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We examine hyperbolicity of general relativistic magnetohydrodynamics with divergence cleaning, a flux-
balance law form of themodel not covered by our earlier analysis. The calculations rely again on a dual-frame
approach, which allows us to effectively exploit the structure present in the principal part. We find, in contrast
to the standard flux-balance law form of the equations, that this formulation is strongly hyperbolic, and thus
admits a well-posed initial value problem. Formulations involving the vector potential as an evolved quantity
are then considered. Carefully reducing to first order, we find that such formulations can also bemade strongly
hyperbolic. Despite the unwieldy form of the characteristic variables we therefore conclude that of the free-
evolution formulations of general relativistic magnetohydrodynamics presently used in numerical relativity,
the divergence cleaning and vector potential formulations are preferred.
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I. INTRODUCTION

It is well appreciated [1,2] that the numerical modeling
of binary neutron star spacetimes plays, and will continue
to play, an important role in the new field of gravitational
wave astronomy, particularly in the case of multimessenger
events. Such simulations are, however, hampered by
relatively poor error behavior as compared with their
vacuum, black hole counterparts. This is in part because
the equations of motion of these models have a more
complicated structure than those of pure general relativity,
and are hence less well understood, but also because
solutions naturally develop nonsmooth features, not to
mention the ever-present complication of the stellar surface.
In a recent contribution [3] we employed a new tool, the

dual-frame (DF) formalism [4–7], to analyzewell-posedness
of various fluid models. Well-posedness is the weakest
necessary condition to require of a set of evolution partial
differential equations (PDE) so that numerical approxima-
tion to their solutions may be meaningfully sought. The
formalism can be used to exploit structure in the field
equations and hence simplifies earlier treatments. This
should allow more sophisticated results to be shown in the
future.
One of the models treated in Ref. [3] was (ideal) general

relativistic magnetohydrodynamics (GRMHD), taken in
two different guises. In the Valencia flux-balance law form
[8] we found that the field equations are only weakly
hyperbolic, and therefore have an ill-posed initial value
problem. Here we attend to two flavors of GRMHD
untouched by our earlier study, namely the hyperbolic
divergence cleaning (HDC) and vector potential (VP)

formulations. Our main result is that both are strongly
hyperbolic, provided suitable choices are made in the first-
order reduction of the latter.
We work in 3þ 1 dimensions in geometric units with

c ¼ G ¼ 1. Our calculations were performed primarily
with xTensor for Mathematica [9]; our notebooks are
available online in Ref. [10].

II. MATHEMATICAL BACKGROUND

We start with a short overview of the relevant theory,
definitions, and results to the PDE analysis and the DF
formalism. These are taken in a highly summarized form
from Refs. [3,5,7].
Index notation. Latin letters a–e are used as abstract

indices. We also use p as an abstract index, placing it
always on the spatial derivative appearing on the right-hand
side of our first-order PDE system. The four-metric gab is
the only object permitted to raise and lower indices. The
symbol ∂a stands for a flat covariant derivative. Indices u,
S, s, ŝ and s label contraction in that slot with ua or ua and
so on, respectively. Capital Latin letters A–C are taken as
abstract indices and denote appliance of the projection
operators Q⊥ and q⊥, to be defined later. Similarly, we use
indices A–C and Â–Ĉ to denote the application of the
projection operator q⊥ over a vector or dual vector,
respectively.
DF formalism. We describe a region of spacetime in two

different frames, namely the lowercase and the uppercase
frame. We take the lowercase frame as an Eulerian frame,
associated with a coordinate basis as is standard in
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numerical relativity. We denote the future pointing timelike
unit normal vector to spatial slices of constant time, as
usual, by na. Additionally, we take any three linearly
independent vector fields orthogonal to na to form a basis
of the four-dimensional spacetime. Tensors orthogonal to
na are called lowercase spatial, or just lowercase. The
uppercase frame consists of a future pointing timelike unit
vector Na, which is identified in the application below with
the fluid four velocity ua, plus any three linearly indepen-
dent vector fields orthogonal to Na. Tensors orthogonal to
Na are likewise called uppercase spatial, or just uppercase.
The future pointing unit vectors of the lower- and uppercase
frames can be mutually 3þ 1 decomposed as

na ¼ WðNa þ VaÞ; Na ¼ Wðna þ vaÞ; ð1Þ

with the Lorentz factorW¼ð1−VaVaÞ−1=2¼ð1−vavaÞ−1=2.
The vectors va ¼ v̂a=W and Va are the boost vectors
orthogonal to na and Na, respectively. We define projection
operators by

γba ¼ δba þ nbna; ðNÞγba ¼ δba þ NbNa; ð2Þ

which are also denoted as the lowercase and uppercase
spatial metrics, respectively. By definition, the relations
γbanb ¼ 0, ðNÞγbaNb ¼ 0 hold. We define furthermore the
lowercase and uppercase boost metrics and their inverses,
which are presented in Table I.
PDE analysis. We consider a quasilinear system of first-

order evolution PDEs, in this case GRMHD with HDC,
written in the form

∇uU ¼ Ap∇pUþ S; ð3Þ

with the covariant derivative along the streamlines of the
fluid elements ∇u ≡ ua∇a of the vector of evolved vari-
ables, called the state vectorU, on the left-hand side. On the
right-hand side, the covariant derivative of the state vector
is contracted with the principal part Ap, Aaua ¼ 0. The
symbol S stands for the source term which does not affect
the level of hyperbolicity. We need only analyze the system
of evolution equations for the matter variables, since they
are minimally coupled to the Einstein equations for the
components of the metric tensor.

Strong hyperbolicity. For the hyperbolicity analysis, we
have to perform a 2þ 1 decomposition against lowercase
and/or uppercase spatial vectors and their respective
orthogonal spatial projectors. The relevant quantities are
defined in Table II. Taking an arbitrary uppercase unit
spatial 1-form Sa, we define the uppercase principal symbol
of the system (3) as

PS ≡ApSp: ð4Þ

We call the system (3) weakly hyperbolic, if for each Sa the
eigenvalues of PS are real. We call the system (3) strongly
hyperbolic, if the system is weakly hyperbolic and for each
Sa the principal symbol PS has a complete set of right
eigenvectors written as columns in a matrix TS and there
exists a constant K > 0, independent of Sa, such that
jTSj þ jT−1

S j ≤ K. Similar definitions are made if we 3þ 1

decompose the system against na rather than ua, and the
initial value problem, where data are given at t ¼ 0, can be
well-posed only if it satisfies these lowercase strong
hyperbolicity conditions [11–13].
Frame and variable independence of hyperbolicity. If the

uppercase eigenvalues of the principal symbol fulfil the
inequality jλNjjVj < 1 then strong hyperbolicity is inde-
pendent of the chosen frame [3]. By the form of the energy-
momentum tensor of GRMHD, see below, a naturally
preferred frame is the fluid rest frame. Therefore, in the
PDE analysis in Sec. IV, we work exclusively in the
uppercase frame, taken to be the fluid rest frame,
Na ≡ ua; hence the 3þ 1 decomposition in Eq. (3), and
in the following, of the equations against the fluid four
velocity ua and the orthogonal projector ðuÞγab. In numerical
applications, particular sets of variables, such as the
primitive or conservative sets are used. In our analysis,
we make a choice of variables which differs slightly from
those. Our variables are however related to the code
variables by a regular transformation, across which hyper-
bolicity is unaffected.

III. BASICS OF GRMHD

A brief review of the basic definitions, equations, and
assumptions of GRMHD with HDC is now given,

TABLE I. Overview of the uppercase and lowercase quantities.

Uppercase Lowercase

Unit normal Na ¼ Wðna þ vaÞ na ¼ WðNa þ VaÞ
Boost vector Va va ¼ v̂a=W
Lorentz factor W ¼ ð1 − VaVaÞ−1=2 W ¼ ð1 − vavaÞ−1=2
Projector ðNÞγab ¼ gab þ NaNb γab ¼ gab þ nanb
Boost metric ðNÞgab≔ ðNÞγabþW2VaVb gab ≔ γab þ v̂av̂b
Inverse boost ðNÞðg−1Þab¼ðNÞγab−VaVb ðg−1Þab¼γab−vavb

TABLE II. Summary of the various unit spatial vectors appear-
ing in our 2þ 1 decomposed equations, plus their associated
projection operators.

Uppercase Lowercase

Unit normal Na na

Spatial 1-form Sa sa
Spatial vector Sa ¼ ðNÞγabSb ŝa ¼ ðg−1Þabsb
Norm SaSa ¼ 1 saðg−1Þabsb ¼ 1
Projector Q⊥b

a ¼ ðNÞγba − SbSa
q⊥b

a ¼ γba − ŝbsa
Index notation Q⊥BA q⊥B

Â
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following Refs. [14–16]. Presently, the focus lies on the
mathematical structure of the equations, and thus we
suppress some (important) physical insight and statements.
We use Lorentz-Heaviside units for electromagnetic quan-
tities with ε0 ¼ μ0 ¼ 1, where ε0 and μ0 are the vacuum
permittivity (or electric constant) and permeability (or
magnetic constant), respectively. Motivated by the argu-
ments given in the previous section, we work exclusively in
the uppercase (fluid) frame and thus present the system of
equations in a form so adjusted.
The energy-momentum tensor of GRMHD consists of an

ideal fluid part,

Tab
fluid ¼ ρ0huaub þ gabp; ð5Þ

with the four velocity of the fluid elements ua, rest mass
density ρ0, specific enthalpy h, and pressure p, plus the
standard electromagnetic energy-momentum tensor

Tab
em ¼ FacFb

c −
1

4
gabFcdFcd; ð6Þ

with the Faraday electromagnetic tensor field (or for short
field strength tensor) Fab. The specific enthalpy h can be
expressed in terms of ρ0,p, and the specific internal energy ε
as

h ¼ 1þ εþ p
ρ0

: ð7Þ

The local speed of sound cs is defined by the relation

c2s ¼
1

h

�
χþ p

ρ20
κ

�
; χ¼

�∂p
∂ρ0

�
ε

; κ¼
�∂p
∂ε

�
ρ0

: ð8Þ

We assume an equation of state (EOS) of the form

p ¼ pðρ0; εÞ; ð9Þ
with p > 0 given satisfying furthermore that the local speed
of sound lies in the range 0 < cs ≤ 1.
Using the ideal MHD condition, where the electric

conductivity tends to infinity while the electric four-current
remains bounded, the field strength tensor and its dual
become

Fab ¼ ϵabcducbd; ð10Þ
�Fab ¼ uabb − ubba; ð11Þ

respectively, where we introduced the uppercase magnetic
field vector ba, satisfying uaba ¼ 0, and the Levi-Cività
tensor

ϵabcd ¼ −
1ffiffiffiffiffiffi−gp ½abcd�; ð12Þ

where g is the determinant of the spacetime metric gab,
½abcd� is the completely antisymmetric Levi-Cività

symbol, and 2�Fab ¼ −ϵabcdFcd holds. Note that we use
the sign convention of Ref. [17].
Taking the sum of Eqs. (5) and (6), and substituting the

field strength tensor (10), the total energy-momentum
tensor of GRMHD may be written as

Tab ¼ ρ0h�uaub þ p�gab − babb; ð13Þ

with h� ¼ hþ b2=ρ0, p� ¼ pþ b2=2, and shorthand
b2 ¼ baba.
The covariant system of evolution equations is given by

the conservation of the number of particles and the
conservation of energy momentum,

∇aðρ0uaÞ ¼ 0; ð14Þ

∇bTab ¼ 0; ð15Þ

plus the relevant Maxwell equations

∇bð�Fab − gabϕÞ ¼ −
1

τ
naϕ; ð16Þ

which are already augmented by the terms with the scalar
field ϕ to drive the Gauss constraint. Since ba has only
three free components this equation now gives an evolution
equation for ba and ϕ. Elsewhere the notation κ ¼ τ−1 is
employed. The constant τ is the timescale for the expo-
nential driving toward the Gauss constraint for the magnetic
field. Typically ϕ is set to 0 in the initial and boundary
conditions [18].

IV. HYPERBOLICITY ANALYSIS
OF GRMHD WITH HDC

Projecting Eqs. (14)–(16) along the four velocity of the
fluid ua and perpendicular to it by ðuÞγab, the nine evolution
equations which determine the time evolution of the
GRMHD system with HDC are

∇aðρ0uaÞ ¼ 0; ðuÞγab∇cTbc ¼ 0;

ðuÞγab∇cð�Fbc − gbcϕÞ ¼ −
W
τ
Vaϕ;

ub∇cTbc ¼ 0; ub∇cð�Fbc − gbcϕÞ ¼ W
τ
ϕ; ð17Þ

supplemented with an EOS (9). In the limit of ϕ → 0

we find the uppercase Gauss constraint, ðuÞγbc∇bbc ¼
uc∇b

�Fbc ¼ 0.
Taking Eq. (17) and performing algebraic manipulations

similar to the investigation of other formulations of
GRMHD in Ref. [3], we derive the evolution equations
for the pressure,
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∇up ¼ −c2sρ0hðuÞγpcðg−1Þce∇pv̂e þ
κ

ρ0
bp∇pϕþ SðpÞ;

ð18Þ

the boost vector,

ðuÞγabðg−1Þbc∇uv̂c ¼ −
�
bpba
ρ20hh

� þ
ðuÞγpa
ρ0h�

�
∇pp

þ
�

2

ρ0h�
ðuÞγ½babp�ðuÞγbc þ

ba
ρ0h

ðuÞγpc

�

× ðg−1Þce∇p⊥be þ Sðv̂Þa ; ð19Þ

the magnetic field,

ðuÞγabðg−1Þbc∇u⊥bc ¼ 2ðuÞγabðuÞγ½bcbp�ðg−1Þce∇pv̂e

− ðuÞγpa∇pϕþ Sð⊥bÞ
a ; ð20Þ

the specific internal energy,

∇uε ¼ −
p
ρ0

ðuÞγpcðg−1Þce∇pv̂e þ
bp

ρ0
∇pϕþ SðεÞ; ð21Þ

and finally the scalar field variable,

∇uϕ ¼ −ðuÞγpcðg−1Þce∇p⊥be þ SðϕÞ: ð22Þ

The sources are given by

SðpÞ ¼ −c2sWρ0hðuÞγdcðg−1Þce∇dne −
κW
τρ0

ðbaVaÞϕ;

Sðv̂Þa ¼ −WðuÞγabðg−1Þbe∇une þ
2W
ρ0h�

ðuÞγ½babe�Vbbd∇dne

þ 1

ρ0h
baðWVdbe −WðbcVcÞðuÞγdeÞ∇dne;

Sð⊥bÞ
a ¼ 2WðuÞγabðuÞγ½bcbd�ðg−1Þce∇dne

þ 2WðuÞγe½aVb�bb∇une þ
W
τ
Vaϕ;

SðεÞ ¼ −
Wp
ρ0

ðuÞγdcðg−1Þce∇dne −
W
τρ0

ðbaVaÞϕ;

SðϕÞ ¼ −ðWVdbe −WðbcVcÞðuÞγdeÞ∇dne −
Wϕ

τ
:

The auxiliary magnetic vector ⊥bc is defined by the
relation

ðuÞγacðg−1Þcd∇b⊥bd ≔ ðuÞγacðg−1Þcd∇bb̂d

þ Vabdðg−1Þde∇bv̂e: ð23Þ

As usual, square brackets around indices denote antisym-
metrization, so that 2v̂½abb� ¼ v̂abb − v̂bba. We have shown
explicitly that the set of equations (18)–(22) is, up to

nonprincipal terms, which we have not carefully checked,
simply a linear combination of the formulation of GRMHD
with HDC used in numerical applications; see, for example,
Ref. [16]. This verification can be found in the notebook
that accompanies the paper [10].
Writing Eqs. (18)–(22) in a vectorial form with state

vector U ¼ ðp; v̂a;⊥ba; ε;ϕÞT, we obtain, in the notation
of Ref. [3], the principal part in the form

Bu∇uU ¼ Bp∇pUþ S: ð24Þ

Let Sa be an arbitrary unit spatial uppercase 1-form,
SaSa ¼ 1, and Q⊥b

a ≔ ðuÞγba − SbSa be the associated
orthogonal projector. Let sa and q⊥b

a be their lowercase
projected versions, sa ¼ γbaSb, q⊥b

a ≔ γba − ðg−1Þbcscsa.
Decomposing ðuÞγba and γba against Sa and sa, respectively,
Eq. (24) can be written as

ð∇uUÞŝ;Â ≃ PSð∇SUÞŝ;B̂; ð25Þ

where ≃ denotes equality up to nonprincipal terms and
uppercase spatial derivatives transverse to Sa. The uppercase
principal symbol is PS ¼ BS ¼
0
BBBBBBBBBBBBBBB@

0 −c2sρ0h 0B 0 0B 0 κbS
ρ0

− ðbSÞ2þρ0h
ρ2
0
hh� 0 0B bS

ρ0h
− bB

ρ0h�
0 0

− bSbA
ρ2
0
hh� 0A 0BA

bA
ρ0h

bS
ρ0h�

Q⊥B
A 0A 0A

0 0 0B 0 0B 0 −1
0A −bA bSQ⊥B

A 0A 0BA 0A 0A

0 − p
ρ0

0B 0 0B 0 bS
ρ0

0 0 0B −1 0B 0 0

1
CCCCCCCCCCCCCCCA

ð26Þ

with the state vector ordered as

ðδUÞŝ;Â ¼ ðδp; ðδv̂Þŝ; ðδv̂ÞÂ; ðδ⊥bÞŝ; ðδ⊥bÞÂ; δε; δϕÞT:
ð27Þ

The characteristic polynomial Pλ for the principal
symbol (26) is calculated to

Pλ ¼
λ

ðρ0h�Þ2
ð1 − λ2ÞPAlfvénPmgs; ð28Þ

with the quadratic polynomial for Alfvén waves

PAlfvén ¼ −ðbSÞ2 þ λ2ρ0h� ð29Þ

and the quartic polynomial for the magnetosonic waves
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Pmgs ¼ ðλ2 − 1Þðλ2b2 − ðbSÞ2c2sÞ þ λ2ðλ2 − c2sÞρ0h: ð30Þ

Comparing Eq. (30) with our earlier results for the flux-
balance law formulation of GRMHD in Ref. [3], we see that
the linear polynomial associated with the Gauss constraint
is replaced by the quadratic polynomial 1 − λ2. The
entropy, Alfvén, and slow and fast magnetosonic uppercase
eigenvalues remain the same, as before, and are given by

λðeÞ ¼ 0; λða�Þ ¼ � bSffiffiffiffiffiffiffiffiffi
ρ0h�

p ;

λðs�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζS −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2S − ξS

qr
;

λðf�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2S − ξS

qr
; ð31Þ

respectively, with shorthands

ζS ¼ ðb2 þ c2s ½ðbSÞ2 þ ρ0h�Þ
2ρ0h�

; ξS ¼ ðbSÞ2c2s
ρ0h�

: ð32Þ

The remaining two speeds can be associated with the
scalar field and the longitudinal magnetic field [16], and are
given by

λ� ¼ �1: ð33Þ

Since all uppercase eigenvalues have absolute value smaller
than or equal to 1, the relation jλujjVj < 1 is satisfied, so we
may analyze hyperbolicity independently of the frame [3].
Therefore, we analyze the characteristic structure of the
principal symbol in the uppercase frame and the result of
the analysis applies directly to the numerically used system
(in the lowercase).
Continuing the characteristic analysis, we find the left

entropy, scalar field, and longitudinal magnetic field,
Alfvén, and magnetosonic eigenvectors being

�
− p

c2sρ20h
0 0A

�
ρ0 −

κp
c2sρ0h

�
bS

ρ2
0

0A 1 0

�
;

�
0 0 0A �1 0A 0 1

�
;

�
0 0 ∓ ðSÞϵACbC

ffiffiffiffiffiffiffiffiffi
ρ0h�

p
0 −ðSÞϵACbC 0 0

�
;

�
ρ0h�ðλðm�ÞÞ2−b2

c2sρ0h
ðbSÞ2−ρ0h�ðλðm�ÞÞ2

λðm�Þ
bSbA
λðm�Þ

K bA L

�
;

ð34Þ

respectively, where we defined the antisymmetric
uppercase two- and three-Levi-Cività tensors as ðSÞϵAB ¼
SdðuÞϵdAB ¼ ucSdQ⊥A

a
Q⊥B

bϵ
cdab. We employ furthermore

the shorthands

K ¼ ðb2⊥c2s þ ρ0h�ðλðm�ÞÞ2 − b2Þ ðκ þ c2sρ0ÞbS
c2sρ20hð1 − c2sÞ

;

L ¼ ðρ0h�ðλðm�ÞÞ2 − ðbSÞ2Þ
ðλðm�ÞÞ2

ðκðλðm�ÞÞ2 þ c2sρ0ÞbS
ð1 − c2sÞρ20hλðm�Þ

: ð35Þ

The right eigenvectors can be computed and are pre-
sented in the same order,

0
BBBBBBBBBBBBB@

0

0

0B

0

0B

1

0

1
CCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBB@

∓ρ0hðκþc2sρ0ÞbS
ðκþρ0ÞbS
ð1−c2sÞρ0bB
�ð1−c2sÞρ20h

∓ðκþc2sρ0ÞbSbB
∓
�
κp
ρ0
þpþð1−c2sÞρ0h

�
bS

−ð1−c2sÞρ20h

1
CCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBB@

0

0

∓ ðSÞϵBCffiffiffiffiffiffiffi
ρ0h�

p bC

0

−ðSÞϵBCbC

0

0

1
CCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBB@

c2sρ20h
p

−ρ0λðm�Þ
p

ρ0λðm�Þ
pbSb2⊥

½ðbSÞ2þρ0h�ððλðm�ÞÞ2−2ζSÞ�bB
0

ρ0
b2⊥p

½b2þρ0h�ððλðm�ÞÞ2−2ζSÞ�bB
1

0

1
CCCCCCCCCCCCCCCA

: ð36Þ

We have introduced in the magnetosonic eigenvectors
the orthogonal magnetic field vector as ba⊥ ¼ Q⊥a

bb
b with

b2⊥ ¼ ba⊥b⊥a ¼ bAbA. As for the prototype algebraic con-
straint-free formulation treated in Ref. [3], rescaled ver-
sions of the left eigenvectors (34) and right eigenvectors
(36) can be derived. They form complete sets of nine
linearly independent eigenvectors under type-I, type-II, and
type-II0 degeneracies [15,19]. The rescaling can be found in
the notebook provided in Ref. [10]. Thus, as long as p ¼
pðρ0; εÞ > 0 and 0 < cs < 1 hold, the formulation of
GRMHD with HDC as given above forms a strongly
hyperbolic system of equations.
In the limit of cs → 1, it can be shown that the fast

magnetosonic waves collide pairwise with the waves
associated to the scalar field and longitudinal magnetic
field, in the case of which the system is only weakly
hyperbolic. The limiting procedure can be found in the
provided notebook. This is a consequence of taking
the divergence cleaning to happen at the speed of light.
By the simple replacement ϕ → c−2ϕ ϕ, cϕ > 0 in Eq. (22),
the divergence cleaning speed becomes λ� ¼ �cϕ. For
cϕ > 1, strong hyperbolicity is also guaranteed in the
limiting case cs ¼ 1. This strategy does however place a

HYPERBOLICITY OF DIVERGENCE CLEANING AND VECTOR … PHYS. REV. D 99, 104034 (2019)

104034-5



nontrivial upper limit on the speed of flows that can be
managed with the method, as strong hyperbolicity will
break down for sufficiently fast flows. See Ref. [3] for
details. By modifying the lowercase equations directly it
may be possible to avoid this shortcoming, too.
Finally, we want to present the uppercase rescaled

characteristic variables for GRMHD with HDC. They
are valid for all degeneracies, and are given by

Ûe ¼ δε −
p

c2sρ20h
δpþ

�
ρ0 −

κp
c2sρ0h

�
bS

ρ20
ðδ⊥bÞŝ;

Û� ¼ δϕ� ðδ⊥bÞŝ;

Ûa� ¼ �ðSÞϵAC
ffiffiffiffiffiffiffiffiffi
ρ0h�

p b⊥C
jb⊥j

ðδv̂ÞÂ þ ðSÞϵAC
b⊥C
jb⊥j

ðδ⊥bÞÂ;

Ûm1� ¼ Hðλ2 − 1Þ
ρ0h

δpþ ð1 − c2sÞHλðδv̂Þŝ

þ
�
bS

λ

�
bA⊥
jb⊥j

ðδv̂ÞÂ −
Hðκ þ c2sρ0ÞbS

ρ20h
ðδ⊥bÞŝ

þ bA⊥
jb⊥j

ðδ⊥bÞÂ þ
�
bS

λ

�
Hðκλ2 þ c2sρ0Þ

ρ20h
δϕ;

Ûm2� ¼ 1

c2sρ0h
δpþ ð1 − c2sÞλ

c2sðλ2 − 1Þ ðδv̂Þŝ þ
�
bS

λ

�
FAðδv̂ÞÂ

þ
�
bS

λ

�
λðκ þ c2sρ0Þ
c2sð1 − λ2Þρ20h

ðδ⊥bÞŝ þ FAðδ⊥bÞÂ

−
�
bS

λ

� ðκλ2 þ c2sρ0Þ
c2sð1 − λ2Þρ20h

δϕ; ð37Þ

with fm1;m2g equal to fs; fg or ff; sg. The abbreviations in
Eq. (37) are given by

H ¼ jb⊥j
c2s − λ2

; ð38Þ

FA ¼ bA⊥
ðρ0h�λ2 − b2Þ ; ð39Þ

where for type-II and even for type-II0 degeneracy we take
Q1

a and Q2
a such that in the degenerate limit we have

b⊥C
jb⊥j

¼ 1ffiffiffi
2

p ðQ1C þQ2CÞ; ð40Þ

H ¼ 0; ð41Þ

FA ¼ 0A: ð42Þ

For further explanations concerning degeneracies and
rescaling, see also Ref. [19].
Using the recovery procedure given in Ref. [3], the

lowercase characteristic quantities such as eigenvalues and

eigenvectors can be derived. The calculation can be found
in the notebook [10], but results in rather long expressions
which we suppress here. Both the lowercase left magneto-
sonic eigenvectors and the lowercase right eigenvectors
associated with the scalar field and longitudinal magnetic
field eigenvalues have a particularly complicated structure,
for which a useful simplification seems difficult. In
applications it may therefore be appropriate to compute
the characteristics numerically.

V. DISCUSSION OF FORMULATIONS
OF GRMHD WITH VP

The formulations of GRMHD we have thus far consid-
ered use the magnetic field as an evolved variable. Another
possibility is to introduce the four-vector potential instead
[20–22]. In practice, the potential is then 3þ 1 decom-
posed. Such formulations have the advantage that the
Gauss constraint is satisfied by construction, and in this
sense can be considered a type of constrained rather than
free evolution. On the other hand one obtains a system of
equations which is a priori not, from the PDE point of view,
minimally coupled to the gravitational field equations. The
resulting evolution equations for the GRMHD variables are
moreover themselves not in first-order form, but rather first
order in time and second order in space, and there is an
additional gauge degree of freedom. Different choices in
this freedom may have different PDE properties as the
principal part of the evolution system is altered. We follow
Ref. [21] and focus on the Lorenz gauge, but similar
comments hold elsewhere. Strong hyperbolicity of first
order in time, second order in space systems can be defined
[23,24] by the requirement that there exists a first-order
reduction which satisfies the definition given for first-order
PDEs in Sec. II. Therefore, we must reduce the governing
system of equations as in Eq. (3), by introducing reduction
variables. There are two natural ways to go about this.
The first, naive, possibility is to introduce reduction

constraints cab ¼ dab − γcaγ
d
b∂cAd, which should vanish,

for the lowercase spatial derivatives of the lowercase spatial
part of the vector potential Aa, and likewise for the electric
potential. The reduction variables dab should satisfy also
the ordering constraint,

cabc ¼ γdaγ
e
bγ

f
c∂ ½dce�f ¼ γdaγ

e
bγ

f
c∂ ½dde�f ¼ 0; ð43Þ

and similarly for the electric potential reduction variables.
The reduction constraints must then be added to the
equations of motion to remove all second spatial deriva-
tives. Besides that, both the reduction and ordering con-
straints can be added freely to try and find a hyperbolic
reduction. Such a reduction does not use the special
structure of the Maxwell equations, does not utilize the
fact that the original system satisfies the Gauss constraint
by construction, and is not minimally coupled to the
evolution equations for the geometric variables. Worse,
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the resulting principal symbol does not have a clear
structure, which makes the analysis very difficult.
The less obvious option is to bring back the magnetic

field as a reduction variable for the curl of the spatial vector
potential by defining a reduction constraint,

Ca ¼ ϵa
bcDbAc − Ba: ð44Þ

In this reduction we need not introduce a reduction variable
to the electric potential as it appears with at most one spatial
derivative. Part of the analog of the ordering constraint in
such a reduction turns out to be simply the Gauss
constraint,

C ¼ −DaCa ¼ DaBa: ð45Þ

A generic PDE system does not allow a reduction of this
type, in which new variables that only capture part of the
spatial derivatives are introduced. Due to the gauge free-
dom of the Maxwell equations however the “longitudinal”
part of the vector potential does not appear elsewhere in the
remaining equations of motion, and so we can close the
evolution system using only Ba. Note that such a restricted
reduction does have consequences on the norms in which
rigorous estimates would be demonstrated, and also that as
usual first derivatives of the metric here are nonprincipal.
Ultimately we end up with evolution equations for the

matter variables which are minimally coupled to the
Einstein equations. Naively writing out the lowercase
principal symbol of the matter variables we can obtain
moreover a block-diagonal structure,

Ps ¼
�
A 0

0 B

�
; ð46Þ

where block A denotes the principal symbol of the system
of evolution equations of the spatial part of the vector
potential and the electric potential, whereas B can be
rendered identical to the principal symbol of the prototype
algebraic constraint free formulation of GRMHD inves-
tigated in Ref. [3]. Here, crucially, we rely on the fact that,
as it is not to be used in applications, this formal first-order
reduction need not be of a flux-balance form, and therefore
we can add the ordering constraint C as desired. The upper
right block vanishes trivially and the lower left block
vanishes by appropriate choice of reduction. We showed
already that prototype algebraic constraint-free formulation
of GRMHD is strongly hyperbolic in the lowercase frame,
with an EOS of the form (9) and 0 < cs ≤ 1, so all that
remains is to show that the block A satisfies the conditions
for strong hyperbolicity. This was done already in
Ref. [21], but with the use of the reduction variable Ba
we can give a slightly cleaner treatment. The lowercase
principal symbol can be read off from

∇nΦ ≃ −γpe∇pAe; ð47Þ

γba∇nAb ≃ −γpa∇pΦ: ð48Þ

Note that in Eq. (48) the term DaAb −DbAa is written in
terms of the reduction variable Ba and does not contribute
to the principal part. Let sa, sasa ¼ 1, be a unit spatial
lowercase vector and be q⊥a

b the orthogonal projector. The
characteristic variables associated with this block are hence

δΦ ∓ ðδAÞs; ð49Þ

with speeds �1, respectively, and

ðδAÞA; ð50Þ

with speed 0 for the two orthogonal directions to sa. The
calculation is provided in a notebook that accompanies the
paper [10].

VI. CONCLUSION

In previous work [3] we examined two formulations of
ideal GRMHD, and showed that a formulation similar to
that studied in Refs. [14,25], which we call the prototype
algebraic constraint free formulation is strongly hyperbolic.
Unfortunately, this formulation is not in the flux-balance
law form desirable for the application of standard numerical
methods. Turning to GRMHD in flux-conservative form,
we found the system to be only weakly hyperbolic. This
formulation of GRMHD hence has an ill-posed initial value
problem. Fortunately, two popular, applicable, alternative
formulations of GRMHD were left untreated by that
analysis. Presently, we have addressed this shortcoming
with the outcome first, that formulations of GRMHD with
HDC [16,18,26] are indeed strongly hyperbolic as long as
the sound speed is suitably bounded 0 < cs < 1. In fact, it
is straightforward to achieve hyperbolicity also in the case
cs ¼ 1 by changing the speed of the cleaning in the
formulation. Second, we have shown that by a careful
reduction to first order, formulations of GRMHD with VP
[21] can also be rendered strongly hyperbolic whenever
0 < cs ≤ 1. The latter result is a corollary of strong
hyperbolicity of the prototype algebraic constraint-free
formulation. Here we have discussed only the Lorenz
gauge choice, but our results carry over trivially to
generalized Lorenz gauge, in which there is a modification
by source terms, and a natural treatment will be very similar
in other cases, too.
Both HDC and the VP formulations were introduced

as strategies to control Gauss-constraint violation in appli-
cations. Another popular approach, called constrained
transport (CT) [27–29], uses a carefully constructed dis-
cretization so that in a particular approximation the con-
straint is identically satisfied. There is some subtlety
in precisely what continuum PDE should be analyzed
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given such a constrained evolution, but supposing that the
constraints are identically satisfied, they may again be
added arbitrarily to the evolution equations, and strong
hyperbolicity can again be achieved, in the restricted,
constraint-satisfying phase space, as a corollary of
hyperbolicity of the prototype algebraic constraint-free
formulation.
In Ref. [3] we discussed two minimally coupled for-

mulations of resistive GRMHD with HDC, one with and
one without the evolution of the charge density q. Both
were found to be only weakly hyperbolic. A natural
question is therefore whether the use of the VP approach
could cure this problem. Replacing the divergence cleaning
variables by Aa and Φ, and making a minimally coupled
first-order reduction as we did for GRMHD, one arrives
with a lower block triangular structure in the principal
symbol, with the lower-right blockC being precisely a sub-
block of the principal symbol of the original formulation of
RGRMHD. Neither of the original two formulations were
strongly hyperbolic because C was not diagonalizable.
Consequently, the vector potential formulations are also not
strongly hyperbolic. Thus, at least if we insist on taking
only minimally coupled first-order reductions, use of a VP

reformulation of RGRMHD does nothing to circumvent
weak hyperbolicity of RGRMHD.
For numerical applications we therefore have the clear

conclusion that, by the fundamental requirement of well-
posedness, HDC and VP formulations (and likely also CT
schemes) are preferred over their older variant which
should henceforth be avoided. From the PDE point of
view it is, at this stage, difficult to choose between the
favored formulations. One might be tempted to argue in
favor of the vector potential formulation, as indeed it is true
that there the characteristic structure, inherited from the
prototype algebraic constraint-free formulation, is simpler,
but this is not a principle advantage. In the future it is hoped
that the characteristic structure uncovered by our analysis
can be put to good use in numerical work in both systems.
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