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The equivalence principle in combination with the special relativistic equivalence between mass and
energy, E ¼ mc2, is one of the cornerstones of general relativity. However, for composite systems a long-
standing result in general relativity asserts that the passive gravitational mass is not simply equal to the total
energy. This seeming anomaly is supported by all explicit derivations of the dynamics of bound systems
and is only avoided after time-averaging. Here we rectify this misconception and derive from first
principles the correct gravitational mass of a generic bound system in an external gravitational field. Our
results clarify a lasting conundrum in general relativity and show how the weak and strong equivalence
principles naturally manifest themselves for composite systems. The results are crucial for describing new
effects due to the quantization of the interaction between gravity and composite systems.
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I. INTRODUCTION

The equivalence principle postulates the exact equality
between the inertial and gravitational mass of any object,
regardless of composition. This fundamental equality
paved the way to a metric theory of gravity and is a vital
pillar of general relativity [1,2]. It implies the universality
of the gravitational interaction: all systems and forms of
energy in a sufficiently small region of space are affected
equally by gravity. Many different experiments have
confirmed this principle [3–10], with the most stringent
bound on its violations currently being a few parts in 10−14

[9]. Recently, it was shown that the quantized gravitational
interaction with composite systems yields novel effects and
experiments [11–24], which rely on the coupling of gravity
to the total energy of composite systems, as dictated by the
equivalence principle.
Yet, general relativistic calculations for composite sys-

tems reveal an intricate dynamics which seems to be at odds
with the equivalence principle and the mass-energy equiv-
alence. The physical scenario is the coupling of a small
composite system, such as a molecule, to the gravitational
field of a much more massive object, like the Earth. The
passive gravitational mass of composite systems, i.e., the
quantity coupling to the background gravitational potential

of the post-Newtonian metric, is not given by its total
energy. Rather, to first order in c−2, the gravitational mass
of an interacting N-particle system is derived to be [25–29]
MðGÞ¼PN

i ðmiþ3miv2i =2c
2−2

P
N
j>ikqiqj=rijc

2Þ, where
k is the coupling between the particles, qi their charges for
the specific interaction, mi their rest masses, vi their
velocities, and rij their relative distances. Gravity therefore
seemingly does not simply couple to the rest, kinetic and
potential energies, R, T and U, respectively, but to
MðGÞ ¼ ðRþ 3T þ 2UÞ=c2. This result was first noted
by Eddington and Clark [25] and has since been rederived
in all explicit calculations, both for classical [26–30] and
for quantized systems [31,32]. The dynamics of composite
systems do not take a single-particle form; i.e., the internal
energies do not simply add to the gravitational mass in
equal proportions, in apparent violation of the universality
of the gravitational coupling.
For the active gravitational mass, the anomaly can be

resolved by defining the mass in terms of its effects on test
particles at spatial infinity, as in the Arnowitt-Deser-Misner
formalism [33]. Such a defined mass is equal to the total
energy [34]. But the same method does not directly apply to
the passive mass, for which the anomalous terms remain. A
common resolution is to invoke time-averaging and the
virial theorem [25–30], which yields h2T þUi ¼ 0 and
restores the expected coupling. But the virial theorem does
not imply fundamental validity, suggesting a violation of*m.zych@uq.edu.au
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the mass-energy equivalence and of equality with the active
mass, beyond the time-averaged dynamics. Even worse,
the anomalous coupling would generically show up on the
quantum level—beyond the ensemble average. The “virial
terms” in the gravitational mass have lingered in the
literature for decades and have led to the belief that the
mass-energy equivalence may not exactly hold [25,31],
as well as to specific experimental proposals to search for
the violations [32].
In this work we derive the gravitational coupling for

composite systems from first principles. We show, contrary
to many previous results, that gravity only couples to the
total internal energy of the bound system, as expected from
the foundations of the theory. We derive the passive
gravitational mass for a generic composite system in curved
space-time and show that this dynamics takes a single-
particle form [35]. Crucial for isolating the correct gravi-
tational coupling is to identify the physically correct
internal energy, which removes the anomalous “virial
terms”. Our resolution is in line with remarks made in
Ref. [30], where it was noted that the virial theorem itself is
a consequence of general covariance and the “virial terms”
must therefore be coordinate artifacts—suggesting that a
correct definition of the gravitational mass should be
possible from first principles. Here we provide such a
definition and clarify the physical meaning of the involved
coordinates. We demonstrate our general framework in
explicit examples that show how the correct gravitational
mass emerges for electromagnetically and gravitationally
bound systems.

II. GRAVITATIONAL COUPLING
TO BOUND SYSTEMS

A. Lagrangian in two sets of coordinates

In our analysis the metric tensor gμν, μ; ν ¼ 0;…; 3 is
fixed and has a signature ð−þþþÞ and describes a static
symmetric space-time, with g0i ¼ gi0 ¼ 0 and gij ¼ gji
for i, j ¼ 1, 2, 3. For a single particle with a mass m,
on a world line x ¼ xμðsÞ, where s is an arbitrary
parameter, the Lagrangian is [36] L ¼ −mc2 dτ

ds, where
dτ ¼ c−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxÞdxμdxν

p
is an infinitesimal proper time

element along the world line. We consider a closed system
of N interacting particles that can be described by a
Lagrangian LN . For example, for electromagnetic inter-
actions the Lagrangian reads [36]

LN ¼
X
n

�
−mnc2

dτn
ds

þ enAμðxnÞ
dxμnðsÞ
ds

�
; ð1Þ

where mn, en and x
μ
nðsÞ for n ¼ 1;…; N describe the mass,

charge and world line of the nth particle, respectively, and
AμðxnÞ is the electromagnetic four-potential at xn, produced
by all particles. This Lagrangian describes interacting
particles without an emission of radiation, i.e., to order

c−2 such that the field degrees of freedom (DOF) and
retardation effects can be neglected [37]. We can choose
x0n ≡ s for all n and identify s≡ ct, so that t is the
coordinate time [38]; we will denote the derivative with
respect to t as ȧ ≔ da

dt .
Let us pick an arbitrary world line QμðtÞ and define

new coordinates Q0μ ¼ ∂x0μ
∂xν Qν relative to Qμ in the sense

that Q̇0i ¼ 0 and such that Q00 is the proper time along this
world line: Q00 ¼ c−1

R
dtð−gμνðQÞQ̇μQ̇νÞ1=2 ≡ τ, see

Fig. 1. Equation (1) in terms of τ and t reads

LN ¼
X
n

 
−mnc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0μν

dx0μn
dτ

dx0νn
dτ

s
þ enA0

μ
dx0μn
dτ

!
τ̇: ð2Þ

Equation (2) is exactly the same as Eq. (1), but uses two
sets of coordinates: the original ones for describing the
arbitrary world line Qμ through cτ̇ ¼ ð−gμνðQÞQ̇μQ̇νÞ1=2
and the primed ones for describing the system relative to
Qμ. The Lagrangian has now the product form LN ¼ L0 · τ̇,
in direct analogy to the relativistic single particle
Lagrangian L1 ¼ −mc2τ̇.
The use of two different sets of coordinates within the

same description is key to correctly predict the physical
effects in bound systems, as will be shown below. We note
that such a procedure has also been used in other contexts
within general relativity to describe physical effects cor-
rectly [39–43]. In particular, a similar observation has been
made in the context of celestial mechanics by T. Damour
[39], who pointed out that certain deformations of a body
from spherical symmetry reported by other authors are
artifacts of using an external coordinate system to define
local properties. Such a treatment implicitly introduces
Lorentz and gravitational redshift factors which deform the
system; nonetheless, the deformations are not intrinsic to
the body and are removed by the correct choice of local
coordinates. This is analogous to the topic studied in the
present work, and we thus proceed to show explicitly
how the apparent deformations of the gravitational mass
of a composite system allegedly violating the equivalence
principle, reported in previous studies, are removed when

FIG. 1. A bound N-particle system on a world line QμðtÞ. The
primed coordinates describe the frame in which the CM is at rest,
under the conditions (3). This frame defines the physical internal
properties of the system and the correct gravitational mass.
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the gravitational mass is described in the correct, local
coordinates.

B. Conditions for defining a center of mass

We now seek to identify Qμ with the world line of the
composite system—its center of mass (CM)—and the
primed coordinates with the center of momentum frame,
in which the CM is at rest. However, the canonical
momentum conjugate to xn is ∂LN∂ẋin , and generally there is

no unique way of defining the total linear momentum since
the individual particle momenta belong to different tangent
spaces [44]. A total momentum can nevertheless be
consistently defined when the metric is approximately
constant in the region occupied by all N constituents,

∀ n;m gμνðxnÞ ≈ gμνðxmÞ; ∀ n;m xn ≈ xm: ð3Þ

The first condition means that the space-time in the
region occupied by the system is approximately flat and
a single coordinate system can be introduced in which
the metric is locally the Minkowski metric ημν. For
well-behaved metrics (e.g., if the metric components are
Lipschitz functions) this condition is satisfied if the
individual world lines are sufficiently close, the second
condition in Eq. (3). Equations (3) imply that tidal
effects between the particles can be neglected, which
allows the construction of a generally covariant notion
of the CM for a generic extended system, as explicitly
shown in [44,45].
With the individual linear momenta denoted by PniðxnÞ,

under the assumption (3) the total momentum is Pi ¼P
n PniðxnÞ. The center of momentum (primed) frame is

defined by P0
i ¼

P
n P

0
niðxnÞ ¼ 0, where P0

ni ¼ ∂xμ
∂x0i Pnμ. If

xμnðtÞ are world lines of the individual constituents of the
system, the error made in describing the N-particle system
as a single composite particle following a world line xμðtÞ
can be quantified by the difference between the sum of the
contravariant momenta: one where the metric used to raise
the indices is evaluated at different points and one where
the metric is evaluated in a single point,

Pμ − gμνðxÞPν ¼
X
n

ðgμνðxnÞ − gμνðxÞÞPnν: ð4Þ

The approximations (3) depend on the variation of the
metric across the region occupied by the constituent
particles as compared to the energy-momentum of the
system. Consider a region U ≔ ⋃tU t, with U t such that
∀ nxnðtÞ ∈ U t. Assuming the variation of the metric in U is
bounded can be expressed as

∃ K>0 ∀ μν;n;mjgμνðxnÞ − gμνðxmÞj < K: ð5Þ

For example, this is satisfied by the Schwarzschild metric
in isotropic coordinates, whose components are Lipschitz

functions in any compact space-time region with no
singularity. If the four-momenta of the particles in the
considered region are bounded, we can define

P̃ ≔ maxfjPnμðxnÞj∶n ∈ f1;…; Ng; xn ∈ U; μ ¼ 0;…; 3g:
ð6Þ

Using Eqs. (5) and (6), the magnitude of the error, Eq. (4),
satisfies

jPμ − gμνPνj ¼
����X
n;ν

ðgμνðxnÞ − gμνðxÞÞPnν

���� < 4NKP̃; ð7Þ

for all μ. We note that Eq. (7) means that if the energy of the
system is finite, and given a finite measurement precision,
for any composite system of relativistic particles (on a
well-behaved metric) there exists a bound on the volume
occupied by the system, such that the error made by using
the approximation in Eq. (3) is below the measurement
precision, as long as the system’s size is smaller than
this bound.
Under the approximations (3), we can chooseQμðtÞ to be

specifically the world line of the CM of the N-particle
system, and the primed coordinates to be the center of
momentum frame. Equation (2) can now be expressed in
terms of the rest frame Lagrangian of the N-particle system,
i.e., the Lagrangian of the internal DOF in the CM rest
frame. This can be an arbitrary Lagrangian Lrest, for the
specific example (1) it reads

Lrest ¼
X
n

 
−mnc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0μν

dx0μn
dτ

dx0νn
dτ

s
þ enA0

μ
dx0μn
dτ

!
; ð8Þ

with g0μν ¼ ημν. The total Lagrangian in the presence of
gravity is thus simply

LN ≈ Lrestτ̇; ð9Þ

where τ is the proper time along the CM world line.

C. Hamiltonian for bound systems
on a background space-time

Lagrangian (9) has a single-particle form, with −mc2

generalized to Lrest, which suggests that the total mass
of the system is defined dynamically and is given by the
total internal energy. This is explicitly seen in the
Hamiltonian picture. The Legendre transform of Eq. (9)
yields HN ¼ PiQ̇i þPnp

0
inẋ

0i
n − LN , where Pi is the

canonical momentum associated with the CM coordinate
Qi, while p0

n are the internal momenta, canonically con-
jugate to the internal DOFs in the system’s rest frame,
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Pi ≔
∂LN

∂Q̇i ; p0
in ≔

∂Lrest

∂ dx0in
dτ

: ð10Þ

The rest frame Hamiltonian is by definition

Hrest ¼
X
n

∂Lrest

∂ dx0n
dτ

dx0n
dτ

− Lrest: ð11Þ

The explicit expression for the external momentum is
found by using Eq. (9) in Eq. (10): Pi ¼
∂Lrest

∂Q̇i τ̇ þ Lrest
dτ̇
dQ̇i. The simple equality dxi

dτ ¼ ẋi
τ̇ further yields

Lrest
dQ̇i ¼ −

P
n
∂Lrest

∂dxindτ
ẋin 1

τ̇2
dτ̇
dQ̇i and thus

Pi ¼
�X

n

−
∂Lrest

∂ x0n
dτ

dx0n
dτ

þ Lrest

�
dτ̇

dQ̇i ¼ Hrest
Q̇i

c2τ̇
; ð12Þ

where cτ̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðQÞQ̇μQ̇ν

q
andHrest is given by Eq. (11).

Substituting the above into the Legendre transform for
the total Hamiltonian and using the definition of pn gives

HN ¼ Hrest
Q̇iQ̇i
c2 τ̇ þHrestτ̇. Using Q0 ≔ ct yields

HN ¼ −Hrest
g00
τ̇
: ð13Þ

From Eq. (12) we next find

c2PiPi ¼ H2
rest

Q̇iQ̇i

c2τ̇2
¼ H2

rest

�
−1þ −g00

τ̇2

�
; ð14Þ

which upon substitution into Eq. (13) gives the total
N-particle Hamiltonian for the system,

HN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðc2PiPi þH2

restÞ
q

: ð15Þ

The above result entails that a many-particle system follow-
ing a narrow world-tube [satisfying Eq. (3)] is effectively
described as a composite particle whose total mass is
Hrest=c2, where Hrest is the rest frame energy of the system.
This is in explicit agreement with the equivalence principle
and in particular confirms that the (passive) gravitational
mass of a composite system is equal to its total internal
energy in appropriate units. For Lrest in Eq. (8), Hrest ¼P

nðc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g000½ðp0

ni − enA0
iÞðp0i

n − enA0iÞ þ m2
nc2�

p
− enA0

0Þ,
where p0i

n ¼ mn
dx0ni
dτn

þ enA0
i.

III. SPECIFIC EXAMPLES

We now apply our result to several scenarios previously
discussed in the literature. We show that the choice of the
correct (rest frame) coordinates for the internal DOFs fully
resolves any apparent tension between the equivalence

principle and the general relativistic description of
composite systems.

A. Example i: Hydrogenlike system

A special case of Eq. (1) was considered in Refs. [26–29,
31,32]. The composite system here comprises two charges
interacting via the Coulomb potential on a post-Newtonian
metric,

g00 ¼ −
�
1þ 2

ϕðxÞ
c2

�
; gij ¼ δij

�
1 − 2

ϕðxÞ
c2

�
; ð16Þ

where ϕðxÞ is the external gravitational potential. On a flat
metric, the nonrelativistic Lagrangian for this system is
L ¼P2

i¼1ð−mic2 þmi
˙x⃗2i =2Þ − ke1e2=jx⃗1 − x⃗2j, with x⃗≡

ðx1; x2; x3Þ and the Coulomb’s constant k. It applies to
slowly moving particles as it ignores special-relativistic
kinetic terms and magnetic interactions between charges
in relative motion. Therefore, one can define the usual CM
and relative coordinates, respectively: R⃗ ≔

P
mix⃗i=M,

r⃗ ≔ x⃗1 − x⃗2 and v⃗ ≔ ˙r⃗, with M ≔
P

i mi and μ ≔
m1m2=M. The Lagrangian of the system in the CM rest
frame is

Lrest ¼ −Mc2 þ μv⃗02

2
− k

e1e2
r0

: ð17Þ

Equations (9)–(11) yield H2¼ p⃗0v⃗0τ̇−L2≡ðp⃗0v⃗0−LrestÞτ̇
where by definition ðp⃗0v⃗0 − LrestÞ≡Hrest and where

τ̇ ¼ 1þ ϕðxÞ
c2 . Thus the Hamiltonian for the system subject

to gravity on the space-time metric (16) is

H2 ¼
�
Mc2 þ p⃗02

2μ
þ k

e1e2
r0

��
1þ ϕ

c2

�
: ð18Þ

The gravitational mass of the system, i.e., the quantity
coupling to ϕ, is the total energy in the CM rest frame

Mc2 þ Trest þUrest, with Trest ¼ p⃗02
2μ and Urest ¼ k e1e2

r0 , in
explicit agreement with the equivalence principle.
This result seems to be at odds with previous studies

[26–29,31,32], where the coupling (without time-
averaging) takes a different form. However, we now show
that the dynamics is exactly the same and that the anomalous
couplings found previously are coordinate artifacts. To
clarify this, we repeat the derivation using the Lagrangian
expressed only in terms of the external coordinates that
define the metric (16), as in previous works,

L2¼
X
i¼1;2

�
−mic2

�
1þϕðxiÞ

c2

�
þmi

˙⃗x2i
2

�
1−3

ϕðxiÞ
c2

��

−
k
2

e1e2
jx⃗1− x⃗2j

�
1þ2

ϕðx1Þ
c2

�
−
k
2

e1e2
jx⃗1− x⃗2j

�
1þ2

ϕðx2Þ
c2

�
:

ð19Þ
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Equation (19) in terms of the CM and relative coordinates is

L2 ¼ −Mc2
�
1þ ϕ

c2

�
þ μv⃗2

2

�
1 − 3

ϕ

c2

�

− k
e1e2
r

�
1þ 2

ϕ

c2

�
; ð20Þ

where we assumed for clarity that the CM is stationary,
˙R⃗ ≈ 0, and used Eqs. (3) to set ϕðxiÞ ≈ ϕðRÞ≡ ϕ. The
apparent challenge to the equivalence principle arises from
Lagrangian (20) and the corresponding Hamiltonian. The
canonical momentum is p⃗ ¼ μv⃗ð1 − 3 ϕ

c2Þ and the Legendre
transform of Eq. (20) yields

H2 ¼ Mc2
�
1þ ϕ

c2

�
þ p⃗2

2μ

�
1þ 3

ϕ

c2

�

þ k
e1e2
r

�
1þ 2

ϕ

c2

�
; ð21Þ

which features the anomalous coupling of the gravitational

potential to 3T þ 2U with T ¼ p⃗2

2μ and U ¼ k e1e2
r . However,

both T and U are here expressed in the original coordinates
which can be interpreted as local coordinates of a distant
observer. T and U thus include the redshift factors that
depend on the choice of this distant observer and do not
describe the local, physical quantities in the rest frame of the
system. Therefore they cannot be interpreted as the internal
kinetic and potential energies of the bound system.
We now show how to amend Eq. (21) and find the

physically correct internal energies. The local distance dx⃗0
and the coordinate distance dx⃗ on the metric (16) satisfy
dx0i ≈ ð1 − ϕ

c2Þdxi, whereas the local (proper) time and

the coordinate time t satisfy dτ ¼ dt0 ≈ ð1þ ϕ
c2Þdt. This

yields v⃗ ¼ dx⃗
dt ¼ v⃗0ð1þ 2 ϕ

c2Þ, where v⃗0 ≔ dx⃗0
dτ is the

velocity of the relative DOF in the local rest frame of
the CM. The momentum thus satisfies p⃗ ¼ p⃗0ð1 − ϕ

c2Þ,
where p⃗0 ¼ ∂Lrest∂v⃗0 ¼ μv⃗0. The internal kinetic energy is

Trest ¼ p⃗02
2μ, and we find

T

�
1þ 3

ϕ

c2

�
¼ Trest

�
1þ ϕ

c2

�
: ð22Þ

Denoting by r0 the distance between the two charges in the
CM rest frame yields r0 ¼ ð1 − ϕ

c2Þr, and thus the rest frame
potential energy Urest ¼ k e1e2

r0 satisfies

U

�
1þ 2

ϕ

c2

�
¼ Urest

�
1þ ϕ

c2

�
: ð23Þ

Using Eqs. (23) and (22), Hamiltonian (21) reads

H2 ¼ ½Mc2 þ Trest þ Urest�
�
1þ ϕ

c2

�
; ð24Þ

in agreement with our derivation, Eq. (18). The correct
expression for the gravitational mass is now apparent
because the CM rest frame coordinates are used to describe
the internal DOFs, while external coordinates are used to
capture the coupling of the CM to gravity.

B. Example ii: Gravitationally bound systems
and the strong equivalence principle

We now consider a system bound only through gravity,
in the presence of a background metric produced by a much
larger mass. According to the strong equivalence principle,
such a system should couple to gravity in the same way as
any other composite system. In the Newtonian approxi-
mation, the Lagrangian (17) describes a gravitationally
bound system with the replacement −ke1e2 → Gm1m2 for
the interaction. This yields the Hamiltonian,

HG
2 ¼

�
Mc2 þ p⃗02

2μ
−G

Mμ

r0

��
1þ ϕ

c2

�
; ð25Þ

where M ¼ m1 þm2, μ ¼ m1m2=M, as before. Thus a
bound system has an effective gravitational mass that
includes the gravitational binding energy, an explicit
confirmation of the strong equivalence principle. Note that
this differs from the result obtained by Eddington and Clark
[25], which has the additional anomalous “virial terms”,
an artifact of using redshifted coordinates to describe the
internal energy as discussed above.
Going beyond the Newtonian limit, in the weak-field

approximation and for slowly moving particles one can
extend the analysis to a bound system fully described by
general relativity. Such a system was first considered by
Einstein et al. [46] and by Eddington and Clark [25]. A
Lagrangian can be defined if emission of radiation is
neglected, i.e., to orders below c−5=2. The previous studies
considered the N-particle system on a flat background

space-time, i.e., each particle i producing a field gðiÞμν ¼
ημν þ hðiÞμν . Here we are interested in the coupling of the
entire system to the metric produced by a large external
mass; thus the particle interactions are to be described on
top of this external metric gμν ≠ ημν. However, the approx-
imations (3) ensure that we can choose a primed coordinate
system in which the background metric becomes flat,
g0μν ¼ ημν, over the extension of the entire N-particle
system. We can thus apply previous results in the CM rest
frame [47] and include the coupling to the external field
through a coordinate transformation. The 2-particle
Hamiltonian for a gravitationally bound system to order
c−2, and in the presence of a background metric becomes
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HGR
2 ¼

�
p02

2μ

�
1−p02M−3μ

4c2μ2

�
−G

μM
r0

�
1−

GM
2c2r0

�

−
G

2c2r0

�
p02 3Mþμ

μ
þðp⃗0 · r⃗ 0Þ2

r02

�
þMc2

�
dτ
dt
: ð26Þ

The first factor is the total energy of the two-body system in
its CM rest frame, including relativistic corrections, while
the factor dτ=dt captures the coupling to the external
gravitational field. This has again the single particle form
as required by the equivalence principle. Hamiltonian (26)
reduces to (25) in the nonrelativistic limit of the CM system
and to lowest order in the coupling to the external
gravitational potential, dτ=dt ≈ ð1þ ϕ=c2Þ.

C. Example iii: Box of photons

Another system, studied in Ref. [30], is a slowly moving
“box of photons”, where the internal energy is the kinetic
energy of the box, T, and the energy of light, Ulight.
Variation of the matter action on the metric (16) yields the
total energy [30]

E ¼ T

�
1þ 3

ϕ

c2

�
þ Ulight

�
1þ 2

ϕ

c2

�
; ð27Þ

which again features the anomalous coupling terms. Due to
Eq. (22), to find the physical coupling to gravity we only
need to show that in the local rest frame of the box Eq. (23)
holds forUlight. In generic coordinatesUlight ¼ R d3x ffiffiffiffiffiffi−gp

T00,
where T00 is the relevant component of the energy-momentum
tensor of the electromagnetic field and g ¼ Detgμν. In the rest

frame of the box Ulight
rest ¼ R d3x0 ffiffiffiffiffiffi−ηp

T00
rest. To lowest post-

Newtonian order T00
rest ¼ ð1þ 2 ϕ

c2ÞT00, d3x0 ¼ ð1− 3 ϕ
c2Þd3x,

and
ffiffiffiffiffiffi−gp ¼ ð1 − 2 ϕ

c2Þ. Thus Ulight ¼ ð1 − ϕ
c2ÞU

light
rest , as

required. Combined with Eq. (22), Eq. (27) becomes

E ¼ ðTrest þ Ulight
rest Þ

�
1þ ϕ

c2

�
; ð28Þ

which explicitly satisfies the equivalence principle. Indeed,
it was pointed out in Ref. [30] that the additional terms in
Eq. (27) are gauge artifacts. Here we have explicitly shown
that correctly defining internal energies yields the true and
unique gravitational mass and exposes the validity of the
equivalence principle.

IV. CONCLUSIONS

This article shows how the correct gravitational mass
emerges and how the equivalence principle manifests itself
for composite systems. While no issue would be expected
on an abstract level of the theory, it is surprising that all
detailed calculations to date predict a coupling inconsistent
with the equivalence principle, with experimentally measur-
able consequences. The correct physical picture is akin to the

case for an elementary particle, for which by definition the
mass is the total rest-frame energy. The same holds for a
composite system: the mass is the total energy in its CM rest
frame. To describe a composite system subject to gravity and
isolate the physically relevant gravitational coupling, two
different sets of coordinates are therefore invoked concur-
rently: arbitrary, external coordinates to describe the CM, and
the CM rest-frame coordinates to describe the internal DOFs.
This settles a long-standing issue with the passive gravita-
tional mass of composite systems, which has been thought to
include additional terms that only vanish on average and that
violate the equivalence principle. Our results also demonstrate
from first principles that the passive mass, being equal to the
total energy content, is in accordance with the active (ADM)
mass, as expected from the foundations of general relativity.
The study of quantum optical systems on curved space-

time has recently become an active field of research, both
in theory [11–13,16–19,48] and experiment [14,22,49].
Isolating the correct gravitational coupling for composite
systems is thus crucial for accurate predictions in upcoming
quantum experiments which are starting to probe the inter-
play between quantum theory and general relativity. While
all current classical tests are insensitive to the previously
predicted anomalous couplings, the quantization of both
internal and external DOFs reveals additional phenomena
which depend on the correct form of the interaction [11,16].
Results of this work are thus central for upcoming probes
of new effects, which include the time dilation induced
entanglement between internal and spatial degrees of free-
dom [11–15], decoherence universally affecting composite
quantum systems subject to time dilation [16–19], friction of
relativistic decaying atoms [50,51] and quantum tests of the
equivalence principle for composite systems [20,22–24].
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