
relativistic Einstein rings. For objects with event horizons, the radius of the unstable light ring (photon
sphere) is the lowest radius at which a relativistic image might be formed. For horizonless ultracompact
objects, additional relativistic images and rings can form inside this radius. In this paper, we provide an
analytical approach to deal with strong gravitational lensing from such ultracompact objects, which is
substantially different from the black hole cases, first reported by Bozza. Here, our analysis indicates
that the angular separations and magnifications of relativistic images inside the unstable light ring
(photon sphere) might be several orders of magnitude higher compared to the ones outside it. This
indicates fundamental differences in the nature of strong gravitational lensing from black holes and
ultracompact objects.
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I. INTRODUCTION

Bending of light in a gravitational field, known as
gravitational lensing [1], continues to be an important
focus of research, a century after it was first experimentally
observed. In the context of astronomical observations,
weak gravitational lensing has played a significant role in
our understanding of galactic constituents. However, in
situations involving black holes or compact astrophysical
objects, one naturally invokes bending of light due to strong
gravity [2]. It is of fundamental importance to study these
issues further, in the light of the recent efforts to obtain black
hole images by the Event Horizon Telescope [3].
The photon sphere (or unstable light ring) is ubiquitous

in this context [2,4–6], and is proposed as one of the main
diagnostic tools for mapping the black hole event horizon.
In natural units (G ¼ c ¼ 1), the location of the photon
sphere in Schwarzschild coordinates is at r ¼ 3M for the
Schwarzschild black hole, where gravity becomes strong
enough for a photon to have an unstable circular orbit so
that a small perturbation can cause the photon to be either
absorbed by the black hole or sent off to a faraway observer.
In the second case, when the observer, the source and the
lens are in alignment, the photon sphere results in relativ-
istic Einstein rings.
In recent years, horizonless objects have attracted much

attention for several reasons (see [7–11] and references

therein). There has also been a lot of effort on whether or to
what extent one can distinguish such horizonless compact
objects from black holes. In light of this, gravitational
lensing and its various aspects by different horizonless
objects such as wormholes [12–33], naked singularities
[34–41], Bosonic stars [42], compact object with arbitrary
quadrupole moment [43], gravastar [44], etc., have been
analyzed. However, somewhat less studied in the lensing
literature is the role of the antiphoton sphere (stable light
ring), which invariably arises in the study of ultra compact
objects (UCOs), which have an unstable light ring but no
event horizon. This is the radius at which the photons can
travel in a stable circular orbit.1 The study of UCOs is fast
gaining popularity as a possible laboratory for testing
gravitational lensing in astrophysical scenarios. In [45]
the authors showed that light rings in UCOs must appear in
pairs (see [46] for a possible counterexample). It is known
that lensing features from UCOs can be vastly different
compared to those from objects with horizons [42,47].
Such features (if observed) can distinguish between UCOs
and black holes.
Whereas previous studies on lensing from UCOs have

been numerical [42], we perform an analytic study here. The
main idea thatwe develop in this paper is as follows. Figure 1
qualitatively depicts the effective potential of geodesic
motion for photons [in units of its angular momentum
squared, see Eq. (5)] in a static, spherically symmetric
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1Throughout this work, we study the motion of photons
dictated purely by geometry. Interaction between light and matter
in the interior of compact objects is a much more subtle issue and
is not considered here.
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space-time corresponding to a black hole. For a certain
impact parameter, photons that approach the black hole from
a source at infinity will be trapped at the location of the
photon sphere,where it will undergomultiple rotations, until
due to a small perturbation, it either escapes to infinity or is
absorbed by the black hole. For UCOs, apart from the
photons that escape to infinity from the photon sphere, there
is an extra set of images. Namely, a photon that crosses the
radius of the photon sphere might be reflected at an internal
point, whence it comes back to the photon sphere and can
then escape to an observer at infinity. This is depicted in
Fig. 2. The two situations are fundamentally different. The
first case has been considered in details by Bozza in [6] and
this analysis has recently been refined byTsukamoto in [48].
In this paper, we focus on the second situation, which calls
for a different analysis.
The work of Bozza and Tsukamoto assumes a turning

point for a photon (coming from source) at a radial distance

greater than the photon sphere. The strong deflection limit
is then obtained by taking the limit in which this turning
point tends to the photon sphere radius. Such a computation
is clearly not suitable when one analyzes the photons that
are reflected at a point inside the photon sphere. From
Fig. 2, we see that in this case, to compute the positions of
relativistic images, one has to consider the turning point of
a photon inside the antiphoton sphere at a point at which the
effective potential has nearly the same value as that at the
photon sphere. As we show in sequel, this completely
changes the analytical formulas presented in [6,48] and
reveals important new features about gravitational lensing
from UCOs. Here, we point out that a similar scenario has
been considered in [49] where the authors have obtained an
analytic expression for the bending angle in the strong
deflection limit in the presence of an antiphoton sphere.
However, their result is obtained for a specific space-
time geometry, namely the Majumdar-Papapetrou dihole
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FIG. 1. Strong lensing in a black hole space-time. We have used the Schwarzschild black hole for illustration.
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FIG. 2. Additional images in strong lensing by an ultracompact object. For illustration, we have used Schwarzschild interior solution
due to Synge with matching radius R ¼ 2.5M, M being the mass [see Eq. (54)]. Here, rc is the point where the effective potential (in
units of angular momentum squared) has the same height as that at the photon sphere.
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spacetime. Our focus here, however, is to obtain an analytic
expression for the bending angle in the strong deflection
limit aswell as angular separations andmagnifications of the
relativistic images formed due to the presence of an anti-
photon sphere of an arbitrary spacetime geometry represent-
ing an UCO.
It is known that for black holes, relativistic images are

always formed at radii greater than that of the photon
sphere, and that UCOs indicate a different result, namely
that such images might be formed inside the radius of the
photon sphere. In fact, our results indicate that the images
inside the photon sphere might in principle be easier to
detect than the ones outside it, as the angular separation and
the magnification of the former can even be 2 orders of
magnitude greater than the latter. This is a novel feature of
gravitational lensing from UCOs compared to the black
hole case.
It should be pointed out that we are assuming here that a

spherically symmetric and static black hole does not have
an antiphoton sphere outside its event horizon. Indeed, if
this was the case, then such a black hole might mimic the
results presented here. Although we are not aware of a
rigorous proof of this statement, our assumption is strongly
motivated by the fact that, to the best of our knowledge,
such a situation is not currently known either in the context
of general relativistic black holes or those that appear in
modified gravity. If the exterior geometry of a black hole
possesses an antiphoton sphere, then, in addition to this,
there must exist in this geometry two more photon spheres,
since the photon effective potential vanishes both at the
event horizon and at spatial infinity, and is positive. As of
now, we are not aware of such a black hole solution that
will have three such surfaces where photons can have
circular (stable or unstable) orbits. Our focus in this work is
on UCOs, which possess both photon and antiphoton
spheres.
This paper is organized as follows. In the next section,

we briefly summarize known results on generic deflection
angles of photons due to lensing by a gravitating object. In
Sec. III, we study such lensing behavior in the strong
deflection limit. Here, we first recall known results due to
lensing by a black hole in Sec. III A. In Sec. III B, the effect
of an antiphoton sphere (stable light ring) in the gravita-
tional lensing of photons is established. In Sec. IV, we first
recall the definitions of observables in gravitational lensing
and obtain their analytic expressions for the relativistic
images formed inside the photon sphere and tabulate our
results for the different geometries we consider. Finally,
Sec. Vends with discussions on our results and some broad
conclusions.

II. DEFLECTION ANGLE FOR STATIC,
SPHERICALLY SYMMETRIC SPACE-TIMES

In this section, we briefly recapitulate the necessary
details about the deflection angle of light in an arbitrary

static, spherically symmetric space-time, with the line
element given by

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞðdθ2þ sin2 θdϕ2Þ; ð1Þ

where AðrÞ, BðrÞ, and CðrÞ satisfy the asymptotically flat
conditions

lim
r→∞

AðrÞ¼ 1; lim
r→∞

BðrÞ¼ 1; lim
r→∞

CðrÞ¼ r2: ð2Þ

For simplicity, we restrict ourselves to θ ¼ π=2. Because of
the spherical symmetry, the same results can be applied to
all θ. Therefore, the Lagrangian describing the motion of a
photon in the θ ¼ π=2 plane of the space-time geometry of
Eq. (1) is given by

2L ¼ −AðrÞ_t2 þ BðrÞ_r2 þ CðrÞ _ϕ2; ð3Þ

where an overdot represents a derivative with respect to
the affine parameter. Since the Lagrangian is independent
of t and ϕ, we have two Killing vectors that result in two
constants of motion,

pt ¼
∂L
∂_t ¼−AðrÞ_t¼−E; pϕ¼

∂L
∂ _ϕ¼CðrÞ _ϕ¼L; ð4Þ

where E and L are, respectively, the energy and angular
momentum of the photon. Using the null geodesics con-
dition gμν _xμ _xν ¼ 0, we obtain

AB_r2 þ Veff ¼ E2; Veff ¼ L2
AðrÞ
CðrÞ ; ð5Þ

where Veff is the effective potential. A photon coming from
a source at infinity may undergo a turning at some radius r0
and escape to a faraway observer. At the turning point r0,
_r ¼ 0, i.e., Veffðr0Þ ¼ E2. This gives the following relation-
ship between the impact parameter b (¼ L=E) (which
remains constant throughout its trajectory) of the photon
and the turning point r0,

b2 ¼ Cðr0Þ
Aðr0Þ

: ð6Þ

For such a photon which comes from a distant source, takes
a turn at r0 and escapes to a faraway observer, the deflection
angle αðr0Þ can be obtained as

αðr0Þ ¼ Iðr0Þ − π; ð7Þ

where

Iðr0Þ ¼ 2

Z
∞

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrÞCðrÞ
BðrÞ

q ; RðrÞ ¼
�
A0C
AC0

− 1

�
: ð8Þ
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We define the photon and the antiphoton sphere, respec-
tively, as the locations of unstable and stable circular orbits
(also known as light rings) of photons. Circular photon
orbits satisfy Veff ¼ E2 and dVeff=dr ¼ 0, resulting in
Eq. (6) and

C0ðrÞ
CðrÞ −

A0ðrÞ
AðrÞ ¼ 0; ð9Þ

respectively. In addition to the above equation, at the
location of the photon and antiphoton sphere, we must
have, respectively, d2Veff=dr2 < 0 (maximum of the poten-
tial) and d2Veff=dr2 > 0 (minimum of the potential). We
denote the position of the photon sphere by r ¼ rm, and
the corresponding critical impact parameter as b ¼ bm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðrmÞ=AðrmÞ

p
. Equation (9) is satisfied at r ¼ rm.

III. LENSING OF LIGHT IN THE STRONG
DEFLECTION LIMIT

We now study gravitational lensing in the strong deflec-
tion limit [6]. We first review the known results when the
turning point of light is outside the photon sphere, i.e.,
r0 > rm. Such a situation arises in lensing from black holes
(see Fig. 1) as well as in that from UCOs.

A. Strong bending of light due to a photon sphere

The strong gravitational lensing of light due to the
presence of a photon sphere has been studied in [6,48].
In such a case, a photon always takes a turn from outside
the photon sphere (r0 > rm); i.e., it always remains outside
the photon sphere (see Fig. 1), and the strong deflection
limit occurs when its impact parameter approaches the
critical value bm from b > bm. In this case, the deflection
angle in the strong deflection limit r0 → rm or b → bm is
given by [48]

αðbÞ¼−ā log
�

b
bm

−1

�
þ b̄þOððb−bmÞ logðb−bmÞÞ;

ð10Þ

where ā and b̄ are given by

ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2BmAm

C00
mAm − CmA00

m

s
;

b̄ ¼ ā log

�
r2m

�
C00
m

Cm
−
A00
m

Am

��
þ IRðrmÞ − π; ð11Þ

respectively, where the subscript m implies that the
corresponding quantities are evaluated at r ¼ rm. We
now proceed to analyze situations where photons encounter
an antiphoton sphere.

B. Strong bending of light experiencing
an antiphoton sphere

This case arises in lensing from UCOs (not from black
holes). Due to the presence of an antiphoton sphere, the
height of the effective potential of a photon decreases from
the photon sphere to a minimum value at the antiphoton
sphere and starts rising again below this radius. In such cases,
a photon with an impact parameter less than the critical value
bm enters the photon sphere, passes through the antiphoton
sphere, takes a turn at a radius inside the antiphoton sphere,
and comes out of the photon sphere and escapes to a faraway
observer (see Fig. 2). For such a photon, when the impact
parameter approaches the critical value bm from b < bm, it
undergoes strong deflection. However, the strong deflection
occurs when the photon on its trajectory is in the vicinity of
the photon sphere. Therefore, to obtain the strong deflection
formula in this case, we introduce a variable z defined as

z ¼ 1 −
rm
r
: ð12Þ

Putting this in Iðr0Þ, we obtain

Iðr0Þ ¼
Z

1

1−rm
r0

fðz; r0; rmÞdz; ð13Þ

where

fðz;r0;rmÞ¼
2rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðz;r0;rmÞ
p ; Gðz;r0;rmÞ¼R

C
B
ð1−zÞ4:

ð14Þ
Since the strong deflection occurs around the photon sphere,
we need to expand Gðz; r0; rmÞ around r ¼ rm or z ¼ 0 to
extract the divergent part. To this end, we first note that the
expansions of a function FðrÞ and its inverse 1=FðrÞ in the
power of z can be written as

F ¼ Fm þ F0
mrmzþ

�
1

2
F00
mr2m þ F0

mrm

�
z2 þOðz3Þ

1

F
¼ 1

Fm
−
F0
mrm
F2
m

z

þ rm
F3
m

�
−
1

2
FmF00

mrm þ F02
mrm − FmF0

m

�
z2 þOðz3Þ:

ð15Þ

Therefore, RðrÞ can be expanded in the power of z as

RðrÞ ¼
�
A0Cm

C0Am
− 1

�
þ r2m

2

A0Cm

C0Am

�
C00
m

Cm
−
A00
m

Am

�
z2 þOðz3Þ:

ð16Þ
Using similar expansion for the functionsB andC inEq. (14),
we obtain the expansion of Gðz; r0; rmÞ in powers of z as
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Gðz; r0; rmÞ ¼ γ þ δzþ ηz2 þOðz3Þ; ð17Þ

where we have defined

γ ¼ Cm

Bm

�
A0Cm

C0Am
− 1

�
ð18Þ

δ ¼ Cm

Bm

�
A0Cm

C0Am
− 1

��
−4þ rm

�
C0
m

Cm
−
B0
m

Bm

��
ð19Þ

η¼Cm

Bm

�
A0Cm

C0Am
−1

��
6− rm

�
3þB0

mrm
Bm

��
C0
m

Cm
−
B0
m

Bm

�

þ r2m
2

�
C00
m

Cm
−
B00
m

Bm

��
þ r2m

2

Cm

Bm

A0Cm

C0Am

�
C00
m

Cm
−
A00
m

Am

�
: ð20Þ

Note that the heights of the effective potential (in units
of the angular momentum squared) at the photon sphere

r ¼ rm and at r ¼ rc are the same (see Fig. 2), i.e., AðrcÞCðrcÞ ¼
AðrmÞ
CðrmÞ or bðrcÞ ¼ bm. Therefore, when the impact parameter

approaches the critical value bm from b < bm, the turning
point r0 approaches the radius rc. Hence, in the limit
r0 → rc, ðA0Cm

C0Am
− 1Þ → 0. In this limit, we also obtain

γm ¼ γjr0¼rc ¼ 0 ¼ δm ¼ δjr0¼rc ð21Þ

and

ηm ¼ ηjr0¼rc ¼
r2m
2

Cm

Bm

�
C00
m

Cm
−
A00
m

Am

�
: ð22Þ

Hence, we obtain

GmðzÞ ¼ ηmz2 þOðz3Þ: ð23Þ

This shows that the leading order of the divergence of
fðz; r0; rmÞ is z−1 and that the integral Iðr0Þ diverges
logarithmically in the strong deflection limit r0 → rc, as
was the case for black holes in [6].
To extract the logarithmic divergence in the

strong deflection limit, we split the integral Iðr0Þ into a
divergent part IDðr0Þ and a regular part IRðr0Þ so that
Iðr0Þ ¼ IDðr0Þ þ IRðr0Þ. The divergent part IDðr0Þ is
defined as

IDðr0Þ ¼
Z

1

1−rm
r0

fDðz; r0; rmÞdz;

fDðz; r0; rmÞ ¼
2rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ þ δzþ ηz2
p : ð24Þ

The regular part IRðr0Þ is defined as

IRðr0Þ ¼
Z

1

1−rm
r0

fRðz; r0; rmÞdz;

fRðz; r0; rmÞ ¼ fðz; r0; rmÞ − fDðz; r0; rmÞ: ð25Þ

Integrating IDðr0Þ, we obtain

IDðr0Þ

¼2rmffiffiffi
η

p log
δþ2ηþ2

ffiffiffi
η

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γþδþη

p

δþ2ηð1−rm
r0
Þþ2

ffiffiffi
η

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γþδð1−rm

r0
Þþηð1−rm

r0
Þ2

q :

ð26Þ

In the limit r0 → rc, treating γ and δ as small parameters,
we obtain after some algebra

IDðr0Þ ¼
2rmffiffiffiffiffiffi
ηm

p log

�
4ηmðrmr0 − 1Þ
Cm
Bm

ðA0Cm
C0Am

− 1Þ

�

þO
��

A0Cm

C0Am
− 1

�
log

�
A0Cm

C0Am
− 1

��
: ð27Þ

Note that we can also write the expansion

A0Cm

C0Am
¼ Cm

Am

�
Ac þ A0

cðr0 − rcÞ þOðr0 − rcÞ2
Cc þ C0

cðr0 − rcÞ þOðr0 − rcÞ2
�

¼ 1þ
�
A0
c

Ac
−
C0
c

Cc

�
ðr0 − rcÞ þOðr0 − rcÞ2; ð28Þ

where the subscript c indicates that the quantities are
evaluated at r ¼ rc, and we have used AcCm

CcAm
¼ 1 in the last

equation. Using Eqs. (27) and (28), we obtain

IDðr0Þ ¼ −
2rmffiffiffiffiffiffi
ηm

p log ðrc − r0Þ

þ 2rmffiffiffiffiffiffi
ηm

p log

�
4
Bm

Cm

�
rm
rc

− 1

�
ηm

�
C0
c

Cc
−
A0
c

Ac

�
−1
�

þO½ðrc − r0Þ logðrc − r0Þ�: ð29Þ

It is more meaningful to write ID in terms of the impact

parameter b. To this end, we first note that b¼ bðr0Þ¼ Cðr0Þ
Aðr0Þ,

bm ¼ bðrmÞ ¼ CðrmÞ
AðrmÞ and hence, from Eq. (28), we obtain

r0 ¼ rc −
�
C0
c

Cc
−
A0
c

Ac

�
−1
�
b2m
b2

− 1

�
: ð30Þ

Therefore, from Eq. (29), we obtain the divergent part
IDðbÞ in the strong deflection limit b → bm as
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IDðbÞ ¼ −
2rmffiffiffiffiffiffi
ηm

p log

�
b2m
b2

− 1

�

þ 2rmffiffiffiffiffiffi
ηm

p log

�
4
Bm

Cm

�
rm
rc

− 1

�
ηm

�

þO½ðb2m − b2Þ logðb2m − b2Þ�: ð31Þ

In the strong deflection limit r0 → rc or b → bm (keep in
mind that bc ¼ bm), we now expand the regular part IRðr0Þ
in powers of rc − r0 and keep the leading order term which
can be integrated analytically or numerically. We find that

IRðr0Þ¼
Z

1

1−rm
rc

fRðz;rc;rmÞdzþOððrc− r0Þ logðrc− r0ÞÞ

ð32Þ

which can be expressed in terms of the impact parameter as

IRðbÞ¼
Z

1

1−rm
rc

fRðz;bmÞdzþOððb2m−b2Þ logðb2m−b2ÞÞ:

ð33Þ

Finally, the deflection angle in the strong deflection limit
r0 → rc or b → bm can be written as

αðbÞ ¼ −ā log
�
b2m
b2

− 1

�
þ b̄þOððb2m − b2Þ logðb2m − b2ÞÞ; ð34Þ

where

ā ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BmAm

C00
mAm − CmA00

m

s
; ð35Þ

b̄¼ ālog

�
2r2m

�
C00
m

Cm
−
A00
m

Am

��
rm
rc

−1

��
þIRðrcÞ−π: ð36Þ

Note that Eqs. (34)–(36) obtained for the relativistic images
formed inside the photon sphere are completely different
from Eqs. (10) and (11) obtained in [48] for those formed
outside the photon sphere. Especially we see that ā in this
case is twice that of the earlier case, and the expression for
b̄ contains the factor ðrmrc − 1Þ which is absent in the earlier
case. This implies that the bending angle for the inner
relativistic images starts diverging much before (in terms of
the difference jbm − bj in the impact parameter) that for the
outer relativistic images as the critical impact parameter is
reached. As a result, the angular separation between the
inner images is much more than that of the outer images.
Here, we point out that one can use the approximation

ðb2mb2 − 1Þ ¼ ðbmb þ 1Þðbmb − 1Þ ≃ 2ðbmb − 1Þ in Eq. (34) as is
done for the images outside the photon sphere [see

Eq. (10)]. However, doing so introduces greater error in
the results as the difference between the critical impact
parameter bm and the impact parameters b at which the
inner images are formed, i.e., ðbm − bÞ, is relatively larger
than that of the outer images. Therefore, we do not use this
approximation for the inner images.

IV. OBSERVABLES IN GRAVITATIONAL
LENSING

Having elaborated upon the necessary formalism, we are
now in a position to obtain analytic expressions of various
observables (commonly used in the literature of gravita-
tional lensing) for the relativistic images formed inside the
photon sphere. Analytic expressions of these observables
for the relativistic images formed outside the photon sphere
are obtained in [6]. We closely follow [6] to obtain the
corresponding expressions for the inner images.
We start from the lens equation in the strong field limit

(thin lens approximation), which is given by

β ¼ θ −
DLS

DOS
Δαn; ð37Þ

where DLS is the distance between the lens and the source,
DOS is the distance between the observer and the source,
DOS ¼ DOL þDLS, DOL is the distance between the
observer and the lens, β is the angular separation between
the source and the lens, θ is the angular separation between
the lens and the image, and Δαn ¼ αðθÞ − 2πn is the offset
of the deflection angle after subtracting all the winding
(encoded in n) undergone by the photon.
The angular position θ0n and the magnification μn of the

nth relativistic image formed outside the photon sphere are,
respectively, given by [6]

θ0n ¼
bm
DOL

ð1þenÞ¼ θ∞ð1þenÞ; en ¼ e
b̄−2nπ

ā ; ð38Þ

μn ¼
b2mDOSenð1þ enÞ

āβD2
OLDLS

; ð39Þ

where θ∞ ¼ bm=DOL is the angular positions of the
relativistic images are given formed at the photon sphere.
Note that the angular positions of the images decreases with
n, implying that, in the outer image system, the first
relativistic image is the outermost one and the image with
the angular position θ∞ is the innermost one. It is assumed
that only the outermost (first) image of the outer images can
be resolved from the rest. Therefore, we can define two
more observables, namely the angular separation s1
between the first image and the rest and the ratio r1
between the flux of the first image and the total flux of
all the other images. These are given by [6]

s1 ¼ θ1 − θ∞; ð40Þ
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r1 ¼
μ1P∞

m¼2 μm
: ð41Þ

Let us now obtain the above observables for the
relativistic images formed inside the photon sphere, i.e.,
for those formed due to the presence of an antiphoton
sphere. To this end, we first note that if b is the impact
parameter at which the nth relativistic image is formed,
then we can write θ ¼ b=DOL. Therefore, in terms of θ, the
deflection angle (34) can be written as

αðθÞ ¼ −ā log
�

b2m
D2

OLθ
2
− 1

�
þ b̄

þOððb2m −D2
OLθ

2Þ logðb2m −D2
OLθ

2ÞÞ: ð42Þ
The observables for inner images are denoted by the sub-
script −n. This − sign before n indicates that we are talking
about the nth relativistic image of the inner images. Also, we
replace Δαn in that we have introduced before by Δα−n. To
obtain the offset Δα−n, we expand αðθÞ around θ ¼ θ0−n,
where αðθ0−nÞ ¼ 2πn. Using αðθ0−nÞ ¼ 2πn, we obtain

θ0−n ¼
bm
DOL

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−n

p ¼ θ−∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−n

p ; e−n ¼ e
b̄−2nπ

ā ; ð43Þ

where θ−∞ ¼ bm=DOL is the angular position of the rela-
tivistic image formed at the photon sphere. Note that in
contrast to that for the images formed outside the photon
sphere, the angular positions of the images formed inside the
photon sphere increase with n, implying that, in the inner
image system, the first relativistic image is the innermost one
and the imagewith the angular position θ−∞ is the outermost
one. Note also that θ∞ ¼ θ−∞. Now, defining Δθ−n ¼
θ − θ0−n, we obtain

αðθÞ ≃ αðθ0−nÞ þ
dα
dθ

����
θ0−n

Δθ−n: ð44Þ

Using Eq. (44), we obtain

Δα−n ¼
2āDOL

e−nbm
ð1þ e−nÞ3=2Δθ−n: ð45Þ

With this, the lens equation becomes

β ¼ θ0−n þ Δθ−n −
DLS

DOS

2āDOL

e−nbm
ð1þ e−nÞ3=2Δθ−n: ð46Þ

The second term in the above equation is negligible
compared to the last one since bm ≪ DOL. Neglecting this
second term, the angular position of the relativistic images is
given by

θ ¼ θ0−n −
bme−nDOS

2āDLSDOL

ðβ − θ0−nÞ
ð1þ e−nÞ3=2

: ð47Þ

Note that the correction to θ0−n is negligible compared
to θ0−n. Therefore, we approximate the position of the
images by θ0−n in order to calculate the magnifications of
the images given by

μ−n ¼
1

ðβ=θÞð∂β=∂θÞ
����
θ0−n

: ð48Þ

Now we have from Eq. (46),

∂β
∂θ

����
θ0−n

¼ 1 −
DLS

DOS

2āDOL

e−nbm
ð1þ e−nÞ3=2

≃ −
DLS

DOS

2āDOL

e−nbm
ð1þ e−nÞ3=2; ð49Þ

where we have neglected the first term as it is negligible
compared to the second term (because bm ≪ DOL).
Therefore, the magnification becomes

μ−n ¼ −
b2mDOS

2āβD2
OLDLS

e−n
ð1þ e−nÞ2

: ð50Þ

Beside the angular positions and magnifications of the
relativistic images, we define two other observables, namely
the angular separation s−n between the nth and (nþ 1)th
images and the ratio r−n between the flux of each of the first
three images and the total flux of all the other images. Thus

s−n ¼ jθ−n − θ−ðnþ1Þj; ð51Þ

r−n ¼
jμ−njP∞

m¼2 μm þP∞
m¼4 jμ−mj

ðn ¼ 1; 2; 3Þ: ð52Þ

Note that, in the absence of the images inside the photon
sphere (i.e., in the case of black holes), the flux ratio for the
first image of the images outside the photon sphere is given
by Eq. (41). However, in the presence of the inner images
(i.e., in the case of UCOs), we define the same by

r1 ¼
μ1P∞

m¼2 μm þP∞
m¼4 jμ−mj

: ð53Þ

Our results for these variables for different geometries is
presented in Table I. Here we have restored G and c by
replacingM by ðGMÞ=c2. Here, themassM and the distance
DOL are taken to be those of the suppermassive black hole
Sgr A* at center of our Galaxy.
The contents of Table I are now summarized.
(i) The second column is the results for the Schwarzs-

child black hole with the ADM mass M.
(ii) The third and fourth columns are the results for the

interior Schwarzschild solution due to Synge [50],
with the corresponding quantities in Eq. (1) being

A ¼
�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mr2

R3

r �2

;

B ¼
�
1 −

2Mr2

R3

�−1
; C ¼ r2: ð54Þ
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Here, r ¼ R denotes a hypersurface across which the
metric is matched to an external Schwarzschild
solution with ADM mass M, where we have taken
R=M ¼ 2.5 and 2.7.

(iii) The fifth column is the results for an interior
Schwarzschild solution due to Florides [51] where
the metric components of Eq. (1) are given as

A ¼ ð1 − 2M=RÞ32
ð1 − 2Mr2=R3Þ1=2 ;

B ¼
�
1 −

2Mr2

R3

�−1
; C ¼ r2: ð55Þ

Here, r ¼ R denotes a hypersurface across which the
metric is matched to an external Schwarzschild
solution with ADM mass M, where we have taken
R=M ¼ 2.5. Note that for this solution, the radial
pressure vanishes and thus the Florides solution
might be thought of as the geometry of an Einstein
cluster. Here, it should be thought of as a toy model
for an anisotropic UCO.

(iv) The sixth column in Table I shows the results for the
Reissner-Nordstrom naked singularty where we
have taken the (square of the) charge to mass ratio
to be 1.05.

(v) The seventh column is the results for a noncommu-
tative Schwarzschild regular solution [52] where the
metric components of Eq. (1) are given as

A¼B−1¼ 1−
4Mffiffiffi
π

p
r
γð3=2;r2=4θÞ; C¼ r2; ð56Þ

where γð3=2; r2=4θÞ is the lower incomplete gamma
function,

γð3=2; r2=4θÞ ¼
Z

r2=4θ

0

t1=2e−tdt: ð57Þ

Here, we have considered the horizonless case
with

ffiffiffi
θ

p
=M ¼ 0.6.

V. DISCUSSIONS AND CONCLUSIONS

We study strong gravitational lensing and formation of
relativistic images by horizonless ultracompact objects and
compare our results with that of black holes. It is well
known that, for black holes, relativistic images are formed
only outside their photon spheres. In contrast, for horizon-
less ultracompact objects, additional relativistic images can
form inside their photon sphere radius. In this paper, we
provide an analytical approach to deal with strong gravi-
tation lensing from such ultracompact objects, which is
substantially different from the black hole cases, first
reported by Bozza. We obtain an analytic expression for
the bending angle as well as lensing observables such as
angular positions, angular separations and magnifications
of relativistic images formed inside the photon sphere and
compare them with those of images formed outside it. We
find that both the angular separation and magnification of

TABLE I. The angles are in microarc sec and rn=−n is converted to magnitude using Rn=−n ¼ 2.5 log rn=−n. Here, we have taken
M ¼ 4.31 × 106 M⊙, DOL ¼ DLS ¼ 7.86 Kpc, which are the parameters for the supermassive black hole Sgr A* at the center of our
Galaxy and β ¼ 5°.

Schwarzschild
black hole

Schwarzschild interior
(Synge)

Interior
(Florides)

RN naked
singularity

Noncommutative
Schwarzschild

R ¼ 2.5M R ¼ 2.7M R ¼ 2.5M Q2

M2 ¼ 1.05
ffiffi
θ

p
M ¼ 0.6

θ1 28.2802 28.2802 28.2802 28.2802 21.3541 28.1010
θ∞ 28.2449 28.2449 28.2449 28.2449 21.1592 28.0282
θ−3 � � � 28.2353 28.2395 28.2404 21.0032 27.9864
θ−2 � � � 28.0251 28.1218 28.1419 20.0692 27.5656
θ−1 � � � 24.1813 25.7527 26.1160 15.6203 23.8330
μ1 × 1022 5.3850 5.3850 5.3850 5.3850 14.3633 8.5121
μ−3 × 1022 � � � −0.7300 −0.4068 −0.3402 −5.5914 −2.4290
μ−2 × 1022 � � � −16.3947 −9.2574 −7.7632 −34.8801 −25.8732
μ−1 × 1022 � � � −210.285 −150.655 −133.240 −95.7851 −163.620
s1 0.0353 0.0353 0.0353 0.0353 0.1949 0.0728
s−3 � � � 0.0092 0.0051 0.0043 0.1350 0.0381
s−2 � � � 0.2102 0.1177 0.0985 0.9340 0.4208
s−1 � � � 3.8438 2.3691 2.0259 4.4489 3.7326
R1 15.71 12.07 13.11 13.39 6.33 8.33
R−3 � � � 7.08 6.65 6.48 3.97 5.20
R−2 � � � 14.85 14.46 14.30 8.54 11.11
R−1 � � � 21.23 21.44 21.41 11.07 15.72
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the images initially decrease from the outermost (first)
image outside the photon sphere, become minimum at the
photon sphere and again start increasing, becoming maxi-
mum for the innermost (first) image inside the photon
sphere. Significantly, we see also that the magnification and
separation of the relativistic images that appear inside the
photon sphere radius are much larger than the correspond-
ing images outside this radius. In fact, the angular sepa-
ration between the first two images inside the photon
sphere radius can be 2 orders of magnitude more than that
of the first two images outside this radius for the interior
Schwarzschild solution, and the magnification of the first
image inside this radius is about 40 times the one outside it.
This result indicates that it might be easier to detect
possible images inside the photon sphere compared to
the ones outside it.

Overall, the picture that emerges is as follows. For
lensing by black holes, one would obtain closely separated
images outside the radius of the photon sphere. For UCOs
on the other hand, one expects to see relatively wide
separation between images up to the photon sphere, and
more closely separated ones beyond this radius. This is a
distinctive feature that, if detected, can distinguish between
images from black holes and UCOs. As an ending note, we
show the percentage error obtained in the bending angle in
the strong deflection limit. Note that the percentage error
for the images inside the photon sphere is relatively larger
than that for the images outside it, as shown in Fig. 3. This
is because the difference between the critical impact
parameter bm and the impact parameters b at which the
inner images are formed, i.e., ðbm − bÞ is relatively larger
than that of the outer images.
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