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Using the Brown-York prescription for the definition of quasilocal gravitational energy-momentum tensor
on a boundary and also complete canonical structure on a null boundary which has been found recently
[Classical QuantumGravity 36, 015012 (2019)], we propose a similar stress tensor on the null boundary. Then
we exploit this stress tensor to compute the quasilocal energy and angular momentum for some well-known
gravitational solutions. We have found that in addition to reference spacetime method for regularizing total
energy, in the case of null boundarywecan add a possible counterterm thereby avoiding embedding difficulties.
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I. INTRODUCTION

In general relativity (GR), defining a local energy for
gravitational field is problematic (for a review on the subject
see [1]). The problem is rooted in the general covariance
principle and the fact that the first derivative of metric can
always vanish in a properly chosen local coordinate system.
But in order to have a notion of local energy density with
correct physical dimension, such quantity could be defined
in terms of the metric and its first derivative. Also, a related
notion to energy density in field theories is the action
functional. In fact, the standard covariant action in GR, i.e.,
the Hilbert-Einstein (HE) action, contains second order
derivatives of the metric, which is another consequence of
the general covariance principle. As it is well known, this
action does not have a well-posed variational principle and
needs to be complemented with additional terms defined on
the boundaries of the spacetime. Brown and York [2] have
pointed out that having an action with a well-posed
variational principle, by using Hamilton-Jacobi analysis,
one can define the quasilocal energy of the system.
A careful variation of the HE action in addition to

suggesting the proper boundary term (boundary action), to
ensure a well-posed variational principle, also provides
dynamical degrees of the theory as well as its canonical
structure (see, e.g., [3]). An important point, in finding the
complete canonical structure by such a procedure, is the
necessity of the condition that one should not suppress any
degree of freedom beforehand by imposing restrictions.

The proper boundary action complementing the HE
action, when the boundary is timelike or spacelike, is the
well-known Gibbons-Hawking-York (GHY) term [4,5].
Applying variational principle in GR for null boundaries
has been a subject of investigation in recent years [6–10].
In these papers, the authors are either interested in finding
the proper boundary terms on null boundaries, and there-
fore ignored those terms that are fixed by boundary
conditions, or imposed some restrictions on variations in
such a way that the resulting canonical structure is not
complete. One of such restrictions is that the variations
keep the character of the boundary unchanged. But one of
the metric degrees of freedom is responsible for variations
which alter the boundary character. This can be easily seen
as follows: If the boundary is specified by ϕ ¼ const: for
some scalar field ϕ, then the normal to the boundary is
proportional to ∂aϕ. For a null boundary, we have
∂aϕ∂aϕ ¼ 0, while for a general metric variation we find:

∂aϕ∂aϕ → ∂aϕ∂aϕ − δgab∂aϕ∂bϕ: ð1Þ

Therefore, unless we set variations of the metric in the
direction of ∂aϕ to zero, the boundary does not remain null.
Recently we have shown that such variations appear in
canonical structure [11]. In addition, it has been shown that,
in order to preserve such variations, a general double-
foliation framework is needed. The conjugate momentum
to these variations is a scalar Ξ (for definition see Sec. III or
Ref. [11]). In this article we will show that this scalar
provides the quasilocal energy density on a null boundary
For the definition of quasilocal stress tensor on null
boundary we follow the same method presented by
Brown and York in the case of quasilocal stress tensor
on timelike boundary which means that the derivative of the
action with respect to the metric variations which are
tangential to the boundary [2,12].
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The content of the paper is organized as follows. In the
next section we first briefly review the original Brown-York
construction of quasilocal gravitational energy-momentum
tensor. In Sec. III, we follow the same analysis for the case
where instead of a timelike boundary we have a null one.
Finally, in Sec. IV we calculate the energy and angular
momentum in various space times using the proposed stress
tensor.
Throughout this work we have setG ¼ c ¼ 1. We do not

use various indices for specification of different parts of
spacetime and use Latin indices fa; b; c;…g everywhere;
instead, different names are given to objects when defined on
different structures. For example, we use Kab for extrinsic
curvature of a spacelike hypersurface while χab is preserved
for extrinsic curvature of a timelike hypersurface.

II. THE BROWN-YORK TENSOR

In this section we review the Brown-York [2] definition
of gravitational stress-tensor on the boundary. To illustrate
the main idea beyond Brown-York definition of quasilocal
energy momentum, it is useful to start with an example in
classical mechanics.

A. The Hamilton-Jacobi method

Let LðqðtÞ; _qðtÞ; tÞ be the classical Lagrangian for
a particle. The action functional is I½qðtÞ� ¼ R t2

t1 LðqðtÞ;
_qðtÞ; tÞdt, for initial and final configuration, i.e., ðq1; t1Þ
and ðq2; t2Þ, respectively. A general variation of this action
for a given history is

δI½qðtÞ� ¼
Z

t2

t1

�∂L
∂q −

d
dt

∂L
∂ _q

�

ðδq − _qδtÞdt

þ ∂L
∂ _q δq

�
�
�
�
t2

t1

−
�∂L
∂ _q _q − L

�

δt

�
�
�
�
t2

t1

: ð2Þ

Extremizing the action and imposing the boundary con-
dition by fixing q and t at the end points, provides the
equations of motion that are given by the first term in the
integrand which are known as the Euler-Lagrange equa-
tions. Moreover, the Hamilton-Jacobi principal function
Sðq1; t1; q2; t2Þ is defined as the value of the action for a
solution qðtÞ of the equation of motion from ðq1; t1Þ
to ðq2; t2Þ.
Thus, according to (2), the derivative of the principal

function S with respect to q, i.e., δS
δq, gives the canonical

momenta p ¼ ∂L
∂ _q while the derivative with respect to t, i.e.,

δS
δt , yields the minus of energy: H ¼ ð∂L∂ _q _q − LÞ.
An important remark is that in order to ensure that the

above procedure works well, the variational principle must
be well-posed beforehand. Indeed, a Lagrangian with no
well-posed variational principle does not lead to the correct
relations for momenta and energy of the system. For
example, the action S1 ¼

R
1
2
m_x2dt leads to the equations

of motion and correct momentum and energy for a free
particle. However, by considering another action as
S2 ¼ S1 −

R
1
2
m d

dt ðx_xÞdt ¼ −
R

1
2
mxẍdt, one could see

that, although the difference with the first action is a total
derivative and the equations of motion are unchanged, by
varying this action one finds:

δS2 ¼ −
Z

ðmẍÞδxþ
�
1

2
ð_xδx − xδ_xÞ

�
t2

t1

; ð3Þ

which means that in order to get the equation of motion we
need to determine both x and _x at both endpoints. This leads
to inconsistency with second order equation of motion,
because according to that we need to just fix the position at
the ends. Therefore, for this action the variational principle
is not well posed.1 As a consequence, the derivative of the
principal function does not lead to the correct definition for
momentum and energy. However, we must note that all
total derivatives do not spoil the variational principle, e.g.,
changing the action by S → Sþ R t2

t1
dh
dt dt for arbitrary

function hðqðtÞ; tÞ is allowed. Hence, the action and the
principal function are not unique; as a result, momenta and
energy are also not exclusive. However, this arbitrariness
can be fixed by choosing the zero point of energy, for
example set the arbitrary function h so that it yields to zero
energy for free particle at rest in the above example.

B. Stress tensor on timelike boundary

Having learned enough from the above simple mechani-
cal example, lets begin with HE action in d dimension:

SEH ¼ 1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p
R; ð4Þ

in which R is the Ricci scalar. By varying the action, if we
consider the boundary segments to be either timelike or
spacelike, one gets:

δSEH¼
1

16π

Z

M
ddx

ffiffiffiffiffiffi
−g

p
Gabδgab

þ 1

16π

X

i

�

2δ

�Z

Bi

dd−1x
ffiffiffiffiffiffi
jhj

p
Kþ

Z

Ci

dd−2x
ffiffiffiffiffiffi
jqj

p
ϑ

�

þ
Z

Bi

dd−1x
ffiffiffiffiffiffi
jhj

p
ðKab−KhabÞδhab

þ
Z

Ci

dd−2x
ffiffiffiffiffiffi
jqj

p
ϑqabδqab

�

; ð5Þ

where the sum is over each boundary segment Bi and every
corner Ci at intersection of two neighboring segments of

1Of course this argument is valid if we are interested in
Dirichlet or Neumann boundary conditions. By choosing a Robin
boundary conditions one could revive the variational principle.
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boundary. Moreover, K is the extrinsic curvature of each
segment and ϑ is the angle or the boost parameter between
segments, depending on their character. In addition, δhab is
the variation of metric on each boundary while δqab is the
variation on each codimension two joint. For the details
of the calculations and specially the method by which one
can take into account the contribution of joints, see
Refs. [7,9,12] or [11]. We see that the variation of HE
action includes both the metric and its normal derivative
(the extrinsic curvature) on the boundary, thus, the varia-
tional principle is not well-posed for this action if we
demand the Dirichlet boundary conditions.2 This variation
also suggests the correct action with well-posed variational
principle as:

S ¼ 1

16π

Z

M
ddx

ffiffiffiffiffiffi
−g

p
R −

1

8π

X

i

�Z

Bi

dd−1x
ffiffiffiffiffiffi
jhj

p
K

þ
Z

Ci

dd−2x
ffiffiffiffiffiffi
jqj

p
ϑ

�

: ð6Þ

Now consider a region in space-time as in Fig. 1 which is
generated by evolution of a spacelike surface Σ from Σ1 to
Σ2 and a timelike boundary T . The intersection of Σ leafs
with T are codimension two surfaces S from S1 to S2. Now
in this region of space-time we calculate the variation of the
action (6), and impose the equations of motions, i.e.,
Gab ¼ 0. Then we may find:

δS ¼ 1

16π

�Z
Σ2

Σ1

dd−1xPabδhab þ
Z

T
dd−1xΠabδγab

þ
Z

S2

S1

dd−2x
ffiffiffiffiffiffi
jqj

p
ϑqabδqab

�

: ð7Þ

Here, the symbol
R Σ2

Σ1
is a shorthand for

R
Σ2
−
R
Σ1
, hab is the

metric on each spacelike boundary and γab is the induced
metric on the timelike boundary T . Pab and Πab are
respectively the gravitational momenta of Σ and T :

Pab ¼
ffiffiffi
h

p
ðKab − KhabÞjΣ;

Πab ¼ ffiffiffiffiffiffi
−γ

p ðχab − χγabÞjT ; ð8Þ

where Kab and χab are their corresponding extrinsic
curvatures. In the original work of Brown and York [2],
they assumed the boundaries to be orthogonal, thus, the
contribution of the joints was missing. However, after the
work of Hayward [14], who emphasized the importance of

this term for the variational principle to be well posed, this
term appeared in later works [12,15,16].
If we ignore these joints and consider the boundaries to

be orthogonal, then in an analogous way to the mechanical
example one may define the gravitational canonical
momentum as the derivative of the principal functions
with respect to the induced metric on spacelike segments
of the boundary and gravitational energy-momentum-
stress tensor as the derivative with respect to the induced
metric on timelike segment. In fact, the Πab has the same
expression as for ADM canonical momentum. Thus, the
energy-momentum-stress tensor (or just the stress tensor
for abbreviation) will be defined as:

Tab ¼ 2
ffiffiffiffiffiffi−γp δS

δγab
¼ 1

8π
ðχab − χγabÞ: ð9Þ

To define conserved quantities, now we choose a spacelike
codimension two surface S in T with unit timelike normal
ua. Then, the metric γab is further decomposed as
γab ¼ qab − uaub. Here, ua defines local the flow of time
in T . Moreover, according to Brown-York [2] for an
isometry in the boundary generated by the Killing vector
ξa, the conserved charge associated to this symmetry is
defined by:

Qξ ¼
Z

S
dd−2x

ffiffiffi
q

p
Tabuaξb: ð10Þ

In fact, there is some points regarding to the expression (9)
and (10). The first one is that, as we pointed out before,
these expressions are not unique. One can append a
subtraction term S0 to the boundary action without affect-
ing variational problem when S0 depends on fixed boun-
dary data, S0 ¼ S0ðhab; γabÞ, which leads to ambiguities in
the definitions of energy and momenta. According to the
Brown and York interpretation these ambiguities are a
consequence of freedom to choose the zero point of energy

FIG. 1. Space time region with timelike and spacelike
boundaries.

2For Neumann boundary condition in four dimensions, there is
no need to any boundary term in the action to make a well-
defined variational principle, see for example [13]. But usually in
gravity one requires a Dirichlet boundary condition for which the
metric on the boundary is fixed.
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and redefine system momenta with canonical transforma-
tion [2,12]. On the other hand, Eq. (10) leads to infinities
when calculated for large spheres in general systems in
spacetime. The Brown-York proposal is to choose sub-
traction term S0 such that the modified action S − S0 leads
to zero energy for flat spacetime. Therefore, the zero point
is chosen to be the flat spacetime while the scheme for other
geometries is to embed their boundary in flat spacetime.
Thus, the modified expression for the stress tensor will be

Tab¼ 2
ffiffiffiffiffiffi−γp δS

δγab
−

2
ffiffiffiffiffiffi−γp δS0

δγab
¼ 1

8π
ðχab−χγabÞ−

2
ffiffiffiffiffiffi−γp δS0

δγab
:

ð11Þ

As another remark, if we want to consider the effect of
joints or nonorthogonal boundaries, we must care about the
components of δγab contained in δqab that appeared in the
last term of (7). Also, we must be careful about the question
that with respect to which observer we desire to calculate
the quasilocal quantities. Note that when the boundaries are
nonorthogonal, the Eulerian observers orthogonal to Σ
constant are different from the observers orthogonal to S
constant in the boundary T . In these cases, a further
decomposition of the induced metric γab with the assistance
of the vector ua ¼ N∇at is required, where t is a foliation
of T . By this decomposition we get [12]:

δγab ¼ δqab −
2

N
uðaδVbÞ − uaub

δN
N

;

where N and Va are lapse and shifts of decomposition. The
components of δS

δγab
can be calculated as

ϵ≡ uaubTab ¼ −
1
ffiffiffi
q

p δS
δN

; ð12Þ

ja ≡ qacubTcb ¼ −
1
ffiffiffi
q

p δS
δVa

; ð13Þ

sab ≡ qacqbdTcd ¼
2

N
ffiffiffi
q

p δS
δqab

; ð14Þ

which are known respectively as the quasilocal energy
density, tangential momentum density and spatial stress.
The details of calculations for different observers can be
found in [12,16]. In these cases it has been shown that a
double foliation of space-time is a natural setup for
calculations as described in appendices of [12]. There,
the relation between quantities, as measured by different
observers, has been obtained. The relations between two
sets of normals to S as depicted in Fig. 2 is

n̄a ¼ γðna − vuaÞ ð15Þ
ūa ¼ γðua − vnaÞ: ð16Þ

The quasilocal energy density associated with the two
surfaces S as seen by the observers orthogonal to Σ constant
is [12]

ϵ ¼ 1

8π
ðγkþ γvlÞ − 2

ffiffiffiffiffiffi−γp δS0
δγab

uaub; ð17Þ

where kab ¼ −qcaqdb∇cn̄d and lab ¼ −qcaqdb∇cūd are
defined so that k and l are their trace, respectively.
In the case for which two observers are at rest with respect
to each other, i.e., v ¼ 0 or, in other words, the boundaries
are orthogonal, the quasilocal energy density becomes:

ϵ ¼ 1

8π
ðk − k0Þ; ð18Þ

where k0 is the corresponding extrinsic curvature as
embedded in flat space. So, the total quasilocal energy
on S becomes [2,12]:

E ¼ 1

8π

Z

S
dd−2x

ffiffiffi
q

p ðk − k0Þ: ð19Þ

Evaluating the above integral provides an expression for E
as a function of r, E ¼ EðrÞ. However, we must note that
because of the Eq. (17), in general the form of this function
varies for different observers. For example, in the case of
Schwarzschild black hole the function for static, radially
infalling and boosted observers has been obtained in [16].
As the last point, let us note that for the above relations,

and for different observers, it is always assumed that these
observers do not move in null geodesics. In fact, null
observers cannot be contained in the above setup because
the normal vectors (or four-velocities) are always normal-
ized to unity. As the name indicates, due to the fact that the
norm vanishes for null observers, normalization does not
make sense in this case. In fact, here, the normal vectors or
four-velocities are both normal and tangent to the hyper-
surface, the induced metric becomes degenerate, and the
usual extrinsic curvature does not make sense.

FIG. 2. Nonorthogonal boundaries.
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In the next section we will use standard treatment for null
hypersurfaces. The resulting stress tensor can provide the
quasilocal quantities as measured by null observers.

C. Asymptotic AdS spacetime and counterterm method

Finding a proper subtraction term by embedding in
reference spacetime is a difficult task. In fact, it is not
possible to embed a boundary with an arbitrary intrinsic
metric in the reference spacetime. In the case of asymp-
totically AdS spacetimes, there is an attractive proposal
without necessity of embedding in reference spacetime as
proposed in [17]. This approach is inspired from AdS=CFT
duality [18,19] by interpreting divergences which appear in
stress tensor when the boundary is moved to infinity as dual
to standard ultraviolet divergences of quantum field theory;
then, they can be removed by adding local counterterms to
the boundary action. For instance, for AdS4 the counter-
term Lagrangian in the boundary proposed to be

Lct ¼ −
2

l
ffiffiffiffiffiffi
−γ

p �

1 −
l2

4
R
�

; ð20Þ

where R is the scalar curvature of induced metric on the
boundary, and l is the AdS radius. Adding this term to the
usual GHY term in the timelike boundary, then variation of
action yields to a regularized stress tensor such that energy
becomes finite at the r → ∞ limit.3 The main advantage of
this method, beside the fact that counterterms are covariant
and do not spoil the variational principle, is the lack of
embedding difficulties in the BY method. However, these
counterterms are known just for asymptotically AdS
spaces. For asymptotic flat space, since there is no length
scale l, finding such counterterms is problematic. Also, the
limit l → ∞ in Eq. (20) does not lead to a unique covariant
expression [21].

III. HAMILTON-JACOBI ANALYSIS
ON NULL BOUNDARY

In this section we are going to repeat the calculation of
the previous section when instead of a timelike boundary
we have a null one. The corresponding spacetime region is
illustrated in Fig. 3. In order to calculate the variation of the
action in this region we need to express surface divergences
in the variation of HE action in terms of geometric objects
of spacelike surfaces, i.e., Σ1, Σ2 and the null boundary N .
Variation on Σ1 and Σ2 is similar to the previous section;
however, for a null surface (because of degeneracy of
induced metric and divergence of extrinsic curvature) the
calculation is completely different. In this section, we first
introduce the basic tools for general investigation of null
boundaries (without any gauge fixing) by introducing a

general double foliation. Then, we find canonical momenta
in this hypersurface so that by varying the action with
respect to the metric components on this hypersurface we
find stress tensor on the boundary.

A. The setup

A segment N of the spacetime boundary, characterized
by ϕ0 ¼ 0, is called a null hypersurface if ∇aϕ0∇aϕ0 ¼ 0.
This feature of null boundary indicates that the normal
vector to the null surface is also tangent to it. This property
is the origin of some difficulties when dealing with such
hypersurfaces; because, as a consequence, the induced
metric becomes degenerate and therefore constructing a
projector to the null surface just from its normal is not
possible. One standard remedy to this problem is to
introduce an auxiliary null vector ka which lays out of
the hypersurface and therefore laka ≠ 0, when la is the
null normal to the boundary, e.g., la ∝ ∇aϕ0 on the
boundary. For more details about the geometry of null
hypersurfaces we refer the interested reader to [22,23].
By defining la as the normal to the null boundary, we

introduce the auxiliary null form ka and take the normali-
zation of these null forms to be everywhere as:

lala ¼ 0; kaka ¼ 0 and laka ¼ −1: ð21Þ

With the aid of la and ka, we can define the projector as:

qab ¼ δab þ lakb þ kalb ð22Þ

This projector is not in fact a projector on null surface;
instead, it essentially projects spacetime vectors onto the
codimension two surface S, to which la and ka are
orthogonal.
A systematic approach to define these codimension two

surfaces is to use a double-foliation by two scalar fields
ðϕ0;ϕ1Þ. The intersection of level surfaces of ϕ0 and ϕ1 are
the codimension two surfaces S. In this foliation la and ka
can be expanded generally as:

FIG. 3. Space-time region with a null and space-like
boundaries.

3In [20] a topological method is proposed for finding standard
counterterm series of AdS gravity.
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la ¼ A∇aϕ0 þ B∇aϕ1 ð23Þ

ka ¼ C∇aϕ0 þD∇aϕ1 ð24Þ

Three out of four coefficients in the above expansions are
determined by normalization conditions (21) and one
remains free, due to the rescaling or boost gauge freedom
ðla → αla; ka → 1

α κaÞ. On the boundary, we set the
coefficient B ¼ 0, so that the boundary is a level surface

of ϕ0 and we have la ¼B A∇aϕ0, and it is null because
∇aϕ0∇aϕ0 ∝ lala ¼ 0. Note that la and ka are form fields
defined in whole space-time and everywhere we have
l2 ¼ k2 ¼ 0, whereas ∇aϕ0∇aϕ0 ¼ 0 is satisfied just on
the boundary. In fact, in general we have ∇aϕ0∇aϕ0 ¼
2BD

AD−BC from which one could specify the location of null
boundary as B ¼ 0. The other point regarding to this
foliation comparing to single foliation is that the vectors
la and ka are not in general hypersurface orthogonal. In
fact using Eqs. (23) and (24), one can easily evaluate
l½a∇blc� or k½a∇bkc�, which for general value of functions
fA; B;C;Dg do not vanish. So according to the Frobenius
theorem, vectors la and ka are not in general hypersurface
orthogonal.
In this double foliation framework, the spacetime metric

becomes:

gabdxadxb ¼ Hijdϕidϕj þ qABðdσA þ βAi dϕ
iÞ

× ðdσB þ βBj dϕ
jÞ; ð25Þ

in which fi; jg ∈ f0; 1g whereas fA; Bg ∈ f2;…; d − 1g.
Here σA are coordinates on codimension two surface S and
βAi are shift vectors. The normal metricHij consists of lapse
functions as

Hij ¼ −
�

2AC BCþ AD

BCþ AD 2BD

�

: ð26Þ

By covariant differentiation of vectors la and ka and
projecting them in different directions, using qab, l

a, and
ka, we can define the following geometric objects from
∇alb and ∇alb:

∇alb ¼ −Θab − ωalb − laηb − kaab þ κkalb − κ̄lalb;

ð27Þ

∇bkb ¼ −Ξab þ ωakb − kaη̄b − laāb − κkakb þ κ̄lakb:

ð28Þ

These relations are generalizations of the relation ∇anb ¼
−Kab þ naab to current case where decomposition has
been done with two null vectors. The definitions are as
follows:

Θab ¼ −qcaqdb∇alb; Ξab ¼ −qcaqdb∇akb;

ηa ¼ qcakb∇blc; η̄b ¼ qcalb∇bkc;

ωa ¼ qcakb∇clb ¼ −qcalb∇ckb;

aa ¼ qcalb∇blc; āa ¼ qcakb∇bkc;

κ ¼ lakb∇alb ¼ −lalb∇akb;

κ̄ ¼ kalb∇akb ¼ −kakb∇alb; ð29Þ

where Θab and Ξab are extrinsic curvatures of S while ωa,
ηa, and η̄a are twists. In addition, aa and āa are tangent
accelerations of la and ka to S, respectively. Moreover, κ
and κ̄ are in-affinity parameters.4

As a side remark, let us point out that this general double
foliation described above is different from double null
foliation as considered by various authors [24,25].
Although, the double null foliation is useful for initial
value problem as shown by Sachs [26], one could show that
for variational principle it suffers from having a partial
gauge fixing condition which is a disadvantage [27]. This is
because requiring that the level sets of a coordinate ϕ being
null, fixes one of the metric components:

gϕϕ ¼ g−1ðdϕ; dϕÞ ¼ 0:

The double null foliation is a special case of the above set
up if we set B ¼ C ¼ 0 in whole spacetime. If fact, we will
see in the next section that the variation of such components
is important for finding complete canonical structure, and
more importantly the canonical momenta of such variations
is the quasilocal energy density of system.

B. Variation of Hilbert-Einstein action

The main point in calculating the variations on a null
surface is that the operators δ for variations and the
covariant derivative ∇ are defined in spacetime, whereas
the condition for boundary, in the above setup B ¼ 0, is
valid only on the null boundary. Thus, we must first apply
these operators and then impose the condition B ¼ 0. For
example consider variation of the vector la given by
Eq. (23). By variation of this vector on the boundary,
one finds δla ¼ δA∇aϕ0 þ δB∇aϕ1. On the other hand, if
we set B to zero first and then vary the equation, we find
that δla ¼ δA∇aϕ0. This variation is not valid, because
variation of one degrees of freedom in metric has been
killed in this relation, i.e., δB ∝ lalbδgab ¼ 0. This varia-
tion is responsible for taking out the boundary from being
null. To avoid losing any degree of freedom, in the
following we will not set B ¼ 0 until the end of
calculations.

4The quantity κ is called surface gravity in the case of a black
hole horizon null surface.
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We consider a hypersurface to be a leaf of one of the foliations, let it be ϕ0 ¼ const: Variation of HE action on such
hypersurface in the double foliation determined by Eqs. (23) to (25) leads to [11]:

δSHE ¼ 1

8π
δ

�Z

N
dd−1x

ffiffiffi
q

p ½DðΘþ κÞ − BðΞþ κ̄Þ� þ
Z

S2

S1

dd−2x
ffiffiffi
q

p
lnD

ffiffiffiffi
H

p �

þ 1

16π

Z

N
dd−1x

ffiffiffi
q

p ½DðΘab − qabðΘþ κÞÞ − BðΞab − qabðΞþ κ̄ÞÞ�δqab

þ 2ωaδβ1a − 2ΞδBþ 2ΘδDþ 1

16π

Z
S2

S1

dd−2x
ffiffiffi
q

p ðlnD
ffiffiffiffi
H

p
qabÞδqab; ð30Þ

where H is the determinant of Hij defined above. The first
line as a total variation suggests appropriate boundary term
that must be subtracted in order to have a well-posed
variational principle. The total variation term in the
boundary integral, i.e.,

ffiffiffi
q

p ½DðΘþ κÞ − BðΞþ κ̄Þ�; ð31Þ

has a nice geometric interpretation. It can be rewritten as
ffiffiffiffiffiffi−gp

vaKa, where va ¼ ∇aϕ0 ¼ 1ffiffiffi
H

p ðDla − BkaÞ is the

normal to the hypersurface, and Ka
bc ¼ −ðka∇blc þ

la∇bkcÞ is defined such that Ka is its trace on two last
indices.5

On a null boundary now we set B ¼ 0; thus, we find the
action with a well-posed variational principle to be

S ¼ 1

16π

Z

M
ddx

ffiffiffiffiffiffi
−g

p
R −

1

8π

Z

N
dd−1x

ffiffiffi
q

p ½DðΘþ κÞ�

þ 1

8π

Z
S2

S1

dd−2x
ffiffiffi
q

p
lnD

ffiffiffiffi
H

p
: ð32Þ

Let us recall that, as mentioned in previous subsection,
there is a scaling boost gauge symmetry in null hypersur-
face description by two vectors la and ka. We can use this
gauge freedom to set D ¼ 1 in this gauge and by putting
B ¼ 0 we have

ffiffiffiffi
H

p ¼ A. Therefore, the action becomes:

S ¼ 1

16π

Z

M
ddx

ffiffiffiffiffiffi
−g

p
R −

1

8π

Z

N
dd−1x

ffiffiffi
q

p ðΘþ κÞ

þ 1

8π

Z
S2

S1

dd−2x
ffiffiffi
q

p
lnA: ð33Þ

This is what was found in [7,8]. In [6] the authors also have
set the lapse A ¼ 1, so the last term vanishes. Using the
above action, the variation of the principal function on the
null boundary becomes:

δS¼ 1

16π

Z

N
dd−1x

ffiffiffi
q

p ð½ðΘab−qabðΘþκÞÞ�δqab

þ2ωaδβ
a
1−2ΞδBÞþ 1

16π

Z
S2

S1

dd−2x
ffiffiffi
q

p ðlnAqabÞδqab:

ð34Þ

A similar expression for canonical structure on the null
boundary has been found in [8]. There, the authors consid-
ered only the variations that keeps the boundary to remain
null, thus, the last term of the first line was missing in their
analysis. Note that in this expression δqab, δβ1a, and ð−2δBÞ
are all variations of the metric components tangential to the
boundary as easily can be seen from the decomposition (25).
This is an important point because, as in the non-null case,
the variational principle tells us that for the Dirichlet
boundary condition we only need to fix the tangential
metric components. Here also the number of degrees of
freedommatcheswith the non-null case; for example, in four
dimensions δhab has six components while ðδqab; δβ1a;
−2BÞ altogether have 3þ 2þ 1 ¼ 6 components.

C. The stress tensor

Having found the variation of action on the null
boundary, we can use the BY prescription to find the
stress tensor on the boundary. In doing so we must
differentiate the principal function in space-time region,
illustrated in Fig. 3, with respect to the metric component
tangential to the null boundary segments N . Note that
differentiating with respect to metric components in Σ1 and
Σ2 gives the canonical momenta Pab similar to the previous
section. According to the Eq. (25), the metric components
tangential toN are ðδqab; δβ1a;−2BÞ. Note that, in contrast
to the previous timelike boundary presented in the last
section, there is no induced metric on null surface; thus, we
must differentiate with respect to each component of metric
separately according to:

2
ffiffiffi
q

p gacgbd
δSjN
δgcd

¼ 2
ffiffiffi
q

p
�

qacqbd
δS
δqcd

− qcðakbÞ
δS
δβ1c

þ kakb
δS

δð−2BÞ
�

: ð35Þ

5We note that the common Gibbons-Hawking-York term can
be rewritten as:

ffiffiffiffiffiffijhjp
K ¼ ffiffiffiffiffiffi−gp ∇aϕðnaKÞ, with K ¼ −∇ana, in

this sense, the above term is a generalization of GHY term for null
surfaces.
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Where the notation jN means differentiating with respect to
the metric component tangential to the null boundary. On
the other hand, the variational principle does not fix the
boundary action completely; therefore, we can subtract any
functional S0 of fixed boundary data from the action (33).
Using the expression (34), hence, the stress tensor compo-
nents read:

ϵ≡ lalbTab ¼ −
1
ffiffiffi
q

p δS
δB

¼ 1

8π
½Ξ − Ξ0�; ð36Þ

ja ≡ qaclbTcb ¼
1
ffiffiffi
q

p δS
δβ1a

¼ 1

8π
½ωa − ωa

0�; ð37Þ

sab ≡ qacqbdTcd

¼ 2
ffiffiffi
q

p δS
δqab

¼ 1

8π

�

Θab − qabðΘþ κÞ − 2
ffiffiffi
q

p δS0

δqab

�

;

ð38Þ

where ωa
0 and Ξ0 are defined as:

ωa
0 ¼

1
ffiffiffi
q

p δS0

δβ1a
; Ξ0 ¼ −

1
ffiffiffi
q

p δS0

δB
:

According to the BY prescription, Eqs. (36) to (38) may be
used to define quasilocal energy density ϵ, tangential
momentum density ja, and spatial stress sab, respectively.
The subtraction term S0 is related to the zero point of

energy and must be well chosen so that the stress tensor
leads to finite energy for different systems and conven-
tionally zero energy for Minkowski space time. The
expression (36) is similar to the Eq. (18) for timelike
boundary. Ξ is defined by Ξ ¼ −qab∇akb while k reads as
k ¼ −qab∇anb. The similarity is in the sense that for null
boundary the only vector pointing out of the boundary is
ka. For non-null boundaries, studied in the previous
section, the normal to boundary was also pointing out of
it; however, note that for null hypersurfaces the normal is
within the boundary.

IV. QUASILOCAL QUANTITIES

In this section we examine the proposed stress tensor by
evaluating conserved charges of various space-times and
then we compare it with the known results. Here, as to the
timelike boundary, we propose the quasilocal quantity to be

Qξ ¼
Z

S
dd−2x

ffiffiffi
q

p
Tablaξb; ð39Þ

where la has the role of time flow on the boundary while ξa

is a Killing vector which generates an isometry of the
boundary. If la is the generator of time translation
symmetry, then the total energy becomes:

E ¼
Z

S
dd−2x

ffiffiffi
q

p
ϵ; ð40Þ

where the quasilocal energy density ϵ is defined by (36).
When there is a rotational Killing vector ζa, then its
corresponding angular momentum is

J ¼
Z

S
dd−2x

ffiffiffi
q

p
jaζa: ð41Þ

In the following we will calculate the above quantities for
some well-known gravitational solutions.

A. Minkowski space

The simplest example for investigation is Minkowski
spacetime. In retarded-spherical coordinates the metric is as
follows:

ds2 ¼ −du2 − 2dudrþ r2dΩ2 ð42Þ

where dΩ2 ¼ γABdσAdσB is the metric on a unit sphere. It
is evident that u ¼ const: is a null surface. Comparing the
above line element with Eq. (25) and using the foliation
relations (23) and (24) yields la ¼ ∇au, ka ¼ ∇arþ 1

2
∇au

and qAB ¼ r2γAB. From the definitions (29) one easily
finds:

ΘAB ¼ −2ΞAB ¼ rγAB; ωA ¼ 0: ð43Þ

As a result Ξ ¼ − 1
r, and the integral

R
dθdϕ

ffiffiffi
q

p Ξ ¼
−
R
dθdϕr sin2 θ will be infinite as r → ∞. Subtracting

Ξ0 leads to zero energy for flat space as expected. In fact,
by using its definition we calculate Ξ0 as embedding of
boundary in flat space. Then, one could show that Ξ ¼ Ξ0

and as a result the energy density vanishes. In other words,
in this case, the physical and reference spacetimes are
the same.

B. Schwarzschild black hole

Our next simple example is the Schwarzschild black
hole. In retarded Eddington-Finkelstein coordinates the
metric is given by:

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ2: ð44Þ

In this case we have la ¼ ∇au and ka ¼ 1
2fðrÞ∇auþ∇ar.

Here, by calculating the quasilocal energy density,
we get:

ϵ ¼ 1

8π
½Ξ − Ξ0� ¼

1

8π

�

−
fðrÞ
r

þ 1

r

�

: ð45Þ

Here, we have used the fact Ξ0 ¼ − 1
r, as a result of

embedding in flat space, and Ξ ¼ − fðrÞ
r which can easily
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be found. By replacing fðrÞ ¼ 1 − 2M
r , we obtain ϵ ¼ M

4πr2.
Thus the total energy becomes:

E ¼
Z

π

0

Z
2π

0

dθdϕr2 sin θϵ ¼ 4πr2
�

M
4πr2

�

¼ M: ð46Þ

It is interesting that the quasilocal energy, as calculated for
the null observers inN , is independent of the distance r for
which the energy is calculated. At first sight, it may seems
strange because the usual BY expression for energy is just
equal to the ADM mass at r → ∞. However, notice that as
mentioned previously, in general the function EðrÞ is
observer dependent. The in-dependency of energy to the
distance also has been observed for boosted foliation of
Schwarzschild black hole in Ref. [12].

C. AdS-Schwarzschild black hole

In the above example, we considered the usual asymp-
totic flat Schwarzschild black hole. The validity of the
above procedure for asymptotic AdS/dS black holes could
be justified as follows. In fact, our method is similar to the
usual Brown-York strategy for quasilocal quantities. Let us
point out that in timelike case, for every geometry that can
be contained in a spacetime region depicted in Fig. 1, one
must be able to calculate quasilocal quantities. The only
subtlety here is the problem of choosing the reference
spacetime. For asymptotic flat space, the natural choice is
Minkowski space. On the other hand, the preferred refer-
ence for asymptotic AdS spacetime is the AdS space (see,
e.g., Ref. [28]). For spacetime region in this study, namely
Fig. 3, the same story is true. Moreover, for AdS-
Schwarzschild black hole we have to embed the null
hypersurface in AdS space in order to obtain an expression
for the reference term. Consider the metric

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ2 ð47Þ

with fðrÞ ¼ 1þ r2

l2 −
2M
r , for AdS-Schwarzschild black

hole. One can easily calculate Ξ0 and Ξ as

Ξ0 ¼ −
1

r
−

r
l2
; Ξ ¼ −

fðrÞ
r

ð48Þ

from which the quasilocal energy density will be obtained
as ϵ ¼ M

4πr2. Thus, simple integration leads to the ADM
massM for these black holes. Furthermore, the same results
could be derived in the case of asymptotic dS black hole if
we choose the reference spacetime to be dS.

D. Slow-rotating black hole

Here we examine conserved quantities for slow rotating
Kerr black holes. Again we write the metric in the retarded
Eddington-Finkelstein coordinates:

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ2

þ 2J
r
sin2θdudϕþ 2J

rfðrÞ sin
2θdrdϕ: ð49Þ

Comparing with metric (25) we arrive at:

A ¼ 1; B ¼ 0; C ¼ 1

2f
; D ¼ 1;

β1ϕ ¼ 2J
r
sin2θ; β2ϕ ¼ 2J

rf
sin2θ: ð50Þ

Up to the first power in J, one finds the same expression for
energy as the Schwarzschild case. The angular momentum
quantity is related to ωa, using its definition we find:

ξaωa ¼
3Jsin2θ

r2
; ð51Þ

where ξ ¼ ∂ϕ is rotational Killing symmetry. Therefore, the
total angular momentum becomes:

Qξ ¼
1

8π

Z
π

0

Z
2π

0

dθdϕr2 sin θ
3Jsin2θ

r2
¼ J: ð52Þ

E. Asymptotic flat spacetime and the Bondi mass

Here, we want to study the quasilocal quantities for
gravitational theories in which the metric has an asymptotic
flat space behavior. In order to do that, we suppose the
metric in the Bondi coordinates. In this gauge, the most
general four-dimensional metric takes the form:

ds2 ¼ −UVdu2 − 2Vdudrþ qABðdσA
þ UAduÞðdσB þUBduÞ ð53Þ

where ∂r detðqABr2 Þ ¼ 0. By comparison the above equation
with Eq. (25), we find:

A ¼ V; B ¼ 0; C ¼ U
2
; D ¼ 1;

βA0 ¼ UA; βA1 ¼ 0: ð54Þ

The expressions for ΘAB and ΞAB in the metric (25) have
been calculated explicitly in [11] and are:

ΘAB ¼ −
1

2
ffiffiffiffi
H

p ðB∂0qAB − A∂1qAB

− 2BDðAβ0BÞ þ 2ADðAβ1BÞÞ; ð55Þ

ΞAB ¼ −
1

2
ffiffiffiffi
H

p ð−D∂0qAB þ C∂1qAB

þ 2DDðAβ0BÞ − 2CDðAβ1BÞÞ; ð56Þ
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where D is covariant derivative on two sphere S, compat-
ible with the metric qAB.

6 Using standard asymptotic
expansions [29]:

U ¼ 1 −
2mB

r
þO

�
1

r2

�

; V ¼ 1þO
�
1

r2

�

βA0 ¼ WA

r2
þO

�
1

r3

�

; qAB ¼ r2γAB þOðrÞ

we can easily find the following leading terms for Ξ:

Ξ ¼ −
1

r
þ 2mBðu; σAÞ

r2
þDAWA

r2
þO

�
1

r3

�

:

By embedding in flat space we have the reference term
Ξ0 ¼ − 1

r. The term DAWA is a total derivative on compact
two sphere S which vanishes by integration. Thus, finally
the total energy becomes:

E ¼ 1

8π

Z

S
d2x

ffiffiffi
q

p
ϵ ¼ 1

4π

Z

S
dΩmBðu; σAÞ ð57Þ

which is the expression known as Bondi mass.

F. A possible counterterm for asymptotic flat spacetime

We have seen that for asymptotic AdS space there is a
counterterm method for regularizing quasilocal quantities
that has some advantages. The first benefit is that the
dependency on the reference spacetime and mathematical
difficulty of embedding is avoided. Furthermore, the
counterterms have a direct interpretation in the dual field
theory and have an important role for building the dic-
tionary of AdS=CFT. Then the natural question is that: why
is there no similar counterterms for flat space? For flat
space there is not a length scale counterpart to the AdS
length scale; thus, we cannot have terms like: l2n−1Rn. In
addition, the counterterms should not spoil the variational
principle so that the extrinsic curvature terms are forbidden.
Therefore, on the timelike boundary we do not have a
viable candidate as counterterm in asymptotic flat space-
time. However, as we have seen in this paper, null
boundaries are special. Consider the following term on
the null boundary:

α

Z

N
dd−1x

ffiffiffi
q

p
BΘ ð58Þ

with arbitrary numerical coefficient α. The first point is that
adding such term is compatible with Dirichlet boundary
conditions. Also, we must note that although the above

term vanishes on the null boundary, its variation is not zero.
Therefore, it has a contribution to the stress tensor and
energy though it is zero for on-shell action. Fortunately, we
can set the coefficient α ¼ − 1

2
so that its contribution to

energy make the total finite. By adding this term to the
boundary action, the quasilocal energy density becomes:

ϵ ¼ 1

8π

�

Ξþ 1

2
Θ
�

: ð59Þ

For asymptotic flat spacetime studied previously, using
(55), Θ is easily computed and its leading terms is as:

Θ ¼ 2

r
þO

�
1

r3

�

: ð60Þ

Therefore the expression (59) leads to correct total energy
without need to embedding and reference spacetime.

V. CONCLUSION AND OUTLOOK

In this work we have extended the Brown-York pre-
scription to the case of null boundaries. For the achieve-
ment of this goal we needed a general double foliation
framework. The mathematics of this general double foli-
ation is described in [11] and reviewed and clarified here.
The main reason for considering such framework is that a
single or double null foliation is basically gauge fixed, and
are not appropriate for a variational problem, because some
degrees of freedom are already fixed by considering a null
foliation:

gϕϕ ¼ g−1ðdϕ; dϕÞ ¼ 0:

Variation of Hilbert-Einstein is calculated on such general
double foliation in [11]. The main unanswered question in
that article was to determine the physical meaning of metric
variation on such null boundary. This question is answered
here. We especially have seen that the variation of one
metric component is responsible for taking away the
boundary from being null. It was shown that an exact
derivation with this variation gives the expression for
quasilocal energy density. In addition, the expressions
for total energy and angular momentum were examined
for some known spacetimes. Moreover, a special property
of the calculated energy for null observers was found to be
the in-dependency to radial distance. Furthermore, it was
shown that in the case of null boundaries, there is a possible
counterterm which is consistent with the variational prin-
ciple and can be added to boundary action so that the total
energy becomes finite, without the necessity of embedding
in reference spacetime.
Regarding the similarity with the standard AdS=CFT

dictionary, one may interpret the introduced stress tensor
as expectation value of stress tensor in dual field theory
to flat space. Because, according to Penrose diagrams for

6These relations are counterpart to the well-known
relation for extrinsic curvature in 3þ 1 decomposition:
Kij ¼ − 1

2N ð∂thij − 2DðiNjÞÞ.
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asymptotic flat spacetimes, the null hypersurfaces Iþ
and I− are regarded as the boundaries of space-
time; thus, one application of the stress tensor found in
this paper may be flat holography. In this context, the
relation between asymptotic symmetries and some special
limits—for example, Carrolian symmetry—is worthwhile
to investigate [30].
Another application of the formalism presented in this

article and [11] is to revisit the gravity in light-front. The
usual investigation of gravity in light-front uses the double-
null foliation of spacetime [31,32]. However, as noted
above, the double-null foliation leads to partial gauge fixing
of the metric. It is in contrast to field theory formulation in
the light-front coordinate which no gauge fixing is required.

As we have seen a general double foliation can preserve all
degrees of freedom. Thus, it is motivating to revisit gravity
in light-front.
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