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This paper discusses exact wormhole solutions in the framework of general relativity with a general
equation of state that reduced to a linear equation of state asymptotically. By considering a special shape
function, we find classes of solutions which are asymptotically flat. We study the violation of the null
energy condition as the main ingredient in wormhole physics. The possibility of finding wormhole
solutions with asymptotically different state parameter is investigated. We show that in principle, a
wormhole with a vanishing redshift function and the selected shape function, cannot satisfy the null energy
condition at a large distance from the wormhole. Our solutions have the positive total amount of matter in
the “volume integral quantifier” method. For this class of solutions, fluid near the wormhole throat is in the
phantom regime which at some r ¼ r2, the phantom regime is connected to a distribution of dark energy
regime. Thus, we need a small amount of exotic matter to construct wormhole solutions.
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I. INTRODUCTION

Historically, Flamm has suggested the concept of a
wormhole [1]. After Flamm, a similar construction, famous
as the Einstein-Rosen bridge, was presented by Einstein
and Rosen [2]. Finally, Morris and Thorne have introduced
the traversable wormhole for interstellar or time travel [3].
In other words, a wormhole is an exact solution of Einstein
field equations which can connect two universes or two
distant parts of the same universe. The main ingredient in
the wormhole theory is the violation of classical energy
conditions [4]. The matter which violates the null energy
condition (NEC) specified by Tμνkμkν ≥ 0, in which kμ is
any null vector and Tμν stress-energy tensor, is called
exotic. Someone needs exotic matter to construct a worm-
hole [4]. Since ordinary and laboratory matters obey energy
conditions, many authors try to solve the problem of exotic
matter in studying wormhole theory. In scalar-tensor
theories, scalar fields play the role of exotic matter, in
particular, wormhole solutions can be obtained if scalar
fields are phantom [5]. Many classes of attempts have been
based on the modified gravity theories such as fðRÞ gravity
[6], curvature matter coupling [7], and braneworld [8,9].
In these theories an effective stress-energy tensor which
contains the higher-order curvature terms has been used
instead of the ordinary stress-energy tensor. The violation
of the NEC is due to the effective stress-energy tensor,
not ordinary matter. As an example in the brane-
world scenario, a four-dimensional brane is embedded in

a five-dimensional bulk and the Einstein field equations are
modified. The modification stems from higher-dimensional
effect. In this scenario, ordinary matter satisfies the NEC
and violation of the NEC is due to terms coming from the
bulk effects [9]. Wormholes in higher-dimensional space-
time have been investigated in the literature [10]. Some
authors have studied the wormhole in the framework of
Brane-Dicke [11] and Lovelock [12] which is considered as
the most general theory of gravitation in n dimensions. In
[13], the authors have presented some Einstein-Gauss-
Bonnet traversable wormholes which satisfy the energy
conditions. Wormhole solutions in mimetic gravity [14]
and Rastall gravity [15] have been investigated. Most of the
modified theories of gravity have been used to resolve the
problem of exotic matter in wormhole theories. Since none
of the modified gravity theories is experimentally accepted
as the superior theory. The efforts to find wormhole
solutions in GR theory are more plausible.
Recent astrophysical observations proposed a flat uni-

verse with an accelerated expansion [16]. A barotropic fluid
with an equation of state (EoS), p ¼ ωρ, with positive
energy density is a good candidate to explain the evolution
of the cosmos. EoS parameter, ω, performs an important
role to describe possible situations. The regime with −1 <
ω ≤ 0 is called dark energy and ω ≤ −1 is denoted as the
phantom regime. Fluid with ω ≤ − 1

3
, can cause accelerated

expansion of the Universe. Since phantom fluid violates the
NEC, it can be considered as a suitable source to sustain
wormholes. Several authors investigated wormhole
with phantom energy [17–20]. Although many of these
solutions [17,18], are not asymptotically flat in [19,20],
some asymptotically flat solutions have been presented.
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Jamill et al. have studied wormhole supported polytropic
phantom energy which is a generalization of phantom
energy and in some cases Chaplygin-gas models [21].
However accelerated expansion of the Universe added
plenty more doubts in the validation of energy conditions,
violation of energy conditions is not completely acceptable.
Therefore, minimizing violation of energy conditions is yet
very important in finding wormhole exact solutions.
Cosmological model with variable EoS parameter has

been studied in the literature [22]. This method can be used
to sustain wormhole solutions with minimum violation of
energy conditions. In [23], wormholes supported by phan-
tom energy with variable EoS have been discussed. Since in
[23] EoS is considered in the phantom regime, violation of
the NEC is inevitable. Cattaldo and Orellana [24] assumed
a shape function with a quadratic dependence on the radial
coordinate. They have studied solutions with a vanishing
redshift function. Their solutions consist of two parts; a
wormhole part and a dark energy part. In the wormhole
part, the EoS has been considered variable but always in the
phantom regime. They have found some exact solutions
which are not asymptotically flat. They have used the cut
and paste method to solve the problem of asymptotically
flatness. In the cut and paste method, the interior wormhole
solutions will be matched with an exterior Schwarzschild
metric. It is a usual method to resolve the problem of
asymptotically flatness but seems to be nonphysically. The
wormhole part of their solution violates the NEC while the
dark energy part does not. In another method [25], to
minimize the violation of energy conditions, authors
assumed an EoS in which the sum of the energy density
and radial pressure is proportional to a constant with a value
smaller than that of the inverse area characterizing the
system. This approach resulted in a class of solutions which
are not asymptotically flat. The cut and paste method has
been used to achieve asymptotically flat solutions. Garattini
and Lobo have constructed some traversable wormholes
supported by phantom energy, with an r-dependent equa-
tion of state parameter. They have considered the possibil-
ity that these phantom wormholes be sustained by their own
quantum fluctuations [26]. In this work, we present some
new wormhole solutions which are asymptotically flat and
need small amount of exotic matter. We assume a variable
EoS which tends to a constant parameter at large radial
coordinate. We present our solutions by considering a
special shape function.
The organization of the paper is as follows: In the next

section, the general equations and conditions of wormhole
theory are presented. In Sec. III, a specific shape function is
presented and the possibility of NEC violation is studied.
Wormholes with a vanishing redshift function are inves-
tigated in Sec. IV. We obtain exact wormhole solutions
with a minimum need for exotic matter for a nonvanishing
redshift function in Sec. V, which are asymptotically flat.
Concluding remarks are presented in the last section.

II. BASIC STRUCTURE OFWORMHOLE THEORY

The line element of a static and spherically symmetric
wormhole is given by [3]

ds2 ¼ −e2ϕðrÞdt2 þ
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dΩ2; ð1Þ

where dΩ2 ¼ ðdθ2 þ sin2 θdϕ2Þ. Here bðrÞ is called the
shape or form function, as it is related to the shape of the
wormhole. The wormhole connects two different worlds
or two distant part of the same universe at the throat
which is located at a minimum radial coordinate, r0, with
bðr0Þ ¼ r0. There are some conditions on the shape
function bðrÞ:

ðb − b0rÞ
2b2

> 0 ð2Þ

which is famous as the flaring-out condition. It reduces to
b0ðr0Þ < 1 at the wormhole throat (note that the prime
denotes the derivative d

dr). The condition ð1 − b=rÞ > 0 is
also imposed, so that bðrÞ < r, for r > r0. The function
ϕðrÞ is famous as the redshift function, which should be
finite everywhere to avoid the existence of horizon in the
spacetime. Asymptotically flat condition for these two
functions leads to

lim
r→∞

bðrÞ
r

¼ 0; lim
r→∞

ϕðrÞ ¼ 0: ð3Þ

In this work, we are interested in obtaining asymptotically
flat geometries. Due to the specific structure of the worm-
hole, the stress-energy tensor is not generally isotropic. We
should consider the inhomogeneous property of the worm-
hole spacetime. In Ref. [17] the extension of phantom
energy to inhomogeneous and anisotropic spherically
symmetric spacetimes has been studied. We consider an
anisotropic fluid in the form Tμ

ν ¼ diagð−ρ; p; pt; ptÞ,
where ρðrÞ is the energy density, pðrÞ is the radial pressure
and ptðrÞ is the lateral pressure. Using the Einstein field
equations, the following distribution of matter (with
G ¼ c ¼ 1) are obtained,

b0 ¼ 8πr2ρ; ð4Þ

ϕ0 ¼ 8πpr3 þ b
rðr − bÞ ; ð5Þ

pt ¼ pþ r
2
½p0 þ ðρþ pÞϕ0�: ð6Þ

The conservation of the stress-energy tensor, Tμν
;μ ¼ 0,

also reproduces the Eq. (6). Although the fluid for this line
element is not isotropic, we can use the radial pressure in
the EoS, p ¼ fðρÞ, which was first presented in the study
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of phantom wormhole solutions [17]. In this paper, we
consider a linearlike EoS as follows:

p ¼ ωeffðrÞρðrÞ ¼ ðω∞ þ gðrÞÞρðrÞ; ð7Þ

here ωeffðrÞ is the effective state parameter, and ω∞ denotes
the constant state parameter at the large radial coordinate.
In order to have an asymptotically linear EoS, the condition

lim
r→∞

gðrÞ ¼ 0; ð8Þ

is also imposed. Asymptotically flatness of spacetime is an
important property which should be taken into account in
the study of wormhole exact solutions. Many authors
confined the wormhole solutions to some interior space-
time. Then, using the junction conditions method,
match these interior wormhole solutions to the exterior
Schwarzschild solution. We will study the wormhole
solutions which are intrinsically asymptotically flat, so it
is not necessary to surgery the wormhole to an exterior
Schwarzschild solution. In asymptotically flat spacetime at
large radial coordinate, ρðrÞ and pðrÞ should tend to zero.
Considering a well-defined function for EoS, we have

lim
ρ→0

pðρÞ ¼ 0: ð9Þ

We define a mass function

mðrÞ≡
Z

r

r0

4πr2ρdr: ð10Þ

By taking into account Eq. (4),

mðrÞ ¼ bðrÞ − r0
2

: ð11Þ

In [27], a volume integral

IV ≡
Z

ðρþ prÞdV ¼
�
ðr − bÞ ln

�
e2ϕðrÞ

1 − b=r

��∞
r0

−
Z

∞

r0

ð1 − b0ðrÞÞ
�
ln

�
e2ϕðrÞ

1 − b
r

��
dr ð12Þ

has been introduced instead of the averaged null energy
condition to measure the amount of NEC violation.
Zaslaveskii [28] has used the same integral but he assumed
that the wormhole spacetime can be divided into two
regions while the exotic matter exists in the inner region,
r0 < r ≤ a, the outer region, r ≥ a, is filled by the normal
matter. In this method, the total amount of exotic matter is
measured by

I ¼ 8π

Z
a

r0

ðρþ pÞr2dr: ð13Þ

In the next sections, we will use this integral to quantify the
amount of NEC violation. Considering an effective state
parameter helps us to investigate a large class of solutions
which can be reduced to the famous solutions in the
suitable limits. For example, solutions with gðrÞ ¼ 0, are
related to wormholes with phantom EoS which have been
studied in the literature [17,20].
From now, we will study the possibilities to find new

solutions. We have several functions, namely, ϕðrÞ, bðrÞ,
ρðrÞ, pðrÞ, ptðrÞ and EoS parameter ωeff. On the other
hand, we have three field equations, Eqs. (5), (6) and
Eq. (7) as EoS. To close the system, we should equal the
number of equations with the number of unknown func-
tions. We can use several strategies to solve the problem.
For example, one can consider a special function for ρðrÞ or
considering an extra condition on the lateral pressure [17].
Using an arbitrary shape function or redshift function is
another method to close the system. All of these strategies
lead to exact wormhole solutions and can be used in a
reverse manner to accomplish each other. For instance, one
can consider a known shape function, bðrÞ, but from Eq. (4)
it is clear that there is not any difference between choosing
a known energy-density, ρðrÞ, instead of bðrÞ. In the
following, we will use a special form function to find
exact solutions.

III. WORMHOLES WITH SPECIAL
SHAPE FUNCTION

A large number of wormhole solutions, which have been
studied in the literature, deal with a shape function in the
following form

bðrÞ ¼ Arα þ hðrÞ; ð14Þ

where Arα is the term with the highest-order of r in the
shape function, and hðrÞ is an arbitrary function with
lower-order terms. In general, the shape function can be
classified into four categories: the first category is the
famous solution bðrÞ ¼ r0 and would not be considered
here. The three other categories are related to positive,
negative, or mixed energy density. First, we will consider
positive energy density to have more consistency with
recent observations. For a strictly increasing shape func-
tion, ρðrÞ would be always positive. Asymptotically flat
condition implies α ≤ 1. The necessary conditions on bðrÞ
in Eq. (14) to be a strictly increasing function, becomes

A ≥ 0; 1 ≥ α ≥ 0: ð15Þ

Equation (10) implies that these restrictions on bðrÞ will
produce the solutions with unbounded mass function.
Now, we devote some words to the possibility of

violation of NEC. The ωeff is a function which starts at
the throat ðω0 < −1Þ and tends to ω∞. To satisfying NEC,
it must exceed ωeff ¼ −1. Generally, a wormhole with
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positive energy density can satisfy the NEC in some regions
of space or at large distance from the wormhole. In fact,
three situations are possible for ωeffðrÞ which are plotted in
Fig. 1. In case (a), ωeffðrÞ never exceeds the line ωeff ¼ −1.
So the NEC is violated in the whole of space while in the
case (b), ωeffðrÞ exceeds ωeff ¼ −1, at some r ¼ r1 and
again at r ¼ r3. In this case, the NEC is not violated only in
the interval r1 ≤ r ≤ r3. In case (c), the NEC is satisfied in
the interval r > r2. In the next sections, we will try to find
solutions which are compatible with case (c). This class of
solutions seems to be more physical because the EoS is
different from linear form only in the vicinity of the
wormhole throat and tends to a linear EoS, in the recent
part of the space. The motivation behind it, to explore such
solutions, is that the EoS of Cosmos is a global equation
and in local view, the EoS may be different. Therefore, one
can choose a variable EoS parameter instead of a constant
EoS parameter. This provides possibilities to find solutions
which satisfy the NEC in some regions of spacetime.

IV. WORMHOLES WITH A VANISHING
REDSHIFT FUNCTION

In this section, we analyze the wormhole with a vanish-
ing redshift function. Vanishing redshift function (ϕ ¼ 0)
implies that there is not any tidal force. For this category of
solutions from Eqs. (4) and (5)

pðrÞ ¼ ðω∞ þ gðrÞÞρðrÞ ¼ −
bðrÞ
8πr3

ð16Þ

and

ωeffðrÞ ¼ −
bðrÞ
rb0ðrÞ ; ð17Þ

on the throat

ωeffðr ¼ r0Þ ¼ ω0 ¼ −
1

b0ðr ¼ r0Þ
: ð18Þ

To check the NEC, first we have

ð1þ ωeffÞρ > 0; ð19Þ

also for vanishing redshift function from Eq. (6), we obtain

pt ¼ −
pr þ ρ

2
: ð20Þ

Hence, the expression ρþ pt > 0 leads to

ð1 − ωeffÞ
ρ

2
> 0: ð21Þ

By taking into account Eqs. (19) and (21), we conclude that
for ρ > 0, these requirements lead to the following restric-
tion on ωeff

−1 < ωeff < 1: ð22Þ

Considering Eq. (17)

ω∞ ¼ lim
r→∞

weffðrÞ ¼ lim
r→∞

−
bðrÞ
rb0ðrÞ ¼ −

1

α
: ð23Þ

For the special shape function in Eq. (14), since α < 1, it
shows that possible range for ω∞ is as follows

ω∞ < −1 or ω∞ > 0: ð24Þ

It is also of a particular interest to analyze the NEC at
large distance from the wormhole. By taking into account
Eq. (15), one can deduce that solutions which satisfy the
NEC at large radial coordinate are not possible for the
special shape function, Eq. (14), with a vanishing redshift
function. So solutions with the special shape function of
Eq. (14) and ϕ ¼ 0 can be assumed as an example for case
(a) or (b) in Fig. 1 but not for case (c).

V. WORMHOLE WITH NONVANISHING
REDSHIFT FUNCTION

For nonvanishing redshift function, ωeff is

ωeff ¼ −
b
rb0

þ 2ϕ0ðr − bÞ
b0

: ð25Þ

FIG. 1. Three possible cases for ωeff. In case (a) (dotted line),
ωeff is always smaller than the line ωeff ¼ −1 (solid line) so NEC
is violated throughout the entire range of r. In case (b) (dotted-
dashed line), ωeff is bigger than the line ωeff ¼ −1 (solid line) in
the range r1 < r < r3 so NEC is not violated throughout this
range. In case (c) (dashed line), ωeff exceeds the line ωeff ¼ −1
(solid line) at r ¼ r2 and tends to a constant so NEC is not
violated throughout the range r2 < r. See the text for details.
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Weare interested in a traversablewormholewith no horizon,
soϕðrÞ should be finite everywhere. Equation (25) indicates
that ϕðrÞ contributes to the ω∞ if

lim
r→∞

ϕ0ðr − bÞ
b0

¼ finite: ð26Þ

Because bðrÞ < r, it reduces to

lim
r→∞

ϕ0r
b0

¼ D; ð27Þ

where D is a finite constant. Then it is easy to show that

ϕðrÞ ¼ A1rα−1 þ sðrÞ ð28Þ

while

A1 ¼
DαA
α − 1

; ð29Þ

is a constant and sðrÞ is a general function which its order is
less than rα−1. From Eq. (25), it is easy to show that
contribution of redshift and shape functions in the ω∞ is

ω∞ ¼ lim
r→∞

ωeff ¼ −
1

α
þ 2D: ð30Þ

According to this equation, there is a relation between
ω∞ and the largest term in the redshift and shape
functions. Equation (30) implies that if A1 ¼ 0, then ϕ
has no influence on the ω∞. Therefore, similar to
vanishing redshift function, in this situation, it is impos-
sible to find solutions in which the NEC is satisfied at
large distance from the wormhole. Using Eq. (7) and some
calculations, one can show

gðrÞ ¼ ω∞h0rþ s0r2 − ϕ0rb − h
rb0

: ð31Þ

We can use this equation to analyze the rate of con-
vergence of gðrÞ to zero. The term, s

0r2
rb0 in Eq. (31), implies

that s should be equal to zero or its order must be less
than rα−2.
Now, we have the essential mathematical tools to find

solutions which do not satisfy NEC in some region near the
wormhole throat, but for some r2 < r these solutions
satisfy NEC [Fig. 1 case (c)]. We consider bðrÞ as follows

bðrÞ ¼ r0

�
A

�
r
r0

�
α

þ 1 − A

�
: ð32Þ

From Eq. (28), we conclude that

ϕðrÞ ¼ A1

�
r
r0

�
α−1

þ sðrÞ: ð33Þ

For the sake of simplicity, we set sðrÞ ¼ 0. We define the
dimensionless parameter x≡ r0

r with the range 0 < x ≤ 1.
Note that x ¼ 1 corresponds to the throat and x → 0 to
spatial infinity. Thus, the shape function and the redshift
function take the form

Bðx; αÞ ¼ bðrÞ
r0

¼ ðAx−α þ 1 − AÞ ð34Þ

and

ϕðxÞ ¼ A1xð1−αÞ: ð35Þ

To check the condition bðrÞ < r, we define

Hðx; αÞ ¼ 1

x
− Bðx; αÞ: ð36Þ

As an example, we have plotted Hðx; αÞ for A ¼ 1
2
as a

function of x and α in Fig. 2. This figure indicates that
Hðx; αÞ is positive through the entire range 0 < x < 1 and
0 < α < 1. So the condition bðrÞ < r is satisfied every-
where. Since Bðx ¼ 1Þ ¼ 1 and limx→0BðxÞ ¼ 0, one can
conclude that this shape function has the essential con-
ditions to construct the asymptotically flat wormhole
solutions. According to [20], the gravitational redshift,
as measured by a distant observer is given by

z ¼ δλ

λ
¼ 1 −

λðr → ∞Þ
λðr ¼ r0Þ

¼ 1

expðϕðx ¼ 1ÞÞ : ð37Þ

Therefore,

A1 ¼ − lnð1 − zÞ: ð38Þ

FIG. 2. The plot depicts the function Hðx; αÞ for A ¼ 1
2
against

x and α. It is clear that Hðx; αÞ is positive throughout the range
0 < x < 1 and 0 < α < 1, which implies bðrÞ < r is satisfied
everywhere. See the text for details.
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This equation implies the relation between gravitational
redshift, as detected by a distant observer and coefficient A1

which can be linked to the shape function [Eq. (29)].
According to Eqs. (4)–(6), the energy density

ρðxÞ ¼ Aαx3−α

8πr20
ð39Þ

is always positive. Radial and lateral pressure are

pðxÞ ¼ −
ða1x3 þ a2x4−α þ a3x4−2α þ a4x3−αÞ

8πr20
ð40Þ

ptðxÞ ¼ −
1

8πr20
ðc1x3 þ c2x4−α þ c3x3−α

þc4x5−2α þ c5x4−2α þ c6x5−3αÞ; ð41Þ

where

a1 ¼ ðA − 1Þ; a2 ¼ 2A1ð1 − αÞð1 − AÞ
a3 ¼ 2A1ð1 − αÞA; a4 ¼ 2A1ð1 − αÞ − A ð42Þ

and

c1 ¼
ðA − 1Þ

2
; c2 ¼

A1ð1 − AÞð3 − 5αþ 2α2Þ
2

c3 ¼
Aðα − 1Þ − 2A1ðα − 1Þ2

2
;

c4 ¼ 2A2
1ð1 − AÞðα − 1Þ2;

c5 ¼
ð3A − 2A1ÞA1ðα − 1Þ2

2
;

c6 ¼ A2
1ðα − 1Þ2: ð43Þ

Equation (40) shows that

α ¼ 1þ 8πr20p0 − 1

4A1

ð44Þ

where p0 is the radial pressure at the throat of the worm-
hole. Using Eqs. (65) and (38) presents α in terms of the
known physical quantities. Equation (39) helps us to define
A in the following form,

A ¼ 8πr20ρ0
α

ð45Þ

where ρ0 is the energy density at the throat of the worm-
hole. To check violation of the energy condition, we
introduce functions

F1ðx; A; αÞ ¼ 1þ pðxÞ
ρðxÞ ð46Þ

and

F2ðx; A; αÞ ¼ 1þ ptðxÞ
ρðxÞ : ð47Þ

Since ρðxÞ is always positive, if the sign of these two
functions is positive in some regions, the NEC is satisfied in
those regions. In general, to check the violation of the NEC,
we plot F1 and F2 as a function of x and α for a specific
choice of the parameter A. Also we plot F1 and F2 against x
and A for a specific choice of the parameter α. We have
plotted F1 and F2 as a function of x and α for A ¼ 1

2
in

Figs. 3 and 4. We have plotted F1 and F2 as a function of x

FIG. 3. The plot depicts the function F1ðx; αÞ, for A ¼ 1
2
. It is

transparent that F1ðx; αÞ is positive throughout some range of x
and α, which implies the NEC is satisfied through this range. See
the text for details.

FIG. 4. The plot depicts the function F2ðx; αÞ, for A ¼ 1
2
. It is

transparent that F2ðx; αÞ is positive throughout the entire range of
x and α, which implies the NEC is satisfied. See the text for
details.
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and A for α ¼ 2
3
in Figs. 5 and 6. It is clear that in some

regions for x and A, the sign of F1 and F2 are simulta-
neously positive. From Figs. 4 and 6, it seems that F2 is
always positive in the whole regions for the selected
parameter. As it was mentioned, when the signs of F1

and F2 are simultaneously positive, the NEC is satisfied.
So, one can conclude that the sign of F1 describes the
violation on the NEC. Moreover, Fig. 3 shows that for a
constant A, as α increases (or x decreases), F1 increases. It
physically means that the phantom region will approach to
the vicinity of the wormhole throat as α increases. Figure 5
presents the same behavior for A. This implies that for a
constant α, as A increases, the phantom regime will
approach more to the vicinity of the wormhole throat.
Let us seek a special example for wormhole solutions

violating NEC only in the vicinity of the wormhole throat in
details. Figures 3–6 help us to consider A ¼ −A1 ¼ 1

2
and

α ¼ 2
3
, leading to the line element

ds2 ¼ −e−ð
r0
r Þ

1
3dt2 þ dr2

1 − r0
2r ðð rr0Þ

2
3 þ 1Þ þ r2dΩ2: ð48Þ

The stress-energy tensor components become

ρðxÞ ¼ ðxÞ73
24πr20

; ð49Þ

pðxÞ ¼ −
ðx7

3 þ x
10
3 þ x

8
3 þ 3x3Þ

48πr20
; ð50Þ

ptðxÞ ¼ −
ð17x3 þ 2x

7
3 þ 5x

10
3 þ 5x

8
3 − x

11
3 Þ

576πr20
: ð51Þ

Then ωðxÞ takes the form

ωðxÞ ¼ −
�
1

2
þ xþ x

2
3 þ x

1
3

2

�
: ð52Þ

We have plotted ωðxÞ as a function of x in Fig. 7. This
graph shows that for x ≤ x1, where x1 ¼ ð ffiffiffi

2
p

− 1Þ3≃
0.071, EoS parameter ω is more than −1. This corresponds
to the case (c) in Fig. 1. It is obvious that ω∞ ¼ − 1

2
. We

have plotted F1 and F2 as a function of x in Fig. 8. Since
ρðrÞ is positive, in the interval 0 ≤ x ≤ x1 NEC is not
violated.
One can evaluate volume integral quantifier, Eq. (12).

For the metric (48), IV → þ∞, which means the total

FIG. 5. The plot depicts the function F1ðx; AÞ, for α ¼ 2
3
. It is

clear that F1ðx; AÞ is positive throughout some range of x and A,
which implies the NEC is satisfied through this range. See the text
for details.

FIG. 6. The plot depicts the function F2ðx; AÞ, for α ¼ 2
3
. It is

clear that F2ðx; AÞ is positive throughout entire range of x and A
which implies NEC is satisfied. See the text for details.

FIG. 7. Plot of ωðxÞ for α ¼ 2=3 and A ¼ 1=2. It shows that
ωðxÞ exceeds ω ¼ −1 throughout the region 0 ≤ x ≤ 0.071. It
corresponds to case (c) in Fig. 1. See the text for details.
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amount of exotic matter is equal to zero. On the other hand,
one can use Eq. (13) instead of Eq. (12). This seems to be a
better integral to provide information about the “total
amount” of energy-condition-violating matter in the space-
time. Since a ¼ r0

x1
, the total amount of exotic matter

threading the present wormhole solution is given by

I ¼ 8π

Z
a

r0

ðρþ pÞr2dr ¼ −1.114r0: ð53Þ

To summarize, the line element Eq. (48) is an exact
wormhole solution with a variable EoS parameter. Its
minimum is at the throat (ω0 ¼ −3) and exceeds
ω ¼ −1 at r2 ¼ r0

x1
¼ 14.08r0. It means, the wormhole

geometry is in the phantom era in the vicinity of the throat
and is matched to the distribution of dark energy at r ¼ r2.

A. Bounded mass wormhole

Let us study solutions with a bounded mass function. We
propose a shape function as follows

bðrÞ ¼ r0

�
L

�
r0
r

�
α1 þ 1 − L

�
: ð54Þ

In order to have a finite mass, α1 ≥ 0 is imposed.
Equation (11) indicates that

m∞ ¼ lim
r→∞

mðrÞ ¼ −
L
2
r0; ð55Þ

wherem∞ is a finite mass as seen by a distant observer. The
relevant energy density

ρðrÞ ¼ −
α1L
8πr20

�
r0
r

�
α1þ1

ð56Þ

implies that negative value for L, yields positive ρ. Now, we
will discuss ω∞. It is obvious that

b
rb0 ¼ − 1

α þ 1−L
rb0 . Since,

limr→∞
1−L
rb0 → ∞, we cannot complete the solution follow-

ing the previous procedure. Using Eqs. (25) and (54),

ϕðrÞ ¼ 1

2

Z
gðrÞLα1 þ ω∞Lα1 þ ðL − 1Þrα1 − L

rððL − 1Þrα1 þ r1þα1 − LÞ dr ð57Þ

is achieved. Solving this integral for a general α1 and gðrÞ is
difficult. Thus, we put α1 ¼ −1 and gðrÞ ¼ −qr2

0

r2 (with
q > 0) which results

ϕðrÞ ¼
�
qL−ω∞Lþ 1

2ðLþ 1Þ
�
ln

�
r
r0

− 1

�

þ L−ω∞ þ q
L2

2ð rr0 þ LÞ ln

�
r
r0

þ L

�
þ qr20
4r2

þ qr0
2r

�
1−

1

L

�
:

ð58Þ

To avoid the horizon in the throat (limr→r0ϕðrÞ → ∞),
we set

q ¼ ω∞ −
1

L
; L > −1: ð59Þ

which leads to the line element

ds2 ¼ −
�
1þ L

r

�
d1
e−ð

d2r0
r þd3r

2
0

r2
Þdt2

þ dr2

1 − r0
r ððLr0r Þ þ 1 − LÞ þ r2dΩ2; ð60Þ

where

d1 ¼
L3 − ð1þ ω∞ÞL2 þ ð1þ ω∞ÞL − 1

L3
;

d2 ¼
ω∞L2 − ð1þ ω∞ÞLþ 1

L2
;

d3 ¼
ω∞L − 1

2L
: ð61Þ

The stress-energy tensor components for q ¼ 3
2
, L ¼ − 1

2

(a special case) become

ρðxÞ ¼ 1

16πr20
ðx2Þ; ð62Þ

pðxÞ ¼ −
1

32πr20
ðx2 þ 3x4Þ; ð63Þ

FIG. 8. The plot depicts the function F1ðxÞ and F2ðxÞ for
α ¼ 2=3. The function F2ðxÞ (dashed line) is positive in the entire
spacetime and it is transparent that F1ðxÞ (dotted line) is negative
throughout the region x > x0 when x0 ≃ 0.071, so the exotic
matter is confined in this region. See the text for details.
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ptðxÞ ¼
3

256πr20

�
2x3 þ 17x4 − 13x5 − 3x7

2 − x

�
: ð64Þ

In a moment, we study the violation of NEC. It is
obvious that pðrÞ þ ρðrÞ is negative from the throat up
to r ¼ r2 ¼ a [see Fig. 3 case (c)], where a is the root of
ωðaÞ ¼ −1. From Eq. (59), it is clear that

a ¼ q
1þ ω∞

¼ ω∞ − 1
L

1þ ω∞
: ð65Þ

Equation (59) indicates that L has a minimum. If
we consider L ¼ −1þ ϵ, as the lowest possible value
for L (ϵ is a small value), then one can show

a ¼ 1þ 1

2ð1þ ω∞Þ
ϵþOðϵ2Þ ð66Þ

so

I ¼ 8π

Z
a

r0

ðρþ pÞr2dr ¼ −ϵ2

2ð1þ ω∞Þ
þOðϵ3ÞÞ: ð67Þ

To summarize, the line element (60) is a wormhole with
mass, m ¼ 1−ϵ

2
r0, as detected by a distant observer. The

stress-energy due this wormhole violates the NEC in the
interval r0 ≤ r < r0ð1þ 1

2ð1þω∞Þ ϵÞ with the total amount of

NEC violation I ¼ −ϵ2
2ð1þω∞Þ. These results can be achieved

for other forms of gðrÞ and bðrÞ by carefully fine-tuning the
parameters to find ϕðrÞ.

B. Wormhole with a mixed energy density

Phantom regime in the vicinity of wormhole throat is a
possible candidate for exotic matter. Someone may prefer
to consider another form of exotic matter in this region. So,
one should work with a negative energy density instead of a
positive one. As it was mentioned before, solutions with
positive ρ are more acceptable in the dark energy era. The
matter with ρ < 0 violates dominant and weak energy
conditions. Hence, the sign of ρ must be changed in the
boundary between the exotic era and the dark energy era.
The possible candidate is a mixed energy density. To
construct a wormhole with a mixed energy density, we
start with the shape function of Eq. (14). From Eq. (4), it
can be verified that bðrÞ should have a minimum in which
ρ0 ¼ b0 ¼ 0. The sign of ρ changes in this point. Anyway
we consider a shape function with a minimum, i.e.,

bðrÞ ¼ ðA3ðr=r0Þα2 þ 2A3ðr=r0Þα3 þ ð1 − 3A3ÞÞr0: ð68Þ

It is easy to show that the nonvanishing root of ρðrÞ ¼ 0 is

r� ¼ r0

�
−
2α3
α2

� 1
α2−α3 : ð69Þ

Because of α2 > 0, the condition α3 < 0 is imposed to have
a positive real root. Now, we should try to find a suitable ϕ.
It was verified that in order to have a contribution in the
ω∞, ϕ must be in the form of Eq. (28). For the sake of
simplicity, we put sðrÞ ¼ 0 in ϕ. The ωeff should be finite
everywhere. Since b0ðr�Þ ¼ 0, we must set

ωeffðr�Þ ¼ 0; ð70Þ

to find A1. We do not state the form of A1 here for
abbreviation. We continue by putting A ¼ −α3 ¼ 1, α2 ¼
2=3 which leads to A1 ¼ − 31=5×ð5×32=5−6Þ

2×ð33=5−5×32=5þ6Þ ≃ −0.8136. It is
worth mentioning that Eq. (70) restricted the value of A1.
The energy-tensor, needs to construct this geometry, is

ρðxÞ ¼ x
7
3 − 3x4

12πr20
; ð71Þ

pðxÞ ¼ 1

12πr20

��
3

2
− A1

�
x
7
3 þ 3x4 − 3x3 − A1x

13
3 þ 2x

10
3

�
:

ð72Þ

For brevity, we do not state ptðxÞ here. The ρðxÞ, pðxÞ and
ptðxÞ have been plotted as a function of x in Fig. 9. To
check the violation of NEC, we have plotted F1ðxÞ ¼
8πr20ðρðxÞ þ pðxÞÞ and F2ðxÞ ¼ 8πr20ðρðxÞ þ ptðxÞÞ as a
function of x in Fig. 10. This figure implies that the NEC is
violated only in the region x > x� with x� ¼ r0

r� ≃ 0.517.

FIG. 9. The plot depicts the function ρðxÞ (dot-dashed line),
pðxÞ (dotted line), and ptðxÞ (solid line) for A ¼ −α3 ¼ 1,

α2 ¼ 2=3, and A1 ¼ − 31=5×ð5×32=5−6Þ
2×ð33=5−5×32=5þ6Þ ≃ −0.8136 (note that ver-

tical axe is scaled in 1
8πr2

0

). The function ρðxÞ is positive in the

range x > x� where x� ≃ 0.517. See the text for details.
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To summarize, we have presented an exact wormhole
solution with a variable EoS parameter whose energy
density is negative in the range r0 ≤ r < r� and positive
through r� < r. The wormhole is in the exotic era (not
essentially phantom) in the vicinity of the throat which is
connected to the distribution of dark energy at r ¼ r1.

VI. CONCLUDING REMARKS

Cosmos with a linear EoS is the most acceptable theory
in recent cosmology. We have considered a general EoS
which has reduced to an asymptotically linear EoS.
Furthermore, we have assumed asymptotically flat con-
ditions. Some classes of possible wormhole solutions have
been investigated. We have used a special shape function,
bðrÞ ¼ r0ðA r

r0
Þα þ hðrÞ, which can present a large class of

solutions. We have focused on solutions with positive
energy density, which reduce the exoticity of the fluid.
These solutions are more consistent with current cosmol-
ogy. We have shown that some significant physical quan-
tities; EoS parameter at large radial coordinate, ω∞,
gravitational redshift as measured by a distant observer,
z, energy density at the throat, ρ0, and peruser at the throat,
p0, are dependent on coefficients which have appeared in
redshift and shape functions. Violation of the NEC, as a
fundamental ingredient of wormhole geometries, has been
analyzed. It has been shown that a solution with vanishing
redshift function, which satisfies the NEC at a large radial
coordinate for the selected shape function, does not exist.
For nonconstant redshift function, we have studied solu-
tions which are asymptotically flat and violate the NEC in a
small region in the vicinity of the wormhole throat. In this
class of solutions, fluid near the wormhole throat is in the

phantom regime and at some r ¼ r2, the phantom regime
(or other exotic regimes) is connected to the dark energy
regime. The boundary is sensitive to change in parameters
of the shape and redshift functions. The total amount of
exotic matter has been calculated for solutions. This value
is changeable because the region with exotic matter can be
controlled by fine-tuning the parameter. We have presented
a general formalism to find exact solutions, which is more
widespread than the previous formalism. This is due to
choose a variable EoS which can change from phantom era
to dark energy era intrinsically. Variable EoS seems to be
more physically since the linear EoS is a global equation
while in local view, it is not necessary to consider a linear
equation. One can relate this to the special geometry of
wormhole near the throat. Variable EoS parameter has
brought new life in studying wormhole physics in contrast
to a constant one. In [26] an asymptotically flat solution
with variable EoS is presented. In the other works, the EoS
is always in the phantom region [23] or solutions have a
finite size and surgery is essential to glue them to exterior
solutions [24,25]. What is of particular interest is that
unlike the previous solutions [23–25], our solutions are
arbitrarily large. Meanwhile, it is not necessary to use the
cut and paste method to solve the problem of asymptoti-
cally flatness.
As it was mentioned, flat space is matched to the original

spacetime at a given hypersurface in the cut and paste
method. Generally, the Israel junction conditions must be
applied in this surgery. Usually, a surface stress-energy
tensor is essential. A surface with no surface energy
terms is famous as boundary surface while surface with
stress-energy terms is called thin-shell [29]. The surface
tangential pressure in thin-shell wormholes holds against
collapsing or expansion of the boundary. The first junction
condition is the continuity of the metric components at the
surface(r ¼ rs), i.e., gintμνðrsÞ ¼ gextμν ðrsÞ. One can consider
gextrr ¼ ð1 − bextðrÞ=r, where the function bextðrÞ is different
from the internal shape function (bintðrÞ). When Eq. (2) is
not satisfied or the NEC is violated in the whole spacetime,
the suitable choice for bextðrÞ can resolve the problem. For
example, bextðrÞ ¼ 2m is a good candidate which may
lead to an exterior Schwarzschild solution. Equation (4)
explains that geometry with a special energy-tensor is glued
to geometry with a different energy-tensor in the cut and
paste method. In other words, two different solutions of
Einstein field equations are joined to construct an exact
solution. This is the main difference between a spacetime
constructed by the cut and paste method and an intrinsically
asymptotically flat spacetime. For intrinsically asymptoti-
cally flat spacetimes, the form of stress-energy tensor is not
changed in the whole of spacetime. The smooth functions
for ρðrÞ and pðrÞ are more remarkable. Thus we have
preferred to work with the intrinsically asymptotically flat
spactimes. In this article, we carefully have constructed a
specific shape function considering the asymptotically

FIG. 10. The plot depicts the function F1ðxÞ (dotted line)
and F2ðxÞ (solid line) for A ¼ −α3 ¼ 1, α2 ¼ 2=3, and

A1 ¼ − 31=5×ð5×32=5−6Þ
2×ð33=5−5×32=5þ6Þ ≃ −0.8136. The function F1ðxÞ and

F2ðxÞ are positive in the range x > x� where x� ≃ 0.517. So,
NEC is satisfied in this region. See the text for details.
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flatness condition. The selected shape function leads to a
smooth energy density profile, possessing a maximum at
the throat and vanishing at spatial infinity (case with ρ > 0)
or possessing a minimum at the throat and vanishing at
spatial infinity (mixed energy density). Variable EoS allows
us to control the violation of the NEC. In our method and
the other variable EoS methods, using cut and paste, the
value of the NEC violation is controllable by fine-tuning
the parameters related to the shape and redshift functions.
Comparing results of Sec. V B [Eq. (67)] with cut and past
methods (see [24] or [27]) explains that, there is not any
priority between our method and the other methods to
quantify the violation of NEC.
This method is flexible and can be used to find solutions

which are asymptotically flat but always in phantom regime
[See case (a) in Fig. 1]. We have utilized a specific shape

function to find exact solutions but one can apply the
formalism of this paper with other forms of shape function
to find new solutions. Although there is no observational
evidence result to the existence of wormholes, astrophysi-
cal observations of supernovae of type Ia and cosmic
microwave background have opened a new window to
study wormholes theoretically. So theoretical researches,
which suggest a minimum violation of NEC, are of
great interest to help an advanced civilization to con-
struct wormholes or discover experimental evidence for
wormholes.
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