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Ultralight scalars can extract rotational energy from astrophysical black holes through superradiant
instabilities, forming macroscopic boson clouds. This process is most efficient when the Compton
wavelength of the boson is comparable to the size of the black hole horizon, i.e., when the “gravitational
fine structure constant” α≡ GμM=ℏc ∼ 1. If the black hole/cloud system is in a binary, tidal perturbations
from the companion can produce resonant transitions between the energy levels of the cloud, depleting it by
an amount that depends on the nature of the transition and on the parameters of the binary. Previous cloud
depletion estimates considered binaries in circular orbit and made the approximation α ≪ 1. Here we use
black hole perturbation theory to compute instability rates and decay widths for generic values of α, and we
show that this leads to much larger cloud depletion estimates when α≳ 0.1. We also study eccentric binary
orbits. We show that in this case resonances can occur at all harmonics of the orbital frequency,
significantly extending the range of frequencies where cloud depletion may be observable with
gravitational wave interferometers.
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I. INTRODUCTION

The observation of gravitational waves (GWs) by the
LIGO and Virgo collaborations [1] marked the beginning of
a new era in astrophysics and fundamental physics [2].
These observations have already provided crucial informa-
tion on the formation of binary compact objects [3], tested
general relativity in the strong, highly dynamical regime
[4–8], and led to new measurements of the cosmological
expansion of the universe [9,10].
Quite remarkably, GWobservations also have the poten-

tial to transform our understanding of particle physics. One
example is the possibility to discover ultralight bosonic
particles, such as axions, through GWs [11–20]. Ultralight
bosons can efficiently extract rotational energy from spin-
ning black holes (BHs) through superradiant instabilities
and form macroscopic condensates when the Compton
wavelength of the boson is comparable to the characteristic
size of the BH horizon, i.e., when the “gravitational fine
structure constant” α≡GμM=ℏc ∼ 1 [21]. This possibility

can shed light on bosons with masses in the range
∼½10−19; 10−11� eV, which have Compton wavelengths
comparable to the size of astrophysical BHs.
The existence and formation of bosonic clouds can be

inferred through several observational channels. A first
possibility is to look for gaps in the “Regge plane” of
astrophysical BHs: superradiant instabilities could lead to a
lack of highly spinning BHs in a BH mass range that
depends on the boson mass. Measurements of the spin and
mass of astrophysical BHs can then be used to infer or
constrain the existence of ultralight bosons [11,14,22–24].
Even more exciting is the prospect of direct detection: once
formed, boson clouds would slowly decay through the
emission of long-lived, nearly monochromatic GWs. This
radiation is potentially observable, either as a continuous,
nearly monochromatic signal from individual sources or as
a stochastic background [11,13–16,19,20].
Here we study how bosonic clouds around astrophysical

BHs can affect the dynamics of a binary system, revisiting
and extending the recent, comprehensive analysis of [25].
The cloud can affect the motion of small compact objects in
its vicinity [26,27]. The special nature of the axionic cloud
would leave characteristic signatures in the gravitational
waveforms from extreme mass-ratio inspirals, that are
potentially detectable by LISA [28]. In this work we
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consider the effect of a binary companion on the bosonic
cloud itself [11]. Under certain conditions, the perturba-
tions induced by the companion can lead to resonant
transitions between superradiant and nonsuperradiant
modes, which can, in some cases, deplete the cloud
[25]. Reference [25] assumed that α ≪ 1 and that the
binary is on a circular, equatorial orbit that can be treated in
the Newtonian limit. We relax the approximation α ≪ 1
(which is expected to fail precisely when the superradiant
instability is strongest) by using numerical calculations in
BH perturbation theory to estimate the decay rate of the
nonsuperradiant modes, and we point out a sign error that
affects the decay rates of Ref. [25]. We also extend their
analysis to eccentric binaries, showing that multiple reso-
nant depletion episodes can occur for eccentric BH binaries
of interest for LISA.
The plan of the paper is as follows. In Sec. II we review

the hydrogenic structure of the energy levels of boson
clouds around rotating BHs. In Sec. III we discuss
resonances in circular and eccentric binary systems, and
in Sec. IV we present our estimates for cloud depletion. In
Sec. V we highlight some limitations of our study and point
out directions for future work. To improve readability and
to keep this paper self-contained, we relegate some neces-
sary technicalities to the Appendixes. Appendix A shows
(following [29]) how to compute instability rates and decay
widths for generic values of α using continued fraction
methods. Appendix B deals with level mixing induced by
tidal perturbations and with the resulting selection rules,
summarizing some important results from [25]. Finally,
Appendix C presents an approximate analytical calculation
of the occupation numbers of decaying levels valid for
small-eccentricity orbits.

II. HYDROGENIC STRUCTURE
OF THE BOSON CLOUD

Superradiant instabilities can lead to the formation of
ultralight boson clouds around rotating (Kerr) BHs.
Consider a scalar field Ψ of mass μ, described by the
Klein-Gordon equation on a Kerr background:

ð□ − μ2ÞΨðt; rÞ ¼ 0; ð1Þ

where □ ¼ gab∇a∇b is the d’Alembert operator, gab is the
contravariant Kerr metric, and ∇a denotes a covariant
derivative. The angular dependence of the scalar field
can be separated with the ansatz

Ψ ¼
X
l;m

eimϕe−iωtSlmðθÞψnlmðrÞ; ð2Þ

which leads to ordinary differential equations for the radial
eigenfunctions ψnlmðrÞ, where n is an integer labeling the
discrete eigenfrequencies ω. Modes with angular frequency

ω and azimuthal numbermwill be superradiantly amplified
if the BH rotates faster than the field’s phase velocity, i.e.,

0 < ω < mΩH; ð3Þ
where ΩH ¼ a

2Mrþ
is a function of the Kerr angular

momentum parameter a ¼ J=M (where M and J are the
BH mass and angular momentum), and rþ ≡M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denotes the Boyer-Lindquist horizon radius

(here and below we will use geometrical units,
G ¼ c ¼ 1). Let us also define ã ¼ a=M and r̃þ ≡
rþ=M for future use. The mass of the scalar field works
as a potential barrier that confines the superradiant modes,
leading to a continuous extraction of angular momentum
from the BH until the inequality (3) is saturated.
By plugging into Eq. (1) the ansatz

Ψðt; rÞ ¼ 1ffiffiffiffiffi
2μ

p ½ψðt; rÞe−iμt þ ψ�ðt; rÞeiμt�; ð4Þ

where ψðt; rÞ is a complex scalar field that varies on
timescales much longer than μ−1 and � denotes complex
conjugation, and keeping only terms up to first order in r−1

and linear in α, we obtain

i
∂
∂tψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r

�
ψðt; rÞ; ð5Þ

where ∇2 is the Laplacian operator and α≡Mμ is the
equivalent of the fine-structure constant for the hydrogen
atom. In fact, Eq. (5) is formally equivalent to the
Schrödinger equation for the hydrogen atom, and thus
the eigenstates ψnlmðrÞ re hydrogenic eigenfunctions with
principal and orbital quantum numbers n and l, respec-
tively. Let us remark that we follow the conventions of [25],
which are more convenient to highlight similarities with the
spectrum of the hydrogen atom. In particular, our principal
quantum number n is the same as ñ ¼ nþ lþ 1 in Dolan’s
notation [29], and the dominant superradiant mode—a
nodeless (n ¼ 0) solution with l ¼ m ¼ 1 in Dolan’s
notation—corresponds to n ¼ 2 in our conventions. The
eigenfrequencies of these states are [30]

ωnlm ≃ μ

�
1 −

α2

2n2
þ δωnlm

�
; ð6Þ

where δωnlm denote higher-order corrections, that (up to
fifth-order in α) are given by [25]

δωnlm≃
�
−
α4

8n4
þð2l−3nþ1Þα4

n4ðlþ1=2Þ þ 2ãmα5

n3lðlþ1=2Þðlþ1Þ
�
:

ð7Þ

Finally, the characteristic Bohr radius—i.e., the radius at
which the radial profile of the scalar field achieves its
maximum value—is well approximated by
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rBohr ≃
�
n2

α2

�
M: ð8Þ

The eigenstates are not stationary because of dissipation,
therefore the eigenfrequencies have an imaginary part of
the form iΓnlm, where the coefficients Γnlm are the
instability rates (decay widths) for unstable (stable) modes,
respectively [29,30].
For generic values of the constant α, the decay width

Γnlm must be computed numerically, as explained in
Appendix A. However, as first shown by Detweiler [30],
in the limit α ≪ 1 these quantities can be computed
analytically, with the result:

Γnlm ¼ 2rþ
M

Cnlmða; αÞðmΩH − ωÞα4lþ5; ð9Þ

where

Cnlmða; αÞ ≔
24lþ1ðnþ lÞ!

n2lþ4ðn − l − 1Þ!
�

l!
ð2lÞ!ð2lþ 1Þ!

�
2

×
Yl
j¼1

½j2ð1 − ã2Þ þ ðãm − 2r̃þαÞ2�: ð10Þ

One of the main purposes of this paper is to improve over
this small-α approximation, which is significantly inaccu-
rate when α ≳ 0.1. This is shown in Fig. 1, where—for
illustration—we compare the decay width of the (stable)
Γ21−1 mode computed using continued fractions (CF, solid
black line) and the Detweiler small-α approximation
(dashed red line), for a BH spin that saturates the super-
radiant amplification of the l ¼ m ¼ 1mode [cf. Eq. (13)].
When comparing our results with those of Ref. [25] we

found large deviations for α ≳ 0.05. This discrepancy is
caused only in part by the use of the Detweiler approxi-
mation, and we think that it is partly due to the use of an
incorrect equation1 for the decay width Γ21−1. As shown in
Fig. 1, where the dotted blue line shows the prediction from
Eq. (3.40) of [25], the different predictions are in good

agreement for α ≪ 1, but there are large discrepancies
when α≳ 0.1.

III. HYPERFINE RESONANCE
AND BOHR RESONANCE

A. Circular orbits

At the end of the superradiant process, i.e., when the
superradiant amplification saturates, the mass and spin of
the final BH are related to the frequency of the dominant
superradiant mode of the cloud by [22]

a
M

¼ 4mMω

m2 þ 4ðMωÞ2 : ð13Þ

Throughout this paper we will assume that the spin of the
BH that carries the cloud is given by Eq. (13).
If the BH that carries the cloud is part of a binary, new

cloud instabilities arise due to the existence of resonant
orbits. The tidal field of the companion will induce
perturbations in the potential of Eq. (5), which in turn
induce overlaps between different states ψnlm, also known
as level mixings. Reference [25] studied level mixings for
binaries in quasicircular orbits with orbital frequency

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þM�

R3�

s
; ð14Þ

whereM� and R� denote the mass of the companion and the
orbital separation, respectively. Here we briefly summarize
their main results. Defining Φ� as the azimuthal angle of
M� relative to M and setting Ω > 0 without loss of
generality, configurations with Φ� ¼ Ωt (Φ� ¼ −Ωt) cor-
respond to orbits corotating (counterrotating) with
the cloud.

CF

Detweiler

Baumann

0.0 0.1 0.2 0.3 0.4 0.5

10−21
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FIG. 1. Decay width Γ21−1 computed using continued fractions
(solid black), the Detweiler approximation (dashed red) and
the calculation of Ref. [25] (dotted blue), for a BH spin that
saturates the superradiant amplification of the l ¼ m ¼ 1 mode
[cf. Eq. (13)].

1Eq. (3.40) of [25] reads

jΓðiÞ
d j ¼ BðiÞ

24

α10

M

�
1 − 4α2

1þ 4α2

�
2
�

2

1þ 4α2
þ r̃þ

�
: ð11Þ

where BðiÞ is a numerical constant dependent on the transition.
From Eqs. (9) and (10), the correct result for the dominant
transitions should read instead

Γnl−1 ¼ −Bn
α10½16α4r̃2þ þ 4α2ðr̃2þ þ 4r̃þ þ 1Þ þ 1�

ð4α2 þ 1Þ2 ; ð12Þ

where B2 ¼ 1=6 and B3 ¼ 128=2187 for the hyperfine and the
Bohr mixing, respectively. Their equation can be recovered by
using m ¼ 1 in Eq. (10), instead of the correct value m ¼ −1.
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Let us limit attention to binary separations greater than
the Bohr radius (R� > rBohr) to guarantee that the gravi-
tational influence between the two bodies can be analyzed
using a multipole expansion, and that corrections to the
Kerr metric can be treated perturbatively [25]. If the Bohr
radius rBohr is greater than the Roche radius the gravita-
tional attraction between the two objects will induce mass
transfer from the cloud to the companion. This critical
orbital separation can be estimated using Eggleton’s fitting
formula [31]:

R�;cr ¼
�

0.49q−2=3

0.6q−2=3 þ ln ð1þ q−1=3Þ
�−1

rBohr; ð15Þ

where q ¼ M�=M is the ratio between the mass M� of the
companion and the mass M of the BH-cloud system. We
restrict our study to the region R� > maxðrBohr; R�;crÞ, so
we can neglect mass transfer.
Let us define τc ≈ 109ðM=105 M⊙Þð0.1=αÞ15 yr to be

the boson cloud lifetime, estimated assuming that GW
emission is the only dissipative process and that other effect
(such as accretion) are negligible [22]. The merger time for
a binary with orbital frequency Ω0, as estimated from the
quadrupole formula for GW emission for quasicircular
orbits [32], is

τ0 ¼
5

256

Mtot

ν

�
1

MtotΩ0

�
8=3

; ð16Þ

where Mtot ¼ M þM� is the total mass and ν ¼
MM�=M2

tot is the symmetric mass ratio. If τc > τ0, the
merger occurs before the cloud is radiated away. This
relation can be translated into a bound on the initial orbital
frequency:

Ω0 > 0.042
ð1þ qÞ1=8

ðM=M⊙Þq3=8
α45=8 Hz≡Ωc: ð17Þ

For circular orbits, we will only consider initial orbital
frequencies greater than the critical frequency Ωc.
The selection rules for transitions induced by the tidal

potential of the companion are discussed in Appendix B.
Considering only the dominant growing mode ψ211, two
main resonances are of interest during the orbital evolution
of the binary:

(i) the hyperfine resonance is caused by an overlap
between ψ211 and the decaying states ψ210 and
ψ21−1;

(ii) the Bohr resonance is caused by an overlap between
ψ211 and the states ψn10 and ψn1−1, for n ≥ 3.

These resonances occur when the orbital frequency Ω
matches the energy split between two states ψnlm and
ψ ñ l̃ m̃, i.e., when Ω ∼ Δω=Δm ¼ ϵ, where Δω ¼ ωnlm −
ωñ l̃ m̃ and Δm ¼ m − m̃ [25,27]. More precisely, the
hyperfine and Bohr resonances will occur when Ω matches

the hyperfine splitting ϵh or the Bohr splitting jϵbj, which—
at leading order in α, using Eqs. (6) and (7)—are given by

ϵh ¼
μ

12
ãα5; ϵðnÞb ¼ −

n2 − 4

16n2
μα2; ð18Þ

where n ≥ 3. The hyperfine resonance will only occur for
corotating orbits (because ϵh > 0), whereas the Bohr
resonance will only occur for counterrotating orbits

(because ϵðnÞb < 0). For orbital frequencies outside these
resonances the mixing between the modes is perturbatively
small and can, in general, be neglected. For the Bohr
mixings, we will only consider the n ¼ 3 resonance: this is
usually dominant because it occurs earlier in the inspiral,
and because the decay width decreases with n [cf. Eq. (12)].
Let us now define the occupation densities of the modes

as cgðtÞ for the growing mode ψ211, c
ðhÞ
d ðtÞ for the decaying

modes of the hyperfine resonance, and cðbÞd ðtÞ for the
decaying modes of the Bohr resonance. In general we
have a three-level system

jψðtÞi ¼ cgðtÞjψgi þ cðhÞd ðtÞjψ ðhÞ
d i þ cðbÞd ðtÞjψ ðbÞ

d i; ð19Þ

where the occupation densities satisfy the normalization

condition jcgðtÞj2 þ jcðhÞd ðtÞj2 þ jcðbÞd ðtÞj2 ¼ 1.
Consider first the hyperfine mixing. For quasicircular,

corotating equatorial orbits the growing mode ψ211 domi-
nantly couples to the decaying mode ψ21−1, while the
perturbative coupling to the ψ31−1 mode can be neglected.
Therefore the occupation densities must satisfy the nor-
malization condition

jcgðtÞj2 þ jcðhÞd ðtÞj2 ¼ 1: ð20Þ

Solving the perturbed Schrödinger equation for the coupled
states (see Appendix B) with the initial conditions cgð0Þ ¼
1 and cðhÞd ð0Þ ¼ 0 yields the following proportionality
relation for the occupation density of the decaying mode:

jcðhÞd ðtÞj2 ¼
�
1 −

�
ϵh ∓ Ω

ΔðhÞ
R

�
2
�
sin2
�Z

t

t0

dt0ΔðhÞ
R ðt0Þ

�
; ð21Þ

where we defined the modified Rabi frequency for the
hyperfine splitting as

ΔðhÞ
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9ηÞ2 þ ðϵh ∓ ΩÞ2

q
; ð22Þ

where upper sign in ∓ stands for the corotating orbits and
the bottom for the counterrotating ones, and

η ¼ α−3
�
q
R�

��
M
R�

�
2

: ð23Þ

BERTI, BRITO, MACEDO, RAPOSO, and ROSA PHYS. REV. D 99, 104039 (2019)

104039-4



The phase of the oscillations in Eq. (21) has been written as

an integral over time to take into account the fact that ΔðhÞ
R

changes as the orbits shrinks due to radiation reaction [25].
The Bohr resonance is important only for counterrotating

orbits. For equatorial orbits the mode ψ310 decouples, and
we only have to consider the decaying mode ψ31−1
(neglecting all modes with n > 3). Near Ω ≃ jϵbj, the phase
of the hyperfine mixing oscillates rapidly with a period of

the order η−1. In this region jcðhÞd ðtÞj2 ∼ ðη=ϵbÞ ≪ 1 [25],
and the problem reduces again to a two-level system.
Solving the perturbed Schrödinger equation for the remain-
ing states with the initial conditions cgð0Þ ¼ 1 and

cðbÞd ð0Þ ¼ 0 leads to the following occupation density for
the decaying state:

jcðbÞd ðtÞj2¼
�
1−
�
ϵð3Þb ∓Ω

ΔðbÞ
R

�2�
sin2
�Z

t

t0

dt0ΔðbÞ
R ðt0Þ

�
; ð24Þ

where ηwas given in Eq. (23), and in this case the modified
Rabi frequency reads

ΔðbÞ
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7.6ηÞ2 þ ðϵð3Þb ∓ ΩÞ2

q
: ð25Þ

The addition of modes with n > 3 would require, in
general, the solution of an infinite-dimensional system. We
can still approximate the system as a two-level system, as
these resonances occur at different orbital frequencies for
each n, and in the vicinity of each resonance only one mode
dominates. However, as stated above, higher modes are
subdominant in the estimation of the depletion of the cloud,
and therefore we neglect resonances with n > 3.

B. Eccentric orbits

The generalization to eccentric orbits can be done by
promoting the orbital phase Φ� to Φ� ¼ FðΩt; eÞ, where Ω
now describes the mean orbital frequency of the orbit and
0 ≤ e < 1 is the orbital eccentricity. At the Newtonian
level, the mean orbital frequency Ω and the orbital
eccentricity e are constants of motion. To find FðΩt; eÞ
we use the fact that the true anomaly v≡Φ� −Φ0 and the
mean anomaly l≡Ωðt − t0Þ, where Φ0 and t0 are some
initial time and initial orbital phase, are related through the
following Fourier series (see e.g., [33]):

v¼ lþ2
X∞
j¼1

1

j

�
JjðjeÞþ

X∞
k¼1

βp½Jj−kðjeÞþJjþkðjeÞ�
�
sinjl;

ð26Þ

where JjðxÞ denotes the Bessel functions of the first kind

and β ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ=e. Without loss of generality we

will set Φ0 ¼ 0 and t0 ¼ 0, so that v ¼ Φ� and l≡Ωt. For
eccentric orbits, the binary separation will depend on the

orbital phase through the elliptical orbit equation, which at
Newtonian order is given by

R� ¼
aSMð1 − e2Þ
1þ e cosΦ�

; ð27Þ

where aSM is the semimajor axis, related to the mean orbital
frequency via Kepler’s third law

aSM ¼
�
M þM�

Ω2

�
1=3

: ð28Þ

The cosine of the orbital phase can also be expanded in a
Fourier series (see e.g., [34]):

cosΦ� ¼ −eþ 2

e
ð1 − e2Þ

X∞
j¼1

JjðjeÞ cos jl: ð29Þ

As in the quasicircular case, we only consider binary
separations greater than the critical (Roche) radius at which
mass transfer from the cloud to the companion becomes
important. Reference [35] found that in the presence of
nonzero eccentricity the Roche radius in Eq. (15) increases
by a factor ð1 − eÞ−1. However gravitational radiation
reaction tends to circularize the orbit, and for the orbits
considered here the eccentricity is small enough that
Eq. (15) is still a very good estimate of the Roche radius.
We now have all the necessary ingredients to generalize

the calculation of the occupation densities to eccentric
orbits. As in the circular case, let us focus on equatorial
orbits and on two-state systems, which (as argued above)
describe very well the resonances of interest. In the
interaction picture, the wave function of the cloud is
therefore a linear combination

jψðtÞi ¼ cgðtÞjψgi þ cdðtÞjψdi; ð30Þ

where g and d denote the growing and the decaying mode,
respectively, and again jcgðtÞj2 þ jcdðtÞj2 ¼ 1. In the non-
relativistic limit, and for generic equatorial orbits, the
evolution of the coefficients c≡ ðcg; cdÞT is described
by the following Schrödinger equation [cf. Eq. (3.21) of
[25] and Appendix B]:

i
dc
dt

¼
 

0 AηðtÞe−iΔmΦ�ðtÞþitΔω

AηðtÞeþiΔmΦ�ðtÞ−itΔω 0

!
c;

ð31Þ

where A ¼ 9 for the hyperfine resonance and A ¼ −7.6 for
the n ¼ 3 Bohr resonance described above. Below we
restrict to those resonances and define a parameter
ϵ ¼ Δω=Δm, which is given by Eq. (18) for the hyperfine
and Bohr transitions.

ULTRALIGHT BOSON CLOUD DEPLETION IN … PHYS. REV. D 99, 104039 (2019)

104039-5



This system can be written as a single second-order
differential equation for cdðtÞ by taking the derivative of
Eq. (31), and by eliminating cgðtÞ and its derivative from
the system. After some algebra we find

c̈d ¼ −A2η2cd þ _cd

�
_η

η
− 2iðϵ − _Φ�Þ

�
; ð32Þ

where a dot denotes a derivative with respect to t. We can
further simplify this equation by writing

cdðtÞ ¼ e−i½ϵtþBðtÞ�CðtÞ; ð33Þ

where BðtÞ ¼ B0 −Φ�ðtÞ þ i log½ηðtÞ�=2 and B0 is an
arbitrary integration constant. Without loss of genera-
lity we require Bð0Þ ¼ 0 and therefore B0 ¼ Φ�ð0Þ−
i log½ηð0Þ�=2. The evolution of the system can be sche-
matically written as

C̈ðtÞ þ VðtÞCðtÞ ¼ 0; ð34Þ

where the explicit functional form of VðtÞ is given in
Appendix C. For circular orbits VðtÞ simplifies to
VðtÞ ¼ Δ2

R, where ΔR is the Rabi frequency defined by

ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAη0Þ2þðϵ�ΩÞ2

q
; η0 ¼ α−3

�
q

aSM

��
M
aSM

�
2

;

ð35Þ

and one can easily recover the solutions first derived in
Ref. [25] and discussed above, after imposing the initial
condition Cð0Þ ¼ 0 and an initial condition for _Cð0Þ that
can be easily found by imposing cgð0Þ ¼ 1 in Eq. (31).

For generic eccentricities, solutions must be found
numerically for given values of the orbital frequency Ω
and of the eccentricity e. Approximate analytical solutions
can be found for small eccentricity: in Appendix C, for
illustration, we show a solution valid up to first order in e.
So far we neglected gravitational radiation reaction, i.e.,

we assumed that Ω and e are constant. The time evolution
of the mean orbital frequency and of the eccentricity were
first derived in Ref. [32] under the adiabatic approximation
(which is valid when the radiation reaction timescale is
much longer than the orbital timescale). They are given by

dΩ
dt

¼ νM5=3
tot Ω11=3 96þ 292e2 þ 37e4

5ð1 − e2Þ7=2 ð36Þ

de
dt

¼ −eνM5=3
tot Ω8=3 304þ 121e2

15ð1 − e2Þ5=2 : ð37Þ

To compute the equivalent of Eqs. (21) and (24) for
eccentric orbits, we must solve Eq. (34) numerically while
evolving the orbit adiabatically using Eqs. (36) and (37).
The calculation of the occupation numbers can be carried
out as follows:

(i) For a given set of fixed initial conditions Ωðt ¼ 0Þ ¼
Ωð0Þ and eðt ¼ 0Þ ¼ eð0Þ, solve (34) numerically,
and average 2jcdj2 over several orbits, but over
timescales much smaller than the radiation reaction
timescale;

(ii) Evolve the orbit using Eqs. (36) and (37) with the
initial conditions Ωðt ¼ 0Þ ¼ Ωð0Þ and eðt ¼ 0Þ ¼
eð0Þ, and produce a grid of values for eðΩÞ.

(iii) For each value in the grid, repeat step (i) and
construct jcdj2 as a function of Ω.

For eð0Þ ¼ 0, this procedure reproduces Eqs. (21)
and (24) without the oscillatory terms. For eð0Þ ≠ 0, our
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FIG. 2. Left: Averaged occupation number jcðhÞd j2 for hyperfine transitions of scalar clouds in BH binaries with mass ratio q ¼ 105 and
gravitational fine structure constant α ¼ 0.2. Black lines refer to circular orbits; red, dashed lines and blue, dash-dotted lines refer to
eccentric orbits with eð0Þ ¼ 0.1 and eð0Þ ¼ 0.5, respectively. For computational purposes we start the orbit at Ωð0Þ ¼ 0.9ϵh=2. When
eð0Þ ≠ 0, resonances can occur whenever kΩ ¼ 2ϵh, with k ≥ 1 an integer. The contribution of the different resonances to cloud

depletion depends strongly on eð0Þ. Right: averaged occupation number jcðbÞd j2 for Bohr transitions of counterrotating orbits with
q ¼ 10−2 and α ¼ 0.1.
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results are shown in Fig. 2. The most important conclusion
of this calculation is that for eccentric orbits with eð0Þ ≠ 0,
resonances can occur whenever kΩ ¼ 2jϵj (where k ≥ 1 is
an integer), in contrast with the quasicircular case for which
resonances only occur at Ω ¼ jϵj. The existence of reso-
nances with k ≥ 2 implies that significant depletion can
occur earlier than in the quasicircular case.

IV. CLOUD DEPLETION: NUMERICAL RESULTS

Following [25], we introduce the depletion estimator
Aðt; t0Þ, where we can take t0 to be the time for which
superradiance has saturated:

Aðt; t0Þ ¼
X
n;l

X
m≤0

jΓnlmj
Z

t

t0

dt0jcnlmðt0Þj2: ð38Þ

This quantity represents the ratio between the integrated
time that the system spends in the decaying modes and the
decay timescale jΓnlmj−1, weighted by the occupation
density of each state. The mass of the cloud decays
proportionally to exp ð−2AÞ, where the factor of 2 arises
from the quadratic dependence of the stress-energy tensor
on the scalar field.
The integral in Eq. (38) is more easily performed in the

frequency domain. We can make use of Eqs. (36) and (37)
to write:

AðΩ;Ω0Þ¼
1

νM5=3
tot

X
n;l

X
m≤0

jΓnlmj

×
Z

Ω

Ω0

dΩ0Ω0−11=3 5ð1−e2Þ7=2
96þ292e2þ37e4

jcnlmðΩ0Þj2:

ð39Þ
To perform the integral we also need eðΩÞ. To this end we
use fits for eðΩÞ from Ref. [34], which are valid for any

initial eccentricity. In our numerical evaluation of the
integral (38) we ignore the oscillatory terms in Eqs. (21)
and (24), following Ref. [25].
Our Figs. 3 and 4 update the results presented in Figs. 7

and 8 of Ref. [25]. To facilitate comparisons, in Fig. 3 we
select the same examples shown in the lower panels of
those figures. For quasicircular orbits, we choose the initial
frequency to be Ω0 ¼ Ωc [cf. Eq. (17)], and we truncate the
integral at a final frequencyΩ such that our approximations
break down, i.e., Ω corresponds to an orbital radius
R ¼ maxðrBohr; R�;crÞ.
There are three possibilites, depending on the binary’s

mass ratio q and on the gravitational fine structure constant
α [25]:

(i) The cloud depletes dramatically during the res-
onance.

(ii) The cloud undergoes a long period of perturbative
depletion.

(iii) The cloud mostly survives during the entire inspiral.
Strong depletion, i.e., cases (i) and (ii), corresponds to

regions whereA > 0.5, or expð−2AÞ < 1=e: these regions
are marked in red in Fig. 4. Most of the qualitative features
of these plots can be understood in terms of two competing
effects: (1) the decay width increases with α; (2) for fixed
M and α, the orbital evolution due to GWemission is faster
(and hence the binary transits through resonances more
rapidly) when q increases. The thick white lines in the
corotating (counterrotating) cases corresponds to setting
Ωc ¼ ϵh (Ωc ¼ jϵbj). The binary experiences resonant
depletion only when the initial frequency Ω0 is small
enough. Depletion due to corotating (hyperfine) resonances
occurs only in the top-right region above the white line in
the left panels of Fig. 4: regions marked in red in that part
correspond to resonant depletion, i.e., case (i) above. The
cloud (partly) survives in the top-right region of these
panels only because, for very large q, the time that the
binary spends within the resonance is short compared to the
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FIG. 3. Left: Depletion of the scalar cloud for circular, corotating orbits (hyperfine resonances) and for selected values of q and α.
Dotted lines correspond to results from [25], dashed lines use the Detweiler approximation [cf. (9)], and solid lines use data generated
numerically from the CF method. As expected, the differences are more pronounced for higher α (and particularly striking when
α ¼ 0.4). Right: same, but for counterrotating orbits (Bohr resonances).
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decay time of the decaying state. In the bottom-left region
below the thick white lines, the cloud does not experience
any resonance: regions marked in red correspond to long
periods of perturbative depletion, i.e., case (ii) above.

In contrast, depletion due to counterrotating (Bohr)
resonances occurs almost in the entire parameter range,
with the exception of a small region in the bottom-right of
the right panels of Fig. 4. However the Bohr resonance

FIG. 4. Depletion estimator AðΩf ;ΩcÞ for the corotating hyperfine resonances (left panels) and for the counterrotating Bohr
resonances (right panels). The estimators were computed using decay rates from the CF method (top panels) and the Detweiler
approximation (middle panels). In the bottom row, for comparison, we also show results from Ref. [25]. The thick white lines
correspond to Ωc ¼ ϵh (left panels) or Ωc ¼ jϵbj (right panels): see the discussion in the main text. Recall that q ¼ M�=M, so small
values of q correspond to extreme mass-ratio inspirals of the kind discussed in Ref. [28], while large values of q correspond to very
massive perturbing companions.
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occurs at much smaller orbital separations than the hyper-
fine resonance: for this reason the binary moves through
resonance much faster, and the amount of depletion is
(typically) significantly smaller than in the hyperfine case.
One of the most important results of this work is that the

small-α approximation dramatically underestimates the
decay width Γ21−1 and Γ31−1 (cf. Fig. 1), and therefore it
is inadequate to estimate depletion when α≳ 0.1. This is
evident in both Figs. 3 and 4, with the difference being
particularly striking for the (α ¼ 0.4, q ¼ 104) case in the
left panel of Fig. 3.
Figure 5 shows how cloud depletion proceeds for the

same eccentric binary systems that were shown in Fig. 2: a
corotating orbit with (α ¼ 0.2, q ¼ 105) and a counter-
rotating orbit with (α ¼ 0.1, q ¼ 10−2). For illustration we
start the orbit atΩð0Þ ¼ 0.9ϵh=2 (Ωð0Þ ¼ 0.9jϵbj=2) for the

co-rotating (counterrotating) case. The gradual depletion at
the different resonances is apparent. The resonances with
k ≥ 2 imply that significant depletion can occur earlier than
in the quasicircular case, especially for large values of eð0Þ.

V. DISCUSSION AND CONCLUSIONS

We reanalyzed the issue of bosonic cloud depletion in
binary systems, dropping two crucial assumptions made in
Ref. [25]: the small-α approximation and the assumption of
circular orbits. Our study has two important observational
implications:
(1) the small-α approximation leads to a significant

underestimation of cloud depletion in the region
α≳ 0.1, where superradiant effects are expected to
be stronger.
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FIG. 5. Depletion of the scalar cloud for two representative examples of eccentric binaries: a corotating orbit with (α ¼ 0.2, q ¼ 105)
(left panel) and a counterrotating orbit with (α ¼ 0.1, q ¼ 10−2) (right panel). The solid black, dashed red and dash-dotted blue lines
refer to orbits with different initial eccentricities eð0Þ ¼ 0, 0.1 and 0.5, as indicated in the legend.
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FIG. 6. Resonant frequencies fres for three selected values of α (α ¼ 0.1, 0.2, 0.4 for the hyperfine resonances, and α ¼ 0.01, 0.1, 0.4
for the Bohr resonances). For each α, the different lines correspond to the first six harmonics of the orbital frequency (k ¼ 1;…; 6 from
bottom to top). The pink shaded region corresponds to the optimal LISA sensitivity band. Third- (second-)generation ground-based
detectors are expected to be sensitive for frequencies larger than a seismic cutoff f ∼ 1 Hz (10 Hz), as shown by the light (dark) gray
bands.
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(2) the inclusion of eccentricity significantly extends the
frequency band in which depletion effects are poten-
tially observable, because resonances can occur at all
integer multiples kΩ of the binary’s orbital frequency.

To quantify this remark, in Fig. 6 we plot resonant
frequencies—defined as fres ¼ ϵ=ðkπÞ with ϵ ¼ ϵh or ϵ ¼
jϵbj for the hyperfine or Bohr resonance, respectively—for
representative values of α: α ¼ 0.1 roughly corresponds to
the edge of the region where the small-α approximation is
valid, while α ¼ 0.4 is close to the value α ¼ 0.42 at which
the growth rate of the dominant (l ¼ m ¼ 1) superradiant
mode is maximized for near-extremal Kerr BHs [29]. For
each value of α, the different lines correspond to the first six
harmonics of the orbital frequency (k ¼ 1;…; 6 from
bottom to top).
For any fixed α, the plot shows that the frequency band in

which cloud depletion could be observable is much larger if
we allow for eccentric orbits. Second-generation ground-
based detectors are severely limited by their seismic cutoff
f ∼ 10 Hz, as shown by the dark gray band: there is a very
small chance of observing hyperfine resonances with
α ≃ 0.4, and the prospects are only slightly better for
Bohr resonances (which however, as discussed earlier,
would produce much smaller cloud depletion). Third-
generation detectors have better chances of observing
hyperfine transitions because of their lower seismic cutoff
f ∼ 1 Hz. Observational prospects are much brighter for
LISA, where interactions with gas and stellar environments
are expected to lead to significant orbital eccentricities
[36,37]. When superradiance is strongest (α ≃ 0.4), hyper-
fine and Bohr transitions would occur precisely in the BH
mass range M ∼ 102–107 M⊙ targeted by LISA [38].
Our analysis made several simplifying assumptions. We

described the orbit at Newtonian order, but going beyond
this approximation is certainly necessary for GW observa-
tions. Already at first post-Newtonian order, orbital eccen-
tricity adds an important physical effect that was neglected
in our work: periastron precession, which could potentially
lead to more orbital resonances. Following Ref. [25], we
also made several assumptions (e.g., we neglected back-
reaction, we treated the tidal field in a weak-field approxi-
mation, and we assumed that there is no mass transfer) that
will inevitably break down at small orbital separations. Full
numerical simulations will be necessary to fully understand
the dynamics of the system in this regime. Other effects that
should be accounted for include self-interactions, which
may lead to the suppression of superradiant instabilities
and/or bosenovas [39–41]; the coupling of ultralight bosons
with other fields, which may lead to electromagnetic
counterparts [42–44]; dynamical friction and accretion,
which could sensibly alter the orbital dynamics of the
companion [45–47]. All of these effects should be taken
into account when modeling gravitational waveforms.
Last but not least, from the point of view of GW data

analysis it is particularly important to understand the

behavior of the energy flux when binaries are affected
by orbital resonances of the kind discussed in this paper.
Some techniques to address this problem were developed in
the context of the excitation of neutron star quasinormal
modes by orbiting companions [48] and in studies of orbital
resonances for extreme mass-ratio inspirals [49]. We plan
to address these issues in future work.
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APPENDIX A: CONTINUED-FRACTION
METHOD

The decay and growth rate of the scalar field eigenmodes
can be exactly computed by employing a continued-
fraction method [29]. For completeness, here we summa-
rize this method. The Klein-Gordon equation (1) describing
a massive scalar field Φ with mass μ can be separated using
the ansatz (2) into ordinary differential equations for the
radial function

d
dr

�
Δ
dψlm

dr

�
þ
�
ω2ðr2þa2Þ2−4Mamωrþm2a2

Δ

�
ψlmðrÞ

−ðω2a2þμ2r2þΛlmÞψlmðrÞ¼0; ðA1Þ

and the angular function
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1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�

þ
�
a2ðω2 − μ2Þcos2θ − m2

sin2θ
þ Λlm

�
SlmðθÞ ¼ 0; ðA2Þ

where Δ ¼ r2 þ a2 − 2Mr. When supplemented by appro-
priate boundary conditions, the radial and angular equa-
tions yield an eigenvalue problem for the angular separation
constant Λlm and the eigenfrequency ω. The angular
solutions are spheroidal harmonics with an angular sepa-
ration constant that can be accurately computed through a
series expansion [50]

Λlm ¼ lðlþ 1Þ þ
X∞
k¼1

fkc2k; ðA3Þ

where c2 ¼ a2ðω2 − μ2Þ. Explicit expressions for fk can be
found in [50]. Exact values for Λlm can also be computed
through a continued-fraction method [50]; however, for the
modes of interest c ≪ 1, and therefore (A3) provides a very
accurate value of the angular eigenvalue. Let us then focus
on the calculation of the radial eigenfrequency ω.
At the event horizon the radial function goes as

lim
r→rþ

ψlmðrÞ ∼ ðr − rþÞ�iσ; ðA4Þ

where σ ¼ 2rþðω −mΩHÞ=ðrþ − r−Þ. For ingoing waves
at the horizon only the solution with a negative sign in the
exponent is allowed. At spatial infinity the radial function
behaves as

lim
r→∞

ψlmðrÞ ∼
rðμ2−2ω2Þ=qeqr

r
; ðA5Þ

where q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. Here we will be interested in the

solutions for which ψlmðrÞ is regular at infinity, and
therefore we are interested in the solutions for which
ReðqÞ < 0. These solutions describe quasibound states.
We therefore look for solutions of the form

ψlmðrÞ ¼ ðr − rþÞ−iσðr − r−Þiσþχ−1eqr
X∞
n¼0

an

�
r − rþ
r − r−

�
n
;

ðA6Þ

where χ ¼ ðμ2 − 2ω2Þ=q with ReðqÞ < 0. We note that
choosing ReðqÞ > 0 one would instead find the quasinor-
mal modes of the system: modes described by ingoing
waves at the horizon and outgoing waves at infinity.
After inserting this ansatz into the radial ordinary

differential equation (A1) one obtains a three-term recur-
rence relation for the coefficients an given by

α0a1 þ β0a0 ¼ 0 ðA7Þ

αnanþ1 þ βnan þ γnan−1 ¼ 0; n > 0; n ∈ N; ðA8Þ

where

αn ¼ n2 þ ðc0 þ 1Þnþ c0; ðA9Þ

βn ¼ −2n2 þ ðc1 þ 2Þnþ c3; ðA10Þ

γn ¼ n2 þ ðc2 − 3Þnþ c4: ðA11Þ

and c0, c1, c2, c3 and c4 are functions of ω and μ that can be
found in Eqs. (39)–(43) of [29].
The ratio of the coefficients an satisfy an infinite

continued fraction

anþ1

an
¼ −

γnþ1

βnþ1−
αnþ1γnþ2

βnþ2−
αnþ2γnþ3

βnþ3−
… ðA12Þ

This can be further simplified after substituting the n ¼ 0
term in this expression and noting that a1=a0 ¼ −β0=α0.
We then get

β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

… ¼ 0: ðA13Þ

The discrete family of complex values of ω for which this
condition is satisfied correspond to the bound state
frequencies. In particular for each choice of l and m there
is an infinite tower of solutions corresponding to the
different overtones. In practice, to find the solutions
numerically we truncate the series expansion in Eq. (A6)
at some large n (say, n ¼ 103) and we empirically check
that adding higher-order terms (e.g., up to n ¼ 104) does
not affect the eigenfrequencies within the desired accuracy.

APPENDIX B: LEVEL-MIXING DUE TO
GRAVITATIONAL PERTURBATIONS

As discussed in Ref. [25], the gravitational perturbations
induced by a companion sufficiently far away from the BH-
cloud system can be translated into a shift in the potential
of the Schrödinger equation (5), causing level mixings.
At lowest order in α, the tidal perturbation can be written
as [25]

V�ðt; r̄Þ ¼ −
M�μ
R�

X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×

�
r̄
R�

�
l�
Y�
l�m�ðΘ�;Φ�ÞYl�m� ðθ̄; ϕ̄Þ; ðB1Þ

where the coordinates R�ðtÞ≡ fR�ðtÞ;Θ�ðtÞ;Φ�ðtÞg
describe the position of the companion relative to the
isolated BH-cloud system, and r̄≡ fr̄; θ̄; ϕ̄g are comoving
Fermi coordinates with origin at the center of mass of the
BH-cloud system.
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This gravitational perturbation will induce an overlap
between different modes Ψnlm given by

hΨjjV�jΨii ¼ −
M�μ
R�

X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×
Y�
l�m� ðΘ�;Φ�Þ

Rl�
× Ir̄ × IΩ̄; ðB2Þ

where

Ir̄ ¼
Z

∞

0

dr̄r̄2þl�ψnjljðr̄Þψniliðr̄Þ; ðB3Þ

IΩ̄ ¼
Z

dΩ̄Y�
ljmj

ðθ̄; ϕ̄ÞYlimi
ðθ̄; ϕ̄ÞYl�m� ðθ̄; ϕ̄Þ: ðB4Þ

The angular integral vanishes unless the following selection
rules are satisfied:

(i) −mj þmi þm� ¼ 0;
(ii) jlj − lij ≤ l� ≤ li þ lj;
(iii) li þ lj þ l� ¼ 2p, for p ∈ Z.

If one considers, e.g., a BH-cloud system that in isolation
is only composed of the fastest growing mode
jnlmi ¼ j211i, then the dominant mixings induced by
the leading-order quadrupolar perturbations l� ¼ 2 are
with the modes j210i, j21 − 1i, j31 − 1i and j310i. If
one further restricts to equatorial orbits Θ� ¼ π=2, the
mixing with the modes j210i and j310i is forbidden,
because h211jV�jn10i ¼ 0 when Θ� ¼ π=2.
Consider, for simplicity, the mixing between a growing

mode Ψg and a decaying mode Ψd (the addition of more
modes is straightforward [25]). Using perturbation theory
one finds that the expectation value for the Hamiltonian of
the field Ψ is given by

H ¼
�
Eg 0

0 Ed

�
þ
� hΨgjV�jΨgi hΨgjV�jΨdi
hΨdjV�jΨgi hΨdjV�jΨdi

�
; ðB5Þ

where Eg and Ed are the energy eigenvalues of growing and
decaying modes for the unperturbed BH-cloud system. The
Hamiltonian can be separated into diagonal and nondiag-
onal parts:

H ¼H0 þH1 ¼
 
Eg þ hΨgjV�jΨgi 0

0 Ed þ hΨdjV�jΨdi

!

þ
 

0 hΨgjV�jΨdi
hΨdjV�jΨgi 0

!
: ðB6Þ

SinceH0 is diagonal, the eigenstates are the same as for the
isolated BH-cloud system, but with shifted energy states
due to the nonzero expectation values hΨgjV�jΨgi.
Calculations are then more easily performed in the

interaction picture, where the evolution of the state jΨIi
is defined by [25]

jΨIðtÞi ¼ eiH0tjΨðtÞi: ðB7Þ

In this picture, one can define the operator H1;I as

H1;IðtÞ ¼ eiH0tH1ðtÞe−iH0t; ðB8Þ

such that the Schrödinger equation can now be written as

i
d
dt

jΨIðtÞi ¼ H1;IðtÞjΨIðtÞi: ðB9Þ

The advantage of working in the interaction picture is that
H1;I will, in general, be a purely nondiagonal matrix
[cf. Eq. (31)].
In the equations above we have assumed that H0 is

time-independent. When the eccentricity is nonzero, the
expectation values hΨg;djV�jΨg;di ∝ R�ðtÞ−1−l� vary on a
timescale given by the orbital period, and therefore H0 is
time-dependent. We can still work in the interaction picture

by replacing the unitary propagator eiH0t with ei
R

t

0
dt0H0ðt0Þ

(see e.g., [51]). The integral can be simplified by noting
that H0ðtÞ varies over the orbital period, which is
much smaller than the typical timescale associated with
Rabi oscillations, especially at the resonant frequencies
[cf. Eq. (35)]. Therefore the integral can be approximated
by
R
t
0 dt

0H0ðt0Þ ≈ hH0it, where hH0i denotes a time-average
over the orbital period. In addition we assume that radiation
reaction can be treated adiabatically, because _aSM=aSM ≪ Ω.
When computing the Hamiltonian we are also neglecting the
slow decay of the decaying modes. This is usually appro-
priate since the decay widths are, in general, much smaller
than the frequency eigenvalues, i.e., Γnlm ≪ ωnlm.

APPENDIX C: OCCUPATION NUMBERS
TO FIRST-ORDER IN THE ECCENTRICITY

The potential VðtÞ in Eq. (34) is given by

VðtÞ ¼ A2η2 þ ½ðϵ − _Φ�Þ2 þ iΦ̈2��

þ 2η½2i_ηðϵ − _Φ�Þ þ η̈� − 3_η2

4η2
: ðC1Þ

Remarkably, for small eccentricities we find that Eq. (34)
can be solved exactly by expanding VðtÞ up to first order in
e. In particular, at first order in e one finds

V ¼ Δ2
R þ e

2
½�2iΩð�Ω − 3ϵÞ sinð�ΩtÞ

þ ð12Δ2
R − 12ϵ2 � 16ϵΩ − 7Ω2Þ cosð�ΩtÞ� þOðe2Þ;

ðC2Þ
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where we used Eqs. (26), (27) and (29). At zeroth order in
e, the solution satisfying the initial condition Cð0Þ ¼ 0 is
CðtÞ ¼ A0 sinðΔRtÞ þOðeÞ. For solutions valid up to first
order in ewe therefore attempt to find a solution of the form

CðtÞ ¼ A0 sinðΔRtÞ þ eXðtÞ þOðe2Þ; ðC3Þ

where we require that A0 does not depend on e. Requiring
the initial condition cgð0Þ ¼ 1 and using Eq. (31) to get
_chð0Þ we find

A0 ¼ −i
jAjη0
ΔR

; Xð0Þ ¼ 0; _Xð0Þ ¼ −3ijAjη0: ðC4Þ

Using these initial conditions for XðtÞ and inserting (C3) in
Eq. (34) we find the rather complicated expression for XðtÞ

XðtÞ ¼ cos ðΔRtÞ½a1 þ b1 sin ðΩtÞ þ c1 cos ðΩtÞ�
þ sin ðΔRtÞ½a2 þ b2 sin ðΩtÞ þ c2 cos ðΩtÞ�; ðC5Þ

where

a1 ¼
2iA0ΔRð�Ω − 3ϵÞ

Δe
; ðC6Þ

b1 ¼
A0ΔR½3Δe − 4ð�Ω − ϵÞð�Ω − 3ϵÞ�

ΔeΩ
; ðC7Þ

c1 ¼ −
2iA0ΔRð�Ω − 3ϵÞ

Δe
; ðC8Þ

a2 ¼
2A0ð�Ω − ϵÞð�Ω − 3ϵÞ

Δe
−
3ijAjη0
ΔR

−
3A0

2
; ðC9Þ

b2 ¼ −
iA0Ωð�Ω − 3ϵÞ

Δe
; ðC10Þ

c2 ¼
2A0ð�Ω − ϵÞð�Ω − 3ϵÞ

Δe
−
3A0

2
: ðC11Þ

and we introduced the quantity

Δe ¼ 3ð�Ω − 2ϵÞð�Ω − 2ϵ=3Þ þ 4ðAη0Þ2: ðC12Þ

We find that this solution is in good agreement with
numerical solutions for e≲ 10−2 but the approximation
breaks down for larger eccentricities, so we do not use it for
the results presented in the main text.
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