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In this work we study the inverse problem related to the emission of Hawking radiation. We first show
how the knowledge of greybody factors of different angular contributions l can be used to constrain the
width of the corresponding black hole perturbation potentials. Afterwards we provide a framework to
recover the greybody factors from the actual energy emission spectrum, which has to be treated as the sum
over all multipole numbers. The underlying method for the reconstruction of the potential widths is based
on the inversion of the Gamow formula, a parabolic expansion and the Pöschl-Teller potential. We define a
“normalized” energy emission spectrum that turns out to be very beneficial for the numerical fitting
process, as well as for an improved qualitative understanding of how much information of the black hole
potentials are actually imprinted in the spectrum. The connection to recent studies on the inverse problem
using the quasinormal spectra of ultracompact stars and exotic compact objects is discussed as well. In the
Appendix we show that the spectrum can be approximated surprisingly well and simply with a parabolic
expansion of the peak of the classical black hole scattering potentials.
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I. INTRODUCTION

Hawking radiation is one of the most important theo-
retical predictions in the application of quantum field
theories to general relativity and alternative theories of
gravity [1]. Despite the current lack of experimental
confirmation, it fostered almost countless theoretical works
on the details of the emission process (see [2,3] and
references therein). Among the most striking implications
that followed, is the so-called information loss problem [4],
which arises if one applies the pillars of modern physical
theories (quantum field theories and general relativity) to
the quantum aspects of black holes.
In this work we are interested in what we call the inverse

problem. Assuming that the energy emission spectrum of
Hawking radiation from a spherically symmetric black hole
is provided, what can one learn about the black hole? It is
well known that the emitted radiation is described by a
black body being modified by greybody factors, which are
related to the space-time of the black hole. In the following
sections we outline a framework that can be applied to the
greybody factors and to the entire energy emission spectra,
to constrain the classical black hole perturbation potential,

as well as to gain a more intuitive understanding of the
individual contributions.
The interest in the inverse problem for Hawking radi-

ation is not a purely academic exercise, as it may seem from
the first glance. The quantum corrections to the black hole
metric, normally, are supposed to be negligibly small and
unobservable for large astrophysical black holes, so that no
information about quantum corrections should be expected
from astrophysical observations of compact objects. On the
contrary, behavior of miniature and primordial black holes,
experiencing intensive Hawking radiation, will strongly
depend on the form of quantum corrections to gravity.
Therefore, if Hawking radiation could be detectable in
future experiments, this would allow us to trace back the
geometry of the black hole and, at the end of the day,
determine the form of quantum corrections.
The inverse problem for the quasinormal mode spectrum

of spherically symmetric compact objects has been recently
considered in a number of works. In [5–7] it was shown that
once the quasinormal modes of ultracompact stars or some
types of wormholes are known, the effective potential can
be reconstructed in a unique way, assuming general
relativity and the validity of WKB theory. In [8] the
reconstruction of the shape function from the high fre-
quency (eikonal) quasinormal spectrum for a broad class of
wormholes was suggested. In contrast to the aforemen-
tioned studies, which are based on the quasinormal mode

*sebastian.voelkel@uni-tuebingen.de
†roman.konoplya@gmail.com

PHYSICAL REVIEW D 99, 104025 (2019)

2470-0010=2019=99(10)=104025(9) 104025-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.104025&domain=pdf&date_stamp=2019-05-13
https://doi.org/10.1103/PhysRevD.99.104025
https://doi.org/10.1103/PhysRevD.99.104025
https://doi.org/10.1103/PhysRevD.99.104025
https://doi.org/10.1103/PhysRevD.99.104025


spectrum, this work is based on the energy emission
spectrum of Hawking radiation. Although its origin is
quite different, the calculation of Hawking radiation
involves the classical scattering problem related to finding
the transmission coefficients, greybody factors, through the
black hole potential barrier. Within WKB theory and single
barriers, this problem can be inverted to reconstruct a class
of potentials that admit the given transmission. In contrast
to the quasinormal mode spectrum, Hawking radiation
appears as a sum involving many greybody factors, which
have to be recovered first. Despite the initially might
expected challenges in the recovery of the individual
greybody factors, we find that the problem can be split
up in a multiple step approach which gives satisfactory
results.
In Sec. II we summarize the calculation of Hawking

radiation being used in this work. The subsequent Sec. III
outlines the inverse problem methods. The applications and
results of thesemethods are presented inSec. IVanddiscussed
in Sec. V. Our conclusions can be found in Sec. VI. We
provide additional material related to a simple and precise
approximation of Hawking radiation in the Appendix.
Throughout this work we use G ¼ c ¼ ℏ ¼ kB ¼ 1.

II. HAWKING RADIATION

In the following we give a short overview of the
theoretical framework being used in this study.

A. Energy emission spectra

In this work we will assume that the black hole is in the
state of thermal equilibrium with its environment in the
following sense: the temperature of the black hole does not
change between emissions of two consequent particles.
This implies the canonical ensemble for the system.
Therefore we work with the following description of the
spectrum of Hawking radiation:

dE
dt

¼
X
l

NljAlj2
ω

exp ðω=THÞ − 1

dω
2π

; ð1Þ

where TH is the Hawking temperature, Al are the greybody
factors, and Nl are the multiplicities, which only depend on
the space-time dimension and l. Details can be found in [9]
and references therein.

B. Greybody factors and transmission

It is well known that the greybody factors in the Hawking
spectrum are related to the transmission through the black
hole perturbation potentials with the corresponding spin of
the field (see, e.g., [10]). To obtain those, one has to solve
the classical scattering problem of incoming radiation being
transmitted or reflected at the potential barrier.
The metric of a spherically symmetric black hole has the

following form:

ds2 ¼ −e2νdt2 þ e2λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð2Þ

The linearized perturbation equations can be reduced to the
following form:

d2Ψ
dr2�

þ ðE − VðrÞÞΨ ¼ 0; ð3Þ

where the tortoise coordinate is defined as follows:

dr� ¼ eλ−νdr: ð4Þ

We shall consider the wave equation (3) with the
boundary conditions allowing for incoming waves from
infinity. Owing to the symmetry of the scattering properties
this corresponds to the scattering of a wave coming from
the horizon. The scattering boundary conditions for (3)
have the following form:

Ψ ¼ e−iωr� þ Reiωr� ; r� → þ∞;

Ψ ¼ Te−iωr� ; r� → −∞; ð5Þ

where R and T are the reflection and transmission coef-
ficients respectively.
The effective potential has the form of the potential

barrier which monotonically decreases at both infinities, so
that the WKB approach [11,12] can be applied for finding
R and T. Since the wave energy E is real, the first order
WKB values for R and T will be real [11,12] and

jTj2 þ jRj2 ¼ 1: ð6Þ

Once the reflection coefficient is calculated, we can find the
transmission coefficient for each multipole number l:

jAlj2 ¼ 1 − jRlj2 ¼ jTlj2: ð7Þ

Various methods for the computation of the transmission
and reflection, which are energy dependent functions, exist
in the literature. For quick and relatively accurate evalu-
ation of the transmission and reflection coefficients for not
small values of energy one can use the sixth order WKB
formula [12]. According to [12] the reflection coefficient
can be expressed as follows:

R ¼ ð1þ e−2iπKÞ−1
2; ð8Þ

where

K ¼ i
ðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
0

p þ
Xi¼6

i¼2

ΛiðKÞ: ð9Þ

Here V0 is the maximum of the effective potential, V 00
0 is the

second derivative of the effective potential in its maximum
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with respect to the tortoise coordinate, and Λi are higher
order WKB corrections, which depend on up to 2ith order
derivatives of the effective potential at its maximum [12].
For accurate calculations of the reflection/transmission

coefficients at any energies we used two numerical meth-
ods. First, the shooting method, based on numerical
integration from the event horizon up to the far region
and consequent matching with the required asymptotic
behavior [13]. Second, a direct numerical integration of the
wave equation from the transmission region backwards
through the potential barrier to determine the transmission
coefficients. This approach has been outlined and discussed
in [14]. Both methods give similar results. From here on,
when mentioning exact transmissions we will mean values
obtained with the numerical approaches and not WKB
theory.
The semiclassical WKB treatment of the problem shows

that the transmission for small energies below the barrier
maximum can be approximated with the Gamow formula
[15]:

TðEÞ ¼ exp

�
2i
Z

x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðxÞ

p
dx

�
; ð10Þ

where E is the energy, VðxÞ the potential barrier, and x0 and
x1 the classical turning points. In the application of black
hole perturbation theory, the coordinate x is the so-called
tortoise coordinate r� and E ¼ ω2. Higher order WKB
descriptions for the transmission exist and have been
applied in this context [16,17]. In this work we will use
Eq. (10) as a basis for the inverse problem. The reason for
the use of this low order simplification is that the “inver-
sion” of the Gamow formula is well known and defines a
class of so-called width equivalent potentials. We discuss
this in the following Sec. III.

III. INVERSE PROBLEM

In this section we outline the inverse method being used
to reconstruct the black hole potential barrier widths for a
given transmission, as well as the framework, if the energy
emission spectra is provided.

A. Individual transmissions

The inversion of the Gamow formula Eq. (10) has been
derived and discussed in [18–20]. From there it is known
that providing the transmission TðEÞ through a single
potential barrier cannot be used to uniquely determine
its shape. In contrast, infinitely many so-called width
equivalent potentials exist. A similar result exists for the
Bohr-Sommerfeld rule of bound states in potential wells
[21,22]. The width L of the potential barrier is given by

LðEÞ≡ x1 − x0 ¼
1

π

Z
Emax

E

ðdTðE0Þ=dE0Þ
TðE0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − E

p dE0; ð11Þ

where Emax is the maximum of the potential barrier. If it is
not known, one can extrapolate it from where the trans-
mission becomes 1=2, which corresponds to the WKB
result at the maximum of the barrier. To convert Eq. (11)
into a potential barrier one has to provide a function for one
of the two turning points, x0ðEÞ or x1ðEÞ, and invert the
relation for E. Note that the provided turning point function
has to exclude “overhanging cliffs” in the potential, which
correspond to a multivalued function for the potential.
More details can be found in the aforementioned works
[18–22]. The application of Eq. (11) to individual trans-
mission functions of black holes is shown in Sec. IV.
Since the Gamow formula is not valid for energies

around the peak of the barrier, we extend the reconstruction
process. The Pöschl-Teller potential is widely used in black
hole theory to approximate calculations that involve the
potential. In the form used here it is given by

VðxÞ ¼ V0

coshðaxÞ2 : ð12Þ

It describes black hole potential barriers for energies around
the maximum very well. We expand the potential barrier
at the peak to parabolic order and use an analytic formula
for the transmission in the fitting procedure for energies
around the peak. It is straightforward to identify the
Pöschl-Teller potential parameters with the two parabola
parameters. This is used to approximate the peak region
where the pure WKB treatment is not valid.

B. Energy emission spectra

The energy emission spectra is a sum over all angular
contributions l, which maps the individual transmissions
TlðEÞ in a nontrivial way in one function Eq. (1). However,
in order to apply the inverse method of Sec. III, one has to
find the individual transmission functions first. For this
purpose we have worked out a framework that is based on
some fairly general observations and explained in the
following.

1. Modeling individual transmissions

The function describing the transmission through a
potential barrier is by far not arbitrary. For single potential
barriers studied in this work, it resembles a logistic
function. We make use of this and parametrize any trans-
mission with

Tfit;lðEÞ ¼
1

1þ exp ðal;0 þ al;1Eþ al;2=
ffiffiffiffi
E

p Þ ; ð13Þ

where al;i are a priori unknown constants that have to be
fitted to a given energy emission spectra. The index l refers
to the angular contribution. It is in principle straightforward
to include higher order terms in cases where this ansatz
does not yield sufficient precise results. As we show in the
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Appendix, the interesting contribution comes around the
peak and is in this sense local. Higher order terms in
Eq. (13) could be used to capture long range effects of the
potential, but those are very difficult to be reconstructed
from the entire spectrum.

2. Treatment of energy emission spectra

The actual energy emission spectra will contain in
principle infinitely many terms, but not all contribute in
the same way. Making use of this observation simplifies the
treatment of the full problem significantly. The individual
transmissions act qualitatively like a high pass filter. For a
given l, the threshold is located around the barrier maxi-
mum, which in the eikonal approximation is simply
proportional to

Emax;l ∼ lðlþ 1Þ; ð14Þ

and therefore acts as a cutoff for small E, but is transparent
for large E. Thus, high l-terms only affect the spectra for
large E, but can be neglected for small ones.

3. Extract transmissions

Using the observations of the previous paragraph, it is
straightforward to implement a numerical scheme that
works in multiple steps. For a given transmission spectrum,
one can start with the reconstruction of the lowest trans-
mission function by fitting it to the set of parameters of our
model Eq. (13). It is important to realize that this can only
be done reasonably in an interval between neighboring
potential maximums. The contribution of the transmission
TlðEÞ to the spectrum dominates only in the interval
ðEmax;l−1; Emax;lÞ. For smaller or larger energies it can be
well approximated with 0 or 1, respectively. Once the
parameters are determined in this range, we repeat with the
fitting of the next transmission Tlþ1ðEÞ in the subsequent
interval. We find it useful to define a “normalized”
spectrum, where we divide out all l independent functions
from the energy emission spectrum d2E=dwdt, as described
in Eq. (1),

IðEÞ≡X
l

NljAlj2 ≡
X
l

IlðEÞ: ð15Þ

If the value of the Hawking temperature is not assumed to
be known, it can be obtained from the following procedure.
As it is shown in Fig. 1, the normalized spectrum is well
described with smoothened steps whose growth scales
linearly with the energy. The case we show is for
Schwarzschild, but it is similar for Reissner-Nordström,
as we show in the Appendix. In contrast to this, the actually
measured spectrum IðEÞ falls off exponentially for large
energies. The idea now is to find an approximation for the
Hawking temperature by demanding that the normalized
spectrum has to grow roughly linearly for large energies. In

a second step we can read out the temperature by using the
step structure. Going from the measured spectrum IðEÞ to
the normalized spectrum IðEÞ is done via

I recðEÞ ¼
2πffiffiffiffi
E

p
�
exp

� ffiffiffiffi
E

p

TH;rec

�
− 1

�
× IðEÞ; ð16Þ

where TH;rec is the reconstructed Hawking temperature. The
simple functional structure of the normalized spectrum
allows one to precisely determine the Hawking temperature
TH;rec, as long as the perturbation potentials have the single
barrier structure we assume in this work. The number of
saddle points Ns (counted from low to high energies)
corresponds to the number of summed terms which are
relevant up to the given energy. Contributions from higher
terms at this energy value are being suppressed due to the
transmission functions and therefore negligible. If one
knows the full spectrum, one can determine TH;rec from
demanding that the value of the measured spectrum has to
match the sum of the multiplicities at the flattest point
between ðEmax;Ns

; Emax;Nsþ1Þ. In Fig. 1 one can see that the
flattest part of the normalized spectrum coincides very well
with the summation of the multiplicities up to the Nsth
term. More details are being provided in the caption.
Since this work assumes that the spectrum is known with

high precision and no observational errors, this identifica-
tion becomes in principle arbitrarily precise by going to
higher energies. Therefore we continue with the exact
values. It is evident that observational errors on the
measured spectrum would require a special treatment
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FIG. 1. Here we show the normalized energy emission spec-
trum, defined in Eq. (15), for the Schwarzschild case. The black
dashed lines indicate the potential maximums of each potential
barrier Emax;l and match qualitatively with the saddle points. The
red dashed lines show the summation of all multiplicities up to
the lth term

P
l
ið2iþ 1Þ, starting from l ¼ 1 as the lowest line.

This line intersects the normalized spectrum in its flattest
intervals between two consecutive potential maximums Emax;l.
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and put an error on the reconstructed temperature.
However, the experimental access to Hawking radiation
is currently not possible, which is the reason why we do not
consider this limitation here.
Strictly speaking, when dealing with gravitational per-

turbations of static black holes in four-dimensional space-
times, two channels of perturbations come into play: the
axial (vector) and polar (scalar) ones. They are represented
by the corresponding vectors and scalars relative to the two-
sphere rotation group. In addition, the multiplicity factors
are, in general case, different for different channels of
gravitational perturbations. Therefore, when talking here
about Hawking radiation of gravitons in the vicinity of the
Reissner-Nordström black hole, we simply mean this single
channel of perturbations which we considered here for
purely illustrative purpose. The possibility of distinguish-
ing different channels of gravitational perturbations was
considered recently in [23] and we will not touch this
problem here. It is evident that there is no such problem for
emission of particles of other spin.

IV. APPLICATIONS AND RESULTS

In this section we demonstrate the results of the inverse
method applied to the knowledge of different exact trans-
mission functions as well as to several energy emission
spectra. The transmissions and the energy emission spectra
are obtained numerically by integration of the wave
equation through the potential barrier for every given E
(see, for instance, [13]). For the numerical implementation
of the fitting we use the routines of CERN’s ROOT Data
Analysis Framework [24]. As examples to demonstrate the
proposed methods, we study the vector case for the
Schwarzschild and Reissner-Nordström black holes in
four-dimensional general relativity. The metric functions
for these black holes are

e2ν ¼ e−2λ ¼ 1 −
2M
r

þQ2

r2
ð17Þ

and the parameters of the black holes are provided in
Table I. We list the equations describing the two different
types of perturbation potential in the Appendix.

A. Reconstructing the greybody factors

By fitting numerically our expansion for the transmis-
sion to the normalized energy emission spectrum Eq. (15)
we are able to reconstruct the transmissions for the first
few l. Our results for this are shown in Fig. 2 for

Schwarzschild and in Fig. 3 for Reissner-Nordström. To
obtain the normalized spectrum we used the correct value
for the Hawking temperature, as explained in Sec. III B 3.

B. Reconstructing the potential widths

By using the reconstructed transmissions, we can now
approximate the widths of the potential barriers. Our results
are provided for Schwarzschild in Fig. 4 and for Reissner-
Nordström in Fig. 5. Note that there are two aspects to be
investigated: first, the general precision of the inverse
method to obtain the potential widths from a given trans-
mission; second, how much the results for the inversion
depend on the precision with which the transmission is
provided. To address both questions we show the results
using the numerically precisely calculated transmission
(red dashed), the fitted transmission (blue dashed), and
for further discussion the pure inverse WKB result (green
dashed). Since the reconstructed transmissions Tl are

TABLE I. Parameters of the studied black holes in this work.

Model M Q TH

Schwarzschild 1 0 1=8π
Reissner-Nordström 2=3 1=

ffiffiffi
3

p
1=6π

FIG. 2. Reconstruction of the Schwarzschild transmissions
TlðEÞ from spectrum fitting.

FIG. 3. Reconstruction of the Reissner-Nordström transmis-
sions TlðEÞ from spectrum fitting.
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precise for energies from close to the potential maximum
Emax;l to the lower maximum Emax;l−1, it is not surprising
that the exact and fitted transmissions yield comparable
results there. However, we find clear deviations for smaller
energies, which can be traced back to the imprecise
reconstruction of the transmission in these regions, as
shown in Figs. 2 and 3.

V. DISCUSSION

In this section we discuss our findings and relate them to
inverse spectrum methods that have recently been devel-
oped for ultracompact stars and exotic compact objects,
such as gravastars and wormholes [5–8].

A. Reconstructing the greybody factors

The individual contributions to the energy emission
spectrum can be easily understood from the normalized

energy emission spectrum. It intuitively demonstrates for
which energies a given transmission encodes information
of the potential barrier to the spectrum. We find that it only
contributes on an interval around its barrier maximum. As a
consequence one can only reconstruct the transmission in
this interval precisely, but loses accuracy for smaller
energies, where the contribution is exponentially small.
In our examples the transmissions range over 10 orders of
magnitude. We also find that due to the l dependency of the
multiplicities and the exponential suppression in the energy
emission spectrum, higher l contributions become negli-
gible and therefore more challenging to reconstruct.

B. Reconstructing the potential widths

Our results for the reconstruction of potential barrier
widths from the directly provided transmission functions of
the Schwarzschild and Reissner-Nordström black holes
show that the inverse method works very precise around the
peak of the barrier and in the region far below. The method
combines the parabolic transmission fit to find the Pöschl-
Teller potential width at the barrier maximum and merges it
with the inverted Gamow formula for small energies. Here
we make two comments. First, the precision at the peak
region and for energies much below the peak is very good,
taking into account the fairly simple structure of the
method. Second, the least precise region is where the
Pöschl-Teller approximation becomes less valid, but
the turning points are not too far away from each other.
In case the transmission has to be reconstructed from the
spectrum, it should be expected that the reconstruction only
works reliable in an interval between consecutive potential
maximums, but not on the whole range.

C. Connection to related inverse spectrum problems

The here presented method for the reconstruction of
transmission functions and black hole potential barrier
widths has to be discussed in the context of other inverse
methods that are based on gravitational wave observations.
Most of them make use of the oscillation spectra of the
objects [25–28], which can be for present matter or space-
time itself. Relevant objects are neutron stars, black holes
and more recently exotic compact objects. Besides the
extensive numerical relativity based simulations for neutron
stars and black holes, there are also multiple semianalytic
approaches. In the case of neutron stars, there are well
established asteroseismology relations that can be used to
constrain the compactness or equation of state of neutron
stars by using different types of their fundamental oscil-
lation modes [29–32]. In addition to this, there are also
spectral methods using masses and radii of neutron stars, to
reconstruct their equation of state [33–37]. Due to recent
claims of tentative evidence of so-called echoes in the
gravitational wave signals of merging black holes [38–40],
there is a vast increase of interest in exotic compact objects.
However, whether the challenging data analysis has been

FIG. 4. Reconstruction of the Schwarzschild potential barrier
widths LlðEÞ from given transmissions TlðEÞ.

FIG. 5. Reconstruction of the Reissner-Nordström potential
barrier widths LlðEÞ from given transmissions TlðEÞ.
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carried out sufficiently is under discussion [41–43]. Among
those rather exotic objects are toy models of ultracompact
stars, gravastars, boson stars and wormholes. Although
most of the models stretch today’s well understood and
tested physics far beyond trustworthy limits, they are in
reach with future gravitational wave observations. For a
current review and list of the extensive literature in this field
we refer to [44].
Technically closer to the present work, it was recently

shown how the knowledge of the quasinormal mode spectra
of ultracompact stars, gravastars and some type of worm-
holes can be used to reconstruct their perturbation potential
and determine some of the underlying parameters [5–7].
The methods presented there are based on the inversion of
generalized Bohr-Sommerfeld rules and the Gamow for-
mula. As it should be expected, the inversion is in general
not unique. However, additional physical assumptions
about the system can overcome this limitation. For more
details of the method we refer to [45]. In the present work,
the uniqueness of the reconstructed perturbation potential is
not given.
In another work it was shown how the quasinormal mode

spectra of some wormholes can be used to reconstruct their
shape function [8]. This method made use of higher order
WKBmethods that are well established in the field of black
hole perturbation theory [11,12].

VI. CONCLUSIONS

In this work we have presented a semianalytic method
which uses the energy emission spectrum of Hawking
radiation to reconstruct the greybody factors and from this
the widths of the black hole perturbation potentials. By
defining a normalized energy emission spectrum we were
able to carry out a multistep fitting procedure to reconstruct
the transmissions. The reconstruction is based on the
numerical fitting of a suitable expansion of the classical
transmission function and its direct identification with the
greybody factors. In a second step we have combined
the inversion of the WKB based Gamow formula with the
analytic result for the transmission through a parabola
around the peak, in order to reconstruct the potential width
for small energies, as well as around the peak of the barrier.
We outlined why higher l terms are highly suppressed and
thus do not contribute to the spectrum and are therefore not
eligible for the inversion process. After presenting the
method and some general observations, we applied it to the
vector case of the Schwarzschild and Reissner-Nordström
black holes in four dimensions described by general
relativity. In the Appendix we show that the whole problem
can be extremely simplified by noting that the energy
emission spectrum can be very well described with a pure
analytic parabolic model for the potential barriers, which
might be a very useful approximation for analytic calcu-
lations in more complicated black hole potentials.
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APPENDIX

1. Toy Model for the energy emission spectrum

During this study on the inverse problem of Hawking
radiation we noticed that only the region of the potential
barrier around the maximum plays a dominant role in the
energy emission spectrum. This simple observation can be
used to work out a simple analytic toy model, for a quick
and simple approximation of the spectrum. Here we present
a model which is in the spirit of well known quasinormal
mode calculations for black holes. It is using a parabolic
expansion of the potential peak, as it is done in the Schutz-
Will formula [46]. In the energy emission spectrum one
sums over all l, but as being outlined in this work, not
all contribute similar. For a given TlðEÞ one finds the
following cases. Either it has negligible contribution, if
E ≪ Emax;l; potential dependent contribution between 0
and 1, if Emax;l−1 < E < Emax;lþ1; becomes approximatively
1, if Emax;l ≪ E. We expect that the parabolic approximation
for the transmission to be much more precise than the
corresponding result in the quasinormal mode application.
Of course both approaches can only be valid in cases where
the black hole potential can be represented by a single barrier.
The transmission through a parabolic potential barrier

VðxÞ ¼ Vmax;l − alx2 ðA1Þ
described by WKB theory, and valid to describe the peak of
the barrier, is given by

TlðEÞ ¼
�
1þ exp

�
−
πðE − Vmax;lÞffiffiffiffi

al
p

��
−1
; ðA2Þ

see [47,48] for Vmax;l ¼ 0. The two parameters Vmax;l and
al have to be matched with the black hole potential at the
maximum r�max;l. The identifications are

Vmax;l ≡ VBHðr�max;lÞ; al ≡ −
V 00
max;l

2
: ðA3Þ

The resulting normalized energy emission spectrum fol-
lows by using Eq. (A2) as approximation for the greybody
factors. We show the result for Schwarzschild in Fig. 6 and
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Reissner-Nordström in Fig. 7. As one would naively expect
from the eikonal limit, one finds that the approximation
becomes more and more precise the higher energies one
considers.

2. Perturbation potentials

In this section we provide the equations describing
perturbation potentials being used to calculate the trans-
mission and reflection coefficients in this work.
The perturbation potential describing a test electromag-

netic field around the Schwarzschild black hole is given by

VðrÞ ¼
�
1 −

2M
r

�
lðlþ 1Þ

r2
; ðA4Þ

where the dependency on the tortoise coordinate is given
implicitly as rðr�Þ and l is the multipole number of the
perturbation.
The case of the Reissner-Nordström black hole is a bit

more involved. In this work as a proof of principle we are
only considering one of the four perturbations. The full
derivation of the perturbation potential and further details
can be found in [49–55]. The potential we use goes over to
the pure vector perturbations of Schwarzschild Eq. (A4) in
the limit of Q ¼ 0. This potential can be written as

VðrÞ ¼ Δ
r5

�
U þWðp1 − p2Þ

2

�
; ðA5Þ

with the following abbreviations

Δ ¼ r2 − 2MrþQ2; ðA6Þ

U ¼ ð2nrþ 3MÞW þ ðω̄ − nr −MÞ − 2nΔ
ω̄

; ðA7Þ

p1;2 ¼ 3M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 8nQ2

p
; ðA8Þ

n ¼ ðl − 1Þðlþ 2Þ
2

; ðA9Þ

W ¼ Δ
rω̄2

ð2nrþ 3MÞ þ nrþM
ω̄

; ðA10Þ

ω̄ ¼ nrþ 3M −
2Q2

r
: ðA11Þ
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