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The action of three-dimensional charged Einstein-dilaton gravity theory has been obtained from that of
scalar-tensor modified gravity theory by utilizing the suitable conformal transformations. The field
equations of the Einstein-dilaton gravity coupled to the power Maxwell nonlinear electrodynamics have
been solved and two new classes of static and spherically symmetric charged dilatonic black holes, as the
exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained.
Also, the dilaton potential has been written as the linear combination of two Liouville-type potentials. The
black hole conserved charges and thermodynamic quantities have been calculated by utilizing the
geometrical and thermodynamical methods, separately. The compatibility of the results obtained from these
two alternative approaches confirms the validity of the first law of black hole thermodynamics for both of
the new black hole solutions in the Einstein frame. A black hole stability or phase transition analysis has
been performed in the context of the canonical ensemble. By calculating the black hole heat capacity, with
the black hole charge as a constant, the type one and type two phase transition points have been determined.
Also, the ranges of the black hole horizon radii at which the Einstein black holes are thermally stable have
been identified for both of the new black hole solutions. Then making use of the inverse conformal
transformations, two new classes of the scalar-tensor black holes have been obtained from their Einstein
frame counterparts. The thermodynamic properties and thermal stability of the new scalar-tensor black
holes have been investigated. It has been found that the new charged black holes have the same
thermodynamic behaviors in both of the Einstein and Jordan frames.

DOI: 10.1103/PhysRevD.99.104036

I. INTRODUCTION

The fact that, unlike the result of the standard Friedmann
model, ourUniverse is in the accelerated expanding phase has
created increasing interest in the alternative theories of
modified gravity [1–5]. There are a variety of modified
gravity theories which are proposed with the aim of explain-
ing the failures of Einstein’s theory of gravity [6–14]. The
scalar-tensorgravity theory is one of the alternative theories of
modified gravity which is conformally related to Einstein’s
theory of relativity minimally coupled to a scalar field, the
well-known Einstein-dilaton gravity theory [15–18].
The action of scalar-tensor gravity theory, in which a

scalar field interferes with the Ricci scalar, can be described
in two popular frameworks. One is called the Jordan frame
in which the scalar field appears in the action as a function
multiplied by the Ricci scalar. Also in the field equations,
derived from the action by means of a variational principle,
it produces a strong coupling between the scalar and gravity
field equations. In the second frame, named the Einstein
frame, the theory appears to be simpler and similar to
Einstein’s general relativity with the coupled scalar fields
which appear as additional terms in the action [19–24]. It is

well known that the actions of these two frames are related
to each other via a conformal transformation. Indeed the
nonminimal coupling of the gravity and scalar fields, in the
action and consequently in the field equations, is broken by
use of a conformal transformation in the form of gαβ →
Ω2gαβ [25,26]. It has been shown that these two formalisms
are equivalent at the quantum level [27].
The Lagrangian of Maxwell’s electrodynamics remains

invariant under the transformations gαβ → Ω2gαβ and Aμ →
Aμ in the four-dimensional space-times. This conformal
invariance is violated in the space-times with dimensions
other than 4 [28]. The mentioned failure and the other
challenges of the classical theory of electrodynamics, such
as appearance of the infinite field and self-energy for the
pointlike charges, were the original motivations for intro-
ducing the nonlinear theories of electrodynamics such as
Born-Infeld [29–31], logarithmic [32–35], exponential
[36–39] and power-law [40,41] nonlinear electrodynamics.
The models of nonlinear electrodynamics are written as the
functions of the Maxwell invariant FαβFαβ. Many believe
that the powers of the Maxwell invariant, which have been
neglected in Maxwell’s (or linear) electrodynamics, can be
interpreted as photon-photon interactions. They are impor-
tant when electromagnetic fields are very strong [42,43].*m.dehghani@razi.ac.ir
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Interestingly, the Lagrangian of power-law nonlinear
electrodynamics preserves its conformal invariance in
three-, four-, and higher-dimensional space-times.
Indeed, this model of nonlinear electrodynamics is gen-
erally conformal invariant provided that the power is
chosen equal to one-fourth of the space-time dimensions
[44–46]. Motivated by this significant property we prefer to
investigate the charged scalar-tensor black hole solutions
with the power-law nonlinear electrodynamics in a three-
dimensional space-time.
On the other hand, the findings of Hawking et al., which

state that the black holes are thermodynamic objects with
the well-defined temperature and entropy, are the more
outstanding achievements in the context of the black hole
physics [47–52]. The black hole thermodynamics and
thermodynamic stability are the interesting topics to be
investigated. The black hole thermal stability analysis has
several popular methods for its description. In the method
of geometrical thermodynamics the stability of the black
holes can be studied regarding the thermodynamical Ricci
scalar [35,53]. The information related to the black hole
thermal stability can be extracted from the black hole heat
capacity if the method of canonical ensemble is used
[38,54,55]. In the grand canonical ensemble approach
one is able to explore the black hole thermodynamic
stability by calculating the Hessian determinant [46,56,57].
The exact black hole solutions of the four-dimensional

scalar-tensor gravity theory, in the presence of the nonlinear
electrodynamics, with the related thermodynamic proper-
ties have been studied in Ref. [25]. The thermodynamic
phase transition or stability of charged scalar-tensor black
holes with Maxwell’s theory of electrodynamics has been
considered in my previous work [26]. Here, in the same
direction and in order to extend this idea to the case of
nonlinear electrodynamics, we turn to the investigation on
the scalar-tensor gravity theory in the presence of power-
law electrodynamics with the aim of finding the exact three-
dimensional black hole solutions. Then we consider the
thermodynamic properties and especially prove the validity
of the thermodynamical first law. Eventually, we perform a
stability analysis by treating the black holes as the
canonical ensembles.
This paper is outlined as follows. In Sec. II, it is shown that

the action of three-dimensional scalar-tensor modified grav-
ity theory, coupled to the power-law nonlinear electrody-
namics, is related to that of Einstein-power Maxwell-dilaton
gravity theory via the suitable conformal transformations.
In Sec. III the explicit forms of the Einstein-dilaton
gravity field equations are obtained in a spherically sym-
metric geometry. Section IV is devoted to solving the
coupled field equations of the theory. The dilatonic potential,
as the solution to the scalar field equation, is written as the
combination of two Liouville-type potentials. Also, two new
classes of three-dimensional dilatonic black hole solutions
are obtained. In Sec. V the conserved and thermodynamic

quantities related to the new dilatonic black holes are
calculated from the geometrical and thermodynamical
approaches. It is proved that these quantities satisfy the first
law of thermodynamics. SectionVI is dedicated to analyzing
the local stability or phase transition of the new dilatonic
black hole solutions, obtained here. Regarding the black hole
heat capacity, with the black hole charge as a constant, the
type one and type two phase transition points as well as the
range of horizon radii for the black holes to be locally stable
are determined. In Sec. VII, by applying the inverse trans-
formation relations, two new classes of the scalar-tensor
black holes are obtained from their Einstein counterparts.
The thermodynamical properties as well as the thermal
stability or phase transition of the new scalar-tensor black
holes are analyzed in the Jordan frame. The results are
summarized and discussed in Sec. VIII.

II. THE ACTION IN THE JORDAN
AND EINSTEIN FRAMES

The action of three-dimensional scalar-tensor theories
can be written in the Jordan frame or in the Einstein frame.
In the Jordan frame there is a nonminimal coupling
between the gravity and scalar fields. In the Einstein frame,
which is related to the Jordan frame through a conformal
transformation, the coupling between scalar and gravita-
tional fields is removed and finding of the solutions is
easier. Let us start with the action of the scalar-tensor theory
in the Jordan frame [19], that is

IðSTÞ ¼ −
1

16π

Z ffiffiffiffiffiffi
−g̃

p
½XðψÞR̃þ YðψÞg̃μν∇̃μψ∇̃νψ

− 2ZðψÞ þ LðF̃ Þ�d3x: ð2:1Þ

Here, R̃ ¼ g̃μνR̃μν is the Ricci scalar in the space-time
identified by the metric components g̃μν. It is multiplied by
a function of scalar field ψ labeled by XðψÞ. Other
functions of ψ [i.e., YðψÞ and ZðψÞ] are arbitrary functions
to be determined. In this frame, the covariant derivative
with respect to g̃μν is denoted by ∇̃. The last term is the
matter field which is considered as the function of the
Maxwell invariant F̃ ¼ F̃αβF̃αβ. The covariant and contra-
variant forms of the electromagnetic tensors are shown via
F̃αβ ¼ ∂αAβ − ∂βAα and F̃ρλ ¼ g̃ραg̃λβF̃αβ, respectively. We
consider the explicit form of the matter field in the
functional form [45]

LðF̃ Þ ¼ ð−F̃ Þp; ð2:2Þ

which is known as the power-law model of nonlinear
electrodynamics with p as the power.
Although the field equations of Jordan formalism can be

obtained by varying the action (2.1) with respect to
different fields, because of the strong coupling between
the scalar and gravitational fields, they are too difficult to be
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solved directly. Thus, by use of a suitable conformal
transformation, we translate it to the Einstein-dilaton action
in the Einstein frame [25]. For this purpose, by use of the
method of Stefanov et al. [20–22], we proceed with the
following conformal transformations,

g̃μν → g̃μν ¼ ðΩðψÞÞ2gμν; ð2:3Þ
which relate the components of the Jordan metric to those
of the Einstein metric gμν. Also, we introduce a new scalar
field ϕ which is related to ψ via the following differential
equation [19]:�

d lnΩðψÞ
dψ

�
2

þ YðψÞ
2ΩðψÞ ¼

�
dϕ
dψ

�
2

: ð2:4Þ

It is worth mentioning that in order for the energy carried
by the scalar field to be positive valued, ΩðψÞ must be
positive, and noting Eq. (2.4) one obtains [19]

2

�
dΩðψÞ
dψ

�
2

þ ΩðψÞYðψÞ ≥ 0: ð2:5Þ

Now, by use of the conformal transformations (2.3) and
using the following definitions,

ΩðψÞ ¼ X−1ðψÞ; and YðψÞ ¼ −2XðψÞ; and

VðϕÞ ¼ 2ZðψÞX−3ðψÞ; ð2:6Þ

LðF ;ϕÞ ¼ X−3ðϕÞLðX4ðϕÞF Þ; with ψ ¼ ψðϕÞ;
ð2:7Þ

one finds that the action (2.1) transforms to its new form in
the Einstein frame. That is

I¼−
1

16π

Z ffiffiffiffiffiffi
−g

p ½R−VðϕÞ−2gμν∇μϕ∇νϕþLðF ;ϕÞ�d3x:

ð2:8Þ

Here,R ¼ gμνRμν is the Ricci scalar and ∇ is the covariant
derivative in the Einstein frame identified by the metric gμν.
The scalar field ϕ is assumed to coupled to itself via the
functional form VðϕÞ and F ¼ FμνFμν being the Maxwell
invariant with Fμν ¼ ∂μAν − ∂νAμ and Aμ is the electro-
magnetic potential. Indeed Eq. (2.8) is just the action of
three-dimensional Einstein-Maxwell-dilaton gravity theory
provided that LðF ;ϕÞ is chosen as [58,59]

LðF ;ϕÞ ¼ ð−Fe−2αϕÞp: ð2:9Þ

The parameter α is known as the scalar-electromagnetic
coupling constant. The power p is known as the non-
linearity parameter and by setting p ¼ 1 the Lagrangian
density LðF ;ϕÞ reduces to the scalar coupled Maxwell
field. Equations (2.7) and (2.9) show that

XðϕÞ¼e−
2pα
4p−3ϕ; and ΩðϕÞ¼e

2pα
4p−3ϕ; p≠

3

4
: ð2:10Þ

Note that p ¼ 3
4
corresponds to the case of conformally

invariant power-law electrodynamics which will be con-
sidered later. In the next section we solve the field equations
obtained by varying the action of Eq. (2.8) with respect to
the different fields.

III. FIELD EQUATIONS IN THE
EINSTEIN FRAME

The gravitational, electromagnetic and scalar field equa-
tions can be obtained by varying the action (2.8) with
respect to the corresponding fields. They are

Rμν ¼ VðϕÞgμν þ 2∇μϕ∇νϕ − gμνLðF ;ϕÞ
þ 2LF ðF ;ϕÞðFgμν − FμσFσ

νÞ; ð3:1Þ

∇μ½LF ðF ;ϕÞFμν� ¼ 0; LF ðF ;ϕÞ≡ ∂
∂F LðF ;ϕÞ;

ð3:2Þ

4□ϕ ¼ dVðϕÞ
dϕ

þ 2αpLðF ;ϕÞ; ϕ ¼ ϕðrÞ: ð3:3Þ

We are interested in obtaining the solution of these field
equations in a static and spherically symmetric geometry.
Therefore, we start with the following line element as an
ansatz:

ds2 ¼ gμνdxμdxν ¼ −WðrÞdt2 þ 1

WðrÞ dr
2 þ r2R2ðrÞdθ2;

ð3:4Þ

where WðrÞ and RðrÞ are two unknown functions to be
determined.WðrÞ is named as the metric function and RðrÞ
is a dimensionless function of rwhich indicates the impacts
of dilaton field on the space-time geometry. It is evident
that in the absence of a dilaton field it must reduce to unity.
A notable point is that the line element presented in
Eq. (3.4) is not the most general form of the spherically
symmetric and static metric. It can be considered as the first
simplification that one can make in order to find black hole
solutions.
Making use of Eqs. (3.1) and (3.4), we arrive at the

following differential equations:

ett ≡ rRðrÞW00ðrÞ þ ½RðrÞ þ rR0ðrÞ�W0ðrÞ
þ 2rRðrÞ½VðϕÞ þ ðp − 1ÞLðF ;ϕÞ� ¼ 0; ð3:5Þ

err ≡ ett þ 2½rR00ðrÞ þ 2R0ðrÞ þ 2rRðrÞϕ02ðrÞ�WðrÞ ¼ 0;

ð3:6Þ
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eθθ ≡ ½RðrÞ þ rR0ðrÞ�W0ðrÞ þ ½rR00ðrÞ
þ 2R0ðrÞ�WðrÞ þ rRðrÞ½VðϕÞ
þ ð2p − 1ÞLðF ;ϕÞ� ¼ 0; ð3:7Þ

for tt, rr and θθ components, respectively.
Assuming as a function of r, the only nonvanishing

component of the electromagnetic field is Ftr ¼ −A0
tðrÞ,

and we have F ¼ −2F2
tr ¼ −2ð−A0

tðrÞÞ2. Throughout the
paper, prime means derivative with respect to the argument.
By use of Eqs. (3.2) and (3.4), one can show that, with
respect to a constant q1, Ftr takes the following form:

Ftr ¼
−q1

½rRðrÞ� 1
2p−1

e
2pαϕ
2p−1; p ≠ −

1

2
: ð3:8Þ

Noting Eqs. (3.5) and (3.6) we obtain

rR00ðrÞ þ 2R0ðrÞ þ 2rRðrÞϕ02ðrÞ ¼ 0: ð3:9Þ

Now, it is the time to explore the consistency of the
equations as well as to determine the number on indepen-
dent equations. To do these, one can show that Eqs. (3.5)
and (3.7) satisfy the following equation (see the Appendix):

deθθ
dr

¼
�
1

r
þ R0ðrÞ

RðrÞ
�
ðett − eθθÞ: ð3:10Þ

Therefore, the solution of Eq. (3.7) satisfies Eq. (3.5) and
they are mutually consistent. Also, based on Eq. (3.10),
Eqs. (3.5) and (3.7) are not independent. Indeed, we have
five unknown functions RðrÞ, Ftr, ϕðrÞ, VðϕÞ and WðrÞ
which obey Eqs. (3.2), (3.3), (3.5), (3.6) and (3.7). This
means that the number of unknown functions is one more
than the independent equations. In order to overcome this
problem, following the works of Chan and Mann [60,61],
we start with an ansatz of the form

RðrÞ ¼
�
r
r0

�
N
; ð3:11Þ

where r0 is a dimensional constant. By substituting
Eq. (3.11) into Eq. (3.9), one can show that

ϕðrÞ ¼ β ln

�
b
r

�
; with β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−NðN þ 1Þ=2

p
: ð3:12Þ

It is valid for positive b and the N-values in the range
−1 < N ≤ 0. A similar power-law solution has been used
previously for finding the three-, four-, and higher-dimen-
sional black hole solutions [25,60–62].
In the following sections we proceed to obtain the

solution of the field equations, making use of the power-
law solution and the scalar field ϕ given in Eqs. (3.11) and
(3.12), respectively.

IV. THE EINSTEIN-DILATON BLACK HOLES

In this section we explore the full solution of the field
equations. For this purpose we reconsider Eq. (3.8) as the
solution to the electromagnetic field equation. Making use
of Eqs. (3.8), (3.11), and (3.12), and by use of a properly
fixed integration constant q1, one obtains

Ftr ¼ −qr−
Bþ1
2p−1; with B ¼ N þ 2pαβ; ð4:1Þ

and noting the relation Ftr ¼ −∂rAtðrÞ we have

AtðrÞ ¼
ð2p − 1Þq

2ðp − 1Þ − B
r1−

Bþ1
2p−1: ð4:2Þ

Here q is another constant related to the charge of a black
hole. It must be noted that, in order for the potential AtðrÞ to
be physically reasonable (i.e., zero at infinity) the following
condition must be fulfilled:

Bþ 1

2p − 1
> 1: ð4:3Þ

With the help of the above solutions in Eqs. (3.3) and
(3.7), after some manipulations, we obtain the following
differential equations:

W0ðrÞ þ N
r
WðrÞ þ r

N þ 1
½VðϕÞ þ ð2p − 1ÞLðF ;ϕÞ� ¼ 0;

ð4:4Þ

dVðϕÞ
dϕ

−
4β

N þ 1
VðϕÞ þ 2

�
αp −

2βð2p − 1Þ
N þ 1

�
LðF ;ϕÞ ¼ 0;

ð4:5Þ

for the metric function WðrÞ and the dilatonic potential
VðϕÞ, respectively. The solution to the first order differ-
ential equation (4.5) can be easily obtained as

VðϕÞ ¼ C2e
4β

Nþ1
ϕ

þ 2pq2p

b
2pðBþ1Þ
2p−1

βð2p − 1Þ½2βð2p − 1Þ − αpðN þ 1Þ�
ðN þ 1Þðp − N þ 3Npþ αpβÞ

× e
2pð1þNþαβÞ

βð2p−1Þ ϕ: ð4:6Þ

Since, in the absence of the dilaton field (i.e., ϕ ¼ 0 or
equivalently N ¼ 0 ¼ β), the action (2.8) reduces to the
action of Einstein-Maxwell gravity with a cosmological
constant, one can obtain the constant C2 by imposing the
condition Vðϕ ¼ 0Þ ¼ 2Λ ¼ −2l−2. By imposing this
condition one obtains C2 ¼ 2Λ. Thus the dilaton potential
takes the following form:

VðϕÞ ¼ 2Λe2aϕ þ 2Λ1e2a1ϕ; ð4:7Þ
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where

a¼ 2β

Nþ1
; a1¼

pð1þNþαβÞ
βð2p−1Þ ;

Λ1¼−
2p−1ð2p−1Þq2p

b
2pðBþ1Þ
2p−1

ϒ1; ϒ1¼
pð2NþαβÞ−N

pð1þ3NþαβÞ−N
:

Regarding Eq. (4.7) one can argue that the dilaton potential
can be written as the linear combination of two Liouville-
type dilatonic potentials. Now, by substituting Eq. (4.7)
into Eq. (4.4) and solving the related differential equation,
the metric function WðrÞ can be calculated as

WðrÞ ¼
8<
:

−mr2=3 − 3
h
2Λb2ðrbÞ

2
3 lnðrlÞ − 3pð2Þp−1q2p

bη

�
2p−1

3p−pα−2

�
2
r2ðbrÞ

2pðαþ1Þ
3ð2p−1Þ

i
; N ¼ − 2

3
;

−mr−N − 1
Nþ1

h
2Λb2
2þ3N ðrbÞ2ð1þNÞ þ ð2p−1Þ2ð2q2Þpð1−ϒ1Þ

ð2p−2−BÞbλ r2ðbrÞ2a1β
i
; N ≠ − 2

3
;

ð4:8Þ

where m is the constant of integration and sometimes is
named as the mass parameter and

η ¼ 2pð2pαþ 1Þ
3ð2p − 1Þ ; λ ¼ 2pðBþ 1Þ

2p − 1
: ð4:9Þ

It must be noted that based on the condition presented in
Eq. (4.4), the denominator of the second terms in the square
brackets are nonzero. With the aim of finding the number of
horizon radii, the plots of WðrÞ vs r are shown in Figs. 1
and 2. The plots, which indicate the impacts of the
important parameters, show that the black holes with
two horizons, those with one horizon and naked singularity
black holes can occur provided that the parameters are fixed
properly.
An important point to be noted is that for the exact

solutions presented in Eq. (4.8) to be considered as black
holes it is necessary that the following two requirements be
fulfilled, simultaneously. (1) The existence of at least one
horizon radius, which has been clarified via plots of Figs. 1
and 2. (2) The appearance of curvature singularities which
can be studied through the curvature scalars such as Ricci
and Kretschmann scalars. It is a matter of calculation to
show that they can be written in the following forms:

R ¼ −W00 − ðN þ 1ÞW
0

r
− 2NðN þ 1ÞW

r2
; ð4:10Þ

RμνρλRμνρλ ¼ ðW00Þ2 þ 2NðN þ 2Þ
�
W0

r

�
2

þ 4NðN þ 1Þ2WW0

r3
þ 4N2ðN þ 1Þ2

�
W
r2

�
2

:

ð4:11Þ

By use of the metric functions (4.8) into Eqs. (4.10) and
(4.11), as a matter of calculation, one can show that the
Ricci and Kretschmann scalars are finite for finite values of
r, and they fulfill the following relations:

limr→∞R ¼ 0; limr→0R ¼ ∞; ð4:12Þ

limr→∞RμνρλRμνρλ ¼ 0; limr→0RμνρλRμνρλ ¼ ∞:

ð4:13Þ

Thus, there is an essential (not coordinate) singularity
located at r ¼ 0, which is covered by the existence of
the horizon radii. Based on the analysis performed here, we
conclude that the exact solutions obtained in this work are

2 3 4 5 6 7 8

4

2

2

4

6

8

10

2 4 6 8

4

2

2

4

6

8

10

(a) (b)

FIG. 1. WðrÞ vs r for N ¼ − 2
3
, Λ ¼ −1, b ¼ 2.5, Q ¼ 1,M ¼ 2, r0 ¼ 1 [Eq. (4.8)]: (a) α ¼ 2.8 and p ¼ 1.16, 1.18, 1.2, 1.22 for the

black, blue, red and brown curves, respectively; (b) p ¼ 1.5 and α ¼ 3.14, 3.17, 3.2, 3.23 for the black, blue, red and brown curves,
respectively.
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really black holes. In the following section we study their
thermodynamic properties.

V. THERMODYNAMIC PROPERTIES OF THE
EINSTEIN-DILATON BLACK HOLES

The main goal of the present section is to investigate the
validity of the first law of black hole thermodynamics for
the new black holes identified in the previous section. For
this purpose we need to calculate the thermodynamic
quantities relevant to these black holes. One of the
important thermodynamic quantities is the temperature

associated with the black hole horizon. It can be calculated
with the help of the surface gravity. It is well known that the
Hawking temperature is related to the surface gravity via
T ¼ κ

2π and, in terms of the vector χμ ¼ ð−1; 0; 0Þ, one can
show that

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μχνÞð∇μχνÞ

r
¼ 1

2

�
dWðrÞ
dr

�
r¼rh

: ð5:1Þ

Now, making use of Eq. (4.8) one obtains

T ¼
8<
:

− 3
4π

h
2Λbð brhÞ

1
3 − pð2q2Þp

bη ð 2p−1
3p−pα−2Þrhð brhÞ

2pðαþ1Þ
3ð2p−1Þ

i
; N ¼ − 2

3
;

− rh
4πðNþ1Þ

h
2Λð brhÞ−2N − ð2p−1Þð2q2Þp

bλ
ðϒ1 − 1Þð brhÞ2a1β

i
; N ≠ − 2

3
:

ð5:2Þ

It must be noted that the condition WðrhÞ ¼ 0 has been
used for eliminating the mass parameterm from Eq. (5.2). It
is worth mentioning that black holes with zero temperature
known as the extreme black holes can occur if the charge
(i.e., q ¼ qext) and the horizon radius (i.e., rh ¼ rext) of the
black holes are fixed such that the relation Tðrext; qextÞ ¼ 0
is satisfied. Therefore, we arrived at

rext ¼ b

�ð2p − 1Þð2q2Þp
2Λbλ

ðϒ1 − 1Þ
� 1

2ðNþa1βÞ;

for N ¼ −
2

3
; N ≠ −

2

3
: ð5:3Þ

The plots of T vs rh are shown in Figs. 3 and 4 (black and
blue curves). They show that, for the properly fixed
parameters, the physically reasonable black holes, with
positive temperature, occur for rh > rext and the unphysical
black holes, having negative temperature, are in the range
rh < rext.

The black hole entropy is the other important thermo-
dynamic quantity to be calculated. Based on the out-
standing Hawking discoveries the black hole entropy, as
a pure geometrical object, obeys the entropy-area law.
According to this famous law the black hole entropy is
equal to one-fourth of the black hole horizon area. Thus,
one can write

S ¼ 2πrhRðrhÞ
4

¼ πrh
2

�
rh
r0

�
N
: ð5:4Þ

Note that Eq. (5.4) reduces to its standard form in the three-
dimensional space-times when the dilaton scalar field is
absent (i.e., N ¼ 0).
The black hole electric potential is also an important

thermodynamic quantity which is needed to be calculated.
With the temporal component of the electromagnetic
potential (4.2) in hand and making use of the following
standard relation [63],
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FIG. 2. WðrÞ vs r for Λ ¼ −1, b ¼ 2.5, Q ¼ 1, M ¼ 2.5, r0 ¼ 1 Eq. (4.8): (a) α ¼ 2.8, N ¼ −0.48 and p ¼ 1.14, 1.19, 1.235, 1.28
for black, blue, red and brown curves, respectively; (b) p ¼ 1.2, N ¼ −0.48 and α ¼ 2.7, 2.755, 2.82, 2.88 for the black, blue, red and
brown curves, respectively; (c) p ¼ 1.2, α ¼ 3 and N ¼ −0.488, −0.492, −0.496, −0.5 for the black, blue, red and brown curves,
respectively.
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Φ ¼ Aμχ
μjreference − Aμχ

μjr¼rh ; ð5:5Þ

it is possible to obtain the electric potential relative to a
reference point located at infinity relative to the black hole
horizon. In terms of an arbitrary constant C, which will be
determined later, we have [28,64,65]

Φ ¼ Cð2p − 1Þq
2ðp − 1Þ − B

r
1−Bþ1

2p−1
h : ð5:6Þ

The black hole electric charge as a conserved quantity
can be found by calculating the flux of the electromagnetic
field at infinity (i.e., r → ∞) [66–68]. By use of Gauss’s
electric law in the form of [69]

Q ¼ 1

4π

Z ffiffiffiffiffiffi
−g

p
LF ðϕ;F ÞFtrdΩ ð5:7Þ

and making use of Eqs. (3.4) and (4.1) after some simple
calculations we arrive at

Q ¼ pð2Þp−2
rN0 b

2pαβ q
2p−1; ð5:8Þ

which is compatible with the charge of Banados-
Teitelboim-Zanelli (BTZ) black holes when the dilaton
field vanishes.
The black hole mass is the other conserved quantity to be

calculated. For the purpose of identifying the black hole
mass, following the works of Refs. [31,60,61] we must
write the line element in the following standard form:

ds2 ¼ −f2ðρÞdt2 þ dρ2

g2ðρÞ þ ρ2dθ2: ð5:9Þ

Then, provided that the matter field does not contain
derivatives of the metric, the quasilocal black hole mass

M can be obtained by use of the following relation:

M ¼ 2fðρÞ½g0ðρÞ − gðρÞ�; ð5:10Þ

in which g0ðρÞ is an arbitrary function which determines
the zero of the mass. In our case, making use of the
transformation relation ρ ¼ rRðrÞ, we have

dr2 ¼ dρ2

ð1þ NÞ2R2
: ð5:11Þ

Therefore, one obtains

f2ðρÞ¼WðrðρÞÞ; and g2ðρÞ¼ð1þNÞ2ðRðρÞÞ2WðrðρÞÞ:
ð5:12Þ

By use of these quantities in Eq. (5.10) and taking the limit
ρ → ∞ the black hole mass, in terms of the mass parameter
m, can be calculated as

M ¼ N þ 1

8
r−N0 m; ð5:13Þ

provided that the N values are restricted to the range
−2=3 ≤ N ≤ 0. Note that the black hole mass presented in
Eq. (5.13) recovers the BTZ black hole mass in the absence
of a dilaton field (i.e., N ¼ 0). Also, it is compatible with
the black hole mass identified in Ref. [25].
In order to calculate the thermodynamic and conserved

quantities, related to our new black holes from the
thermodynamical methods, we need to have a Smarr-type
mass formula. It can be derived from Eq. (4.8) by imposing
the condition WðrþÞ ¼ 0. The Smarr mass formula which
gives the black hole mass is obtained as

Mðrh; qÞ ¼
8<
:

− 1
8
ðr0bÞ

2
3

h
2Λb2 lnðrhlÞ − 3pð2Þp−1q2p

bη

�
2p−1

3p−pα−2

�
2ðbr2hÞ

2
3ð brhÞ

2pðαþ1Þ
3ð2p−1Þ

i
; N ¼ − 2

3
;

− r2h
8
ðrhr0ÞN

h
Λ

2þ3N ðrhb Þ2N þ ð2p−1Þ2ð2q2Þpð1−ϒ1Þ
ð2p−2−BÞbλ ðbrÞ2a1β

i
; N ≠ − 2

3
:

ð5:14Þ

Noting Eqs. (5.4) and (5.8) the black hole mass given in
Eq. (5.14) can be considered as the function of thermo-
dynamical extensive parameters S and Q. Now, we can
calculate the intensive parameters T andΦ, conjugate to the
black hole entropy and charge, respectively. As a matter of
calculation one can show that

�∂M
∂S

�
Q
¼ T;

�∂M
∂Q

�
S
¼ Φ;

for both N ¼ −
2

3
and N ≠ −

2

3
; ð5:15Þ

provided that the constant C in Eq. (5.6) is chosen equal to
1 −ϒ1 [28,64,65]. Note that C ¼ 1 in the absence of a
dilaton field and it is compatible with the results of
Refs. [54,55].
Therefore, we proved that the first law of black hole

thermodynamics is valid, for both classes of the charged
dilatonic three-dimensional black holes, in the following
standard form:

dMðS;QÞ ¼ TdSþΦdQ: ð5:16Þ
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VI. STABILITY ANALYSIS IN THE CANONICAL
ENSEMBLE METHOD

It is well known that, in the canonical ensemble method,
the stability information of a thermodynamic system can be
extracted from its heat capacity. The heat capacity of a
black hole, as a thermodynamic system, can be obtained
through the following relation:

CQ ¼ T

�∂S
∂T

�
Q
: ð6:1Þ

Here, the notations means that the derivative of entropy
relative to temperature is calculated by treating the black
hole charge as a constant and the subscript Q is used
to remember this fact. Now, by use of Eq. (5.15)
and identifying MSS ≡ ð∂2M=∂S2ÞQ, Eq. (6.1) takes the
following form:

CQ ¼ T
MSS

: ð6:2Þ

According to the canonical ensemble method a physical
black hole (it means T > 0) is thermally stable if its heat
capacity (or equivalently MSS) is positive. An unstable
black hole undergoes a thermodynamic phase transition to
be stabilized. A type one phase transition occurs at the
vanishing points of the black hole heat capacity. Thus, the
real roots of T ¼ 0 are known as the type one phase
transition points. In addition, a type two thermodynamic
phase transition occurs at the points where the black hole
heat capacity diverges. This means that the real roots of the
denominator of the black hole heat capacity are the
locations of the type two phase transition [66,70–72].
Keeping these facts in mind, we proceed to perform a
detailed analysis on the thermal stability or phase transition
of the new Einstein-dilaton black hole solutions identi-
fied here.

A. The black holes with N = − 2
3

The numerator of the black hole heat capacity is given by
Eq. (5.2). Now, by use of Eqs. (5.4) and (5.14), as a matter
of calculation, one can show that the denominator of the
black hole heat capacity can be written as

MSS ¼
3

2π2

�
rh
r0

�2
3

�
2Λ

�
b
rh

�4
3

þ pð2q2Þp
bη

�
4p − 2pα − 3

3p − pα − 2

��
b
rh

�2pð1þαÞ
3ð2p−1Þ

�
: ð6:3Þ

The real roots of Eq. (6.3) indicate the type two phase
transition points. The locations of these points can be
obtained by solving the equation MSS ¼ 0, which are
identified as

rh ≡ r1 ¼ b
ð2p−1Þðpαþ2

3p−pα−2

�
−
pð2q2Þp

2Λ

�
4p − 2pα − 3

3p − pα − 2

�� 3ð2p−1Þ
2ð2−3pþpαÞ

:

ð6:4Þ

Therefore, the black holes with the horizon radius equal to
r1 undergo a type two phase transition. Also, the black
holes with the horizon radius rh ≡ rext, given by Eq. (5.3),
experience a type one phase transition. Finally, as it is
shown by Fig. 3 this class of new black holes with the
horizon radii in the interval rext < rh < r1 is locally stable.

B. The black holes with N ≠ − 2
3

The denominator of the heat capacity of this class of
black holes can be obtained by use of Eqs. (5.4) and (5.14).
It can be written in the following explicit form:
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FIG. 3. T and MSS vs rh, for N ¼ − 2
3
, Λ ¼ −1, Q ¼ 0.5, b ¼ 2.5, r0 ¼ 1 [Eqs. (5.2) and (6.3)]: (a) α ¼ 3.5, ½T∶p ¼

1.2ðblackÞ; 1.8ðblueÞ�, ½MSS∶p ¼ 1.2ðredÞ; 1.8ðbrownÞ�; (b) p ¼ 1.2, ½T∶α ¼ 3ðblackÞ; 3.5ðblueÞ�, ½MSS∶α ¼ 3ðredÞ; 3.5ðbrownÞ�.
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MSS ¼ −
1þ 2N

2π2ðN þ 1Þ2
�
rh
r0

�
−N

�
2Λ

�
rh
b

�
2N

þ ð2q2Þp
bλ

ðϒ1 − 1Þð2pN þ 2pαβ þ 1Þ
1þ 2N

�
b
rh

�
2a1β

�
:

ð6:5Þ

From the viewpoint of the canonical ensemble method,
the real root(s) of equation MSS ¼ 0 indicate the locations
of the type two phase transition points. Therefore, the type
two phase transition point is located at

rh ≡ r2 ¼ b

�ð2q2Þpð1 −ϒ1Þ
2Λbλ

�
2pN þ 2pαβ þ 1

2N þ 1

�� 1
2ðNþa1βÞ

:

ð6:6Þ

Also, the points of the type one phase transition are
identified as the vanishing points of the black hole temper-
ature presented in Eq. (5.2). In order to obtain the type one
and type two transition points exactly, we have plotted T
and MSS vs rh in Fig. 4. The plots show that rh ¼ rext and
rh ¼ r2 are the points of type one and type two phase
transition, respectively. The black holes corresponding to
N ≠ − 2

3
are stable for the horizon radii in the inter-

val rh > r2.

VII. THERMODYNAMICS OF THE SCALAR-
TENSOR BLACK HOLES

The calculations presented in the previous sections show
the black hole solutions and the related thermodynamic
properties in the Einstein-dilaton gravity theory, and they
are valid in the Einstein frame only. Now, we are in a
situation to explore the scalar-tensor black hole solutions
and their properties in the Jordan frame. This is possible
with the help of inverse transformations introduced in
Sec. II. At first, using Eqs. (3.12) and (4.7) into
Eq. (2.6) and noting (2.10), it is easily shown that the
explicit forms of the functions in the action (2.1) are as
follows:

XðϕÞ ¼ e−
2pα
4p−3ϕ; YðϕÞ ¼ −2XðϕÞ;

ZðϕÞ ¼ 1

2
VðϕÞe− 6pα

4p−3ϕ; ð7:1Þ

and by solving the differential equation (2.4) for the
functional form of ψðϕÞ we arrive at

ψðϕÞ¼e
2pα
4p−3ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
4p−3

2pα

�
2

s
; −1<

4p−3

2pα
<1: ð7:2Þ

Now, in order to obtain the scalar-tensor black hole
solutions, we start with the following line element,

ds̃2 ¼ g̃μνdxμdxν ¼ −FðrÞdt2 þ 1

GðrÞ dr
2 þ r2H2ðrÞdθ2;

ð7:3Þ
as the solution to the gravitational field equations in the
Jordan frame. The functions FðrÞ, GðrÞ, and HðrÞ are
unknown functions of r, which can be determined from
their Einstein counterparts by applying the inverse trans-

formations of Sec. II. Thus we have g̃μν ¼ gμνðbrÞ
4pαβ
4p−3, which

results in

FðrÞ ¼
�
b
r

�4pαβ
4p−3

WðrÞ; GðrÞ ¼
�
b
r

�
−4pαβ
4p−3

WðrÞ;

HðrÞ ¼
�
b
r

�2pαβ
4p−3

RðrÞ; ð7:4Þ

where the functions RðrÞ andWðrÞ are given by Eqs. (3.11)
and (4.8), respectively.
The plots of GðrÞ vs r are shown in Figs. 5 and 6 for the

N ¼ − 2
3
and N ≠ − 2

3
cases, respectively. The plots show

that, for the suitably fixed parameters, the scalar-tensor
black holes with two horizons, as well as extreme and
naked singularity black holes, can occur.
The Hawking temperature associated with the horizon of

the scalar-tensor black holes can be calculated by use of the
black hole’s surface gravity. It is obtained as
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FIG. 4. T and MSS vs rh for Λ ¼ −1, b ¼ 2.8, Q ¼ 1, r0 ¼ 1 [Eqs. (5.2) and (6.5)]: (a) α ¼ 3, N ¼ −0.4½T∶p ¼
1.2ðblackÞ; 1.8ðblueÞ� and ½40Mss∶p ¼ 1.2ðredÞ; 1.8ðbrownÞ�; (b) p ¼ 1.2, N ¼ −0.4½T∶α ¼ 2.5ðblackÞ; 3.5ðblueÞ� and ½40Mss∶
α ¼ 2.5ðredÞ; 3.5ðbrownÞ�; (c) p ¼ 1.2, α ¼ 2.5½T∶N ¼ −0.4ðblackÞ;−0.43ðblueÞ� and ½40Mss∶N ¼ −0.4ðredÞ;−0.43ðbrownÞ�:
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T̃ ¼ 1

4π

� ffiffiffiffiffiffiffiffiffiffi
GðrÞ
FðrÞ

s
dFðrÞ
dr

�
r¼rh

¼ 1

4π

�
b
rh

�
−4pαβ
4p−3 d

dr

��
b
r

�4pαβ
4p−3

WðrÞ
�
r¼rh

¼ 1

4π

dWðrÞ
dr

				
r¼rh

¼ T: ð7:5Þ

It means that the Hawking temperature is just the same for
the scalar-tensor and the Einstein-dilaton black holes. Also,
one can show that the black hole charge, mass, entropy and
electric potential are identical in the Einstein and Jordan
frames. Making use of the condition GðrhÞ ¼ 0 and
obtaining the mass parameter m of the scalar-tensor black
holes one is able to show that it is equal to that of the
Einstein black holes. It leads to the same Smarr-type mass
formula for the scalar-tensor and Einstein black holes. As a
result we obtain

Φ̃ ¼ ∂M̃ðS̃; Q̃Þ
∂Q̃ ; and T̃ ¼ ∂M̃ðS̃; Q̃Þ

∂S̃ ; ð7:6Þ

from which one can argue that the first law of black
thermodynamics is valid for the new scalar-tensor black
holes in the following form:

dM̃ðS̃; Q̃Þ ¼ ∂M̃ðS̃; Q̃Þ
∂S̃ dS̃þ ∂M̃ðS̃; Q̃Þ

∂Q̃ dQ̃: ð7:7Þ

It must be noted that, as the heat capacities of the scalar-
tensor and Einstein-dilaton black holes are identical, they
have the same points of type one and type two phase
transitions. Also, the ranges at which the black holes
remain stable are identical in the Einstein and Jordan
frames.

VIII. CONCLUSION

With the aim of finding the charged scalar-tensor black
hole solutions and studying their thermodynamic proper-
ties, we started from the general form of the three-dimen-
sional scalar-tensor action coupled to the power-law
nonlinear electrodynamics. In this action the Ricci scalar
is multiplied by a scalar function which produces a strong
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FIG. 5. 0.5GðrÞ vs r for N ¼ − 2
3
, Λ ¼ −1, b ¼ 3, Q ¼ 1, M ¼ 2.5, r0 ¼ 1 [Eq. (7.4)]: (a) α ¼ 2.1 and p ¼ 0.81, 0.8014, 0.8019,

0.8025 for the black, blue, red and brown curves, respectively; (b) p ¼ 0.8 and α ¼ 2.0946, 2.0956, 2.0966, 2.0974 for the black, blue,
red and brown curves, respectively.
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FIG. 6. GðrÞ vs r for Λ ¼ −1,Q ¼ 1,M ¼ 2.5, b ¼ 2.5, r0 ¼ 1 [Eq. (7.4)]: (a) N ¼ −0.48, α ¼ 2.3 and p ¼ 0.86, 0.88, 0.9, 0.92 for
the black, blue, red and brown curves, respectively; (b) N ¼ −0.48, p ¼ 0.84 and α ¼ 2.18, 2.212, 2.24, 2.265 for the black, blue, red
and brown curves, respectively; (c) p ¼ 0.85, α ¼ 2.2 and N ¼ −0.475, −0.4765, −0.4782, −0.48 for black, blue, red and brown
curves, respectively.
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coupling between the field equations and makes them too
difficult to be solved directly. To overcome this problem we
used a suitable conformal transformation to translate the
scalar-tensor action from the Jordan frame to the Einstein
frame. It, in general, leads to the action of Einstein-dilaton
gravity in the presence of the scalar coupled electromag-
netic Lagrangian. We found that there is an especial case,
by a suitable choice of the nonlinearity parameter p (i.e.,
p ¼ 3=4), which preserves the Lagrangian of the electro-
dynamics invariant. It is the so-called conformally invariant
electrodynamics, which will be considered in a forthcom-
ing paper.
By varying the action of three-dimensional Einstein-

dilaton gravity theory in the presence of the scalar coupled
power-law electrodynamics we obtained the coupled scalar,
electromagnetic and gravitational field equations. We cal-
culated the exact solutions in a static and spherically
symmetric geometry. The results show that the dilaton
potential can be written as the linear combination of two
Liouville-type potentials. Also, two new classes of non-
linearly charged dilatonic black hole solutions have been
obtained which are asymptotically nonflat and non-AdS.
They can produce black holes with two horizons, as well as
extreme and naked singularity black holes, provided that the
parameters in the theory are chosen properly (Figs. 1 and 2).
In order to investigate the thermodynamic behavior of

these new dilatonic black hole solutions, we calculated the
black hole temperature, entropy, charge, mass and electric
potential by utilizing the geometrical and thermodynamical
methods. Through a Smarr-type mass formula, we identi-
fied the black hole total mass as a function of the black hole
charge and entropy as the extensive thermodynamic
parameters. Then, by use of the Smarr mass formula, we
calculated the black hole temperature and electric potential
as the thermodynamic intensive parameters conjugate to the
entropy and electric charge, respectively. We showed that
the conserved and thermodynamic quantities obtained from
the geometrical and thermodynamical approaches satisfy
the thermodynamical first law in its standard form. Thus,

the first law of black hole thermodynamics remains valid
even in the presence of dilaton fields.
Then, we analyzed the thermodynamic phase transition

or thermal stability of the new dilatonic black holes that we
just obtained. Making use of the canonical ensemble
method and by calculating the black hole heat capacity,
we identified the location of the type one and type two
phase transition points, exactly. Also, regarding the sig-
nature of the black hole temperature and black hole heat
capacity, we determined the ranges of the horizon radii in
which the black holes are locally stable (Figs. 3 and 4).
Next, we proceeded to study the exact charged three-

dimensional scalar-tensor black hole solutions in the Jordan
frame. To do so, we obtained the Jordan frame black hole
solutions from their Einstein frame counterparts by apply-
ing the inverse conformal transformations. Interestingly we
found that, just like the dilatonic black holes, the exact
solutions of the scalar-tensor gravity theory can produce the
two horizon, extreme and naked singularity black holes
(Figs. 5 and 6). Also, we showed that the conserved and
thermodynamic quantities related to the scalar-tensor black
holes are just identical to those obtained for the Einstein-
dilaton black holes. As a result the first law of black hole
thermodynamics remains valid for both of the charged
scalar-tensor black holes introduced here. Also, they have
the same points of type one and type two thermodynamic
phase transitions as the dilaton black holes. The ranges at
which the dilatonic and scalar-tensor black holes remain
stable are identical.
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APPENDIX: DETAILS OF DERIVATION OF
EQ. (3.10)

With the purpose of finding the relation between
Eqs. (3.5) and (3.7), we start with the following definitions:

Ett ≡ ett
rRðrÞ ¼ W00ðrÞ þ

�
1

r
þ R0ðrÞ

RðrÞ
�
W0ðrÞ þ 2½VðϕÞ þ ðp − 1ÞLðϕ;F Þ�; ðA1Þ

Eθθ ≡ eθθ
rRðrÞ ¼

�
1

r
þ R0ðrÞ

RðrÞ
�
W0ðrÞ þ

�
R00ðrÞ
RðrÞ þ 2R0ðrÞ

rRðrÞ
�
WðrÞ þ VðϕÞ þ ð2p − 1ÞLðϕ;F Þ: ðA2Þ

Taking the derivative of Eq. (A.2) with respect to r and making use of Eqs. (A.1) and (3.9), after some algebraic
simplifications, we arrive at

dEθθ

dr
¼

�
1

r
þ R0ðrÞ

RðrÞ
�
ðEtt − 2EθθÞ − 4

�
1

r
þ R0ðrÞ

RðrÞ
�
ðϕ0Þ2WðrÞ − 4ðϕ0Þ2W0ðrÞ − 4rϕ0ϕ00WðrÞ

þ 2p

�
1

r
þ R0ðrÞ

RðrÞ
�
Lðϕ;F Þ þ d

dr
½VðϕÞ þ ð2p − 1ÞLðϕ;F Þ�; ðA3Þ
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in which Eq. (A.2) has been used once again. Now, we can write

d
dr

VðϕÞ ¼ ϕ0 d
dϕ

VðϕÞ; ðA4Þ

and noting Eq. (3.3) one obtains

d
dr

VðϕÞ ¼ 4ðϕ0Þ2
�
1

r
þ R0ðrÞ

RðrÞ
�
WðrÞ þ 4ðϕ0Þ2W0ðrÞ þ 4ϕ0ϕ00WðrÞ − 2pαϕ0Lðϕ;F Þ: ðA5Þ

Also, one can show that

d
dr

Lðϕ;F Þ ¼
�
2p
Ftr

dFtr

dr
− pαϕ0

�
Lðϕ;F Þ: ðA6Þ

Substituting Eqs. (A.5) and (A.6) into Eq. (A.3), after some algebraic simplifications, one obtains

dEθθ

dr
−
�
1

r
þ R0ðrÞ

RðrÞ
�
ðEtt − 2EθθÞ ¼ 2p

�
2p − 1

Ftr

dFtr

dr
þ 1

r
þ R0ðrÞ

RðrÞ − 2pαϕ0
�
Lðϕ;F Þ: ðA7Þ

Regarding Eq. (3.8), we have

dFtr

dr
¼ Ftr

2p − 1

�
2pαϕ0 −

�
1

r
þ R0ðrÞ

RðrÞ
��

: ðA8Þ

By combining Eqs. (A.7) and (A.8) we arrive at Eq. (3.10).
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