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In this work, the solution space in the Newman-Penrose formalism with a cosmological constant is
derived. The residual gauge transformation preserving the solution space is also worked out. By turning off
the cosmological constant, the solution space has awell-defined flat limit. The asymptotic symmetry group of
the resulting solution space consists of DiffðS2Þ transformations and supertranslations.
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I. INTRODUCTION

Up until the 1960s, the existence of gravitational waves
was still debatable. It was not clear if the radiation was just
an artifact of linearization. To understand the gravitational
radiation in full Einstein theory, Bondi et al. established an
elegant framework of expansions for axisymmetric isolated
systems [1]. In a suitable coordinates system, the metric
fields are expanded in inverse powers of a radius coor-
dinate.1 Then, one can solve the equations of motion order
by order with respect to proper boundary conditions that are
asymptotically approaching flatness. In this framework, the
radiation is characterized by a single function of two
variables, the so-called news functions; the mass of a
system always decreases when there is news. In the same
year, Sachs extended this framework to asymptotically flat
space-times [3]. Meanwhile, Newman and Penrose devel-
oped a new method to understand gravitational radiation by
means of a tetrad or spinor formalism [4]. The peeling
property of the Weyl tensors and the geometric meaning of
a certain gauge choice become transparent in the Newman-
Penrose (NP) formalism.
The success in the understanding of gravitational

radiation in full Einstein theory only refers to the case
without a cosmological constant, Λ ¼ 0. In the presence
of a cosmological constant, the radiation field is essentially
origin dependent [5]. In particular, when Λ is positive,
the radiation vanishes along directions opposite to principal
null directions [6]. Hence, the absence of certain radiation
field cannot be used to distinguish nonradiative sources.
When Λ is negative, an extra requirement, the reflective
boundary condition, is imposed to make the evolution
well defined [7]. Consequently, there is no analogue of

the Bondi news functions [8]. Gravitational radiation
seems to be turned off by the appearance of a negative
cosmological constant. However, surprising results were
obtained in the case with a positive cosmological constant
recently [9–12]. A suitable framework which allows one
to apply the late-time and post-Newtonian approxi-
mations and finally to express the leading terms of
solutions in terms of the quadrupole moments of sources
is proposed (see also Refs. [13–37] for recent relevant
developments).
According to the experience of the case Λ ¼ 0, a fully

controlled solution space is the most important ingredient
in the understanding of radiation and gravitationally
conserved quantities, in both the metric formalism and
NP formalism. Several works have been carried out in this
direction. The solution space of asymptotically de Sitter
(dS) space-times was recently derived in Ref. [9] using
geometric tools à la Penrose [5,38] with special emphasis
on the consequence of a conformally flat boundary
2-metric. In the metric formalism, the axisymmetric
solution space in Bondi gauge was obtained with a
cosmological constant in Refs. [13,37]. The solution
space of the NP formalism with a cosmological constant
was derived in Refs. [17,29] with a special choice of the
foliation of space-times geometry, which is a family of
null hypersurfaces given by constant values of the u
coordinate. In this paper, we work out the most general
solution space of the NP formalism with a cosmological
constant by removing the constant foliation condition in
Refs. [17,29]. The main reason to do so is to include the
anti-de Sitter (AdS) Robinson-Trautman solution [39],
which is an exact solution with spherical gravitational
waves but does not satisfy the constant foliation condition
in its simplest form. In contrast with the case Λ ¼ 0, the
news functions are completely determined by the data on
the boundary 2-metric. Two functions from the boundary

1The problem of convergence of this expansion was fixed by
Friedrich 20 years later [2].
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2-metric are left undefined. They represent the radiation
in this system. The residual gauge transformation that
preserves the form of the solution space is also derived.
The asymptotic symmetry group is the full diffeomor-
phism group of the boundary 2-surface. There is no
analogue of supertranslation in the case with a cosmo-
logical constant [8,9]. We show in details the conse-
quence of taking the flat limit, Λ ¼ 0. The resulting
solution space includes the Newman-Unti solution space
[40] as a particular case, i.e., the boundary 2-metric to be
conformally flat. Its residual gauge symmetry consists of
DiffðS2Þ transformations and supertranslations.
The rest of this paper is organized as follows. In Sec. II,

we will review the Newman-Penrose formalism. Section III
will present the main result of this paper, the solution space
of the NP formalism with a cosmological constant. In Sec.
IV, we compute the residual transformation preserving the
solution space. Section V will show the details of the flat
limit. The last section is devoted to several open issues,
some of which we hope to study elsewhere. There are also
three Appendixes in which useful information for the main
text is presented.

II. REVIEW OF NEWMAN-PENROSE
FORMALISM

Newman and Penrose [4] established a special tetrad
formalism with four null basis vectors e1 ¼ l, e2 ¼ n,
e3 ¼ m, and e4 ¼ m̄. The basis vectors l and n are real,
while m and m̄ are complex conjugates of each other. The
null basis vectors have the orthogonality conditions

l ·m ¼ l · m̄ ¼ n ·m ¼ n · m̄ ¼ 0 ð1Þ

and are normalized as

l · n ¼ 1; m · m̄ ¼ −1: ð2Þ

The space-times metric is obtained from

gμν ¼ nμlν þ lμnν −mμm̄ν −mνm̄μ: ð3Þ

The connection coefficients are now called spin coeffi-
cients, labeled by several greek symbols (we will follow the
convention of Ref. [41]):

κ ¼ Γ311 ¼ lνmμ∇νlμ; π ¼ −Γ421 ¼ −lνm̄μ∇νnμ; ϵ ¼ 1

2
ðΓ211 − Γ431Þ ¼

1

2
ðlνnμ∇νlμ − lνm̄μ∇νmμÞ;

τ ¼ Γ312 ¼ nνmμ∇νlμ; ν ¼ −Γ422 ¼ −nνm̄μ∇νnμ; γ ¼ 1

2
ðΓ212 − Γ432Þ ¼

1

2
ðnνnμ∇νlμ − nνm̄μ∇νmμÞ;

σ ¼ Γ313 ¼ mνmμ∇νlμ; μ ¼ −Γ423 ¼ −mνm̄μ∇νnμ; β ¼ 1

2
ðΓ213 − Γ433Þ ¼

1

2
ðmνnμ∇νlμ −mνm̄μ∇νmμÞ;

ρ ¼ Γ314 ¼ m̄νmμ∇νlμ; λ ¼ −Γ424 ¼ −m̄νm̄μ∇νnμ; α ¼ 1

2
ðΓ214 − Γ434Þ ¼

1

2
ðm̄νnμ∇νlμ − m̄νm̄μ∇νmμÞ: ð4Þ

Ten independent components of the Weyl tensors are represented by five complex scalars,

Ψ0 ¼ −C1313; Ψ1 ¼ −C1213; Ψ2 ¼ −C1342; Ψ3 ¼ −C1242; Ψ4 ¼ −C2424:

Ricci tensors are defined in terms of four real and three complex scalars,

Φ00 ¼ −
1

2
R11; Φ22 ¼ −

1

2
R22; Φ02 ¼ −

1

2
R33; Φ20 ¼ −

1

2
R44; Φ11 ¼ −

1

4
ðR12 þ R34Þ;

Φ01 ¼ −
1

2
R13; ; Φ12 ¼ −

1

2
R23; Λ ¼ 1

24
R ¼ 1

12
ðR12 − R34Þ; Φ10 ¼ −

1

2
R14; Φ21 ¼ −

1

2
R24;

where Λ is the cosmological constant.
In the NP formalism, by local Lorentz transformations, it

is always possible to impose

π ¼ κ ¼ ϵ ¼ 0; ρ ¼ ρ̄; τ ¼ ᾱþ β: ð5Þ

According to (A1) in Appendix A, such a gauge choice
means that l is tangent to a null geodesic with an

affine parameter. Moreover, the congruence of the null
geodesic is hypersurface orthogonal; namely, l is propor-
tional to the gradient of a scalar field. It is of convenience
to choose this scalar field as coordinate u ¼ x1 and take
the affine parameter as coordinate r ¼ x2. Then, to
satisfy the orthogonality conditions and normalization
conditions, the tetrad and the cotetrad must have the
forms
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n¼ ∂
∂uþU

∂
∂rþXA ∂

∂xA ;

l¼ ∂
∂r ; m¼ ω

∂
∂rþLA ∂

∂xA ;
n¼ ½−U −XAðω̄LA þωL̄AÞ�duþ drþ ðωL̄A þ ω̄LAÞdxA;
l¼ du; m¼ −XALAduþLAdxA; ð6Þ

where LALA ¼ 0; LAL̄A ¼ −1. Considered as direc-
tional derivatives, the basis vectors are designated by
special symbols:

D ¼ lμ∂μ; Δ ¼ nμ∂μ; δ ¼ mμ∂μ: ð7Þ

The full vacuum Newman-Penrose equations with a
cosmological constant are listed in Appendix B.

III. SOLUTION SPACE

The main condition that all components of the Weyl

tensor (Ψ s) approach zero at infinity is Ψ0 ¼ Ψ0
0

r5
þ oðr−5Þ.

However, a slightly stronger condition that Ψ0 ¼ Ψ0
0

r5
þ Ψ1

0

r6
þ

Oðr−7Þ is usually adopted [40] to apply a 1
r series expan-

sion. The asymptotically flat solution space of NP equa-
tions was derived by Newman and Unti [40] more than half
century ago. The appearance of the cosmological constant
has a significant consequence for the solution space. In
Ref. [17], the NP equations are solved in ðθ;ϕÞ coordinates
with a special choice of the foliation of space-times
geometry and a third class of tetrad rotation to set the
order-1 piece of the spin coefficient γ to be zero (γ0 ¼ 0).
Indeed, it is always possible to set γ0 ¼ 0 in the Λ ¼ 0 case
by residual gauge transformations; see, for instance,
Refs. [42,43] for the precise coordinates transformations.
However, as shown in the next section, such a type of gauge
transformations will involve logarithm terms in the nonzero
Λ case. Since only 1

r expansions are assumed in Ref. [17],
the γ0 ¼ 0 condition will eliminate the possible situation
that represents gravitational radiation, for instance, the (A)
dS Robinson-Trautman solutions [39] (see also its appli-
cation in AdS=CFT therein). We will further comment on
this point in Sec. V. In addition, stereographic coordinates
ðz; z̄Þ are more convenient for certain issues, for instance,
the recent attempts at flat-space holography [44,45] and the
triangle equivalence [46]. In this section, we will work out
the most general solution space of NP equations with a
cosmological constant in stereographic coordinates.
The derivation of the solution space is explained in

Appendix C in details. We summarize as follows: the
process of solving the radial equations (B1)–(B17) is
exactly the same as in Ref. [40]. The cosmological constant
will just modify the asymptotic behaviors of the spin
coefficients as

λ ¼ Λσ̄0 þOðr−1Þ; μ ¼ ΛrþOðr−1Þ;
γ ¼ −ΛrþOðr0Þ; ð8Þ

which agree with the results in Ref. [17].2 However, the
constraints from nonradial equations on the integration
constants of the radial equations are much stronger than in
the Λ ¼ 0 case. In particular, σ0 and γ0 are completely
determined by (B25) as

Λσ0 ¼ Q∂uP − P∂uQ
2ðPP̄ −QQ̄Þ ; γ0 ¼ Q∂uQ̄ − P∂uP̄

2ðPP̄ −QQ̄Þ ; ð9Þ

whereQðu; z; z̄Þ and Pðu; z; z̄Þ are the integration constants
in Lz and Lz̄. P and Q are the only variables of which the
time evolutions are not determined. They represent gravi-
tational radiation in this system. This is quite consistent
with that of Refs. [9,17].
Before showing the full solutions, it is very useful to

introduce the ð operator that is defined as

ðηðsÞ ¼ LA
0

∂
∂xA η

ðsÞ þ 2sᾱ0ηðsÞ;

ð̄ηðsÞ ¼ L̄A
0

∂
∂xA η

ðsÞ − 2sα0ηðsÞ; ð10Þ

where LA
0 is the integration constant in LA and s is the spin

weight of the field η. The spin weights of relevant fields are
listed in Table I.
The full solutions of NP equations with a cosmological

constant in asymptotic expansions are given by

Ψ0 ¼
Ψ0

0

r5
þ Ψ1

0

r6
þOðr−7Þ; ð11Þ

Ψ1 ¼
Ψ0

1

r4
−
ð̄Ψ0

0

r5
þOðr−6Þ; ð12Þ

Ψ2 ¼
Ψ0

2

r3
þ Λσ̄0Ψ0

0 − ð̄Ψ0
1

r4
þOðr−5Þ; ð13Þ

Ψ3 ¼
Ψ0

3

r2
þ 2Λσ̄0Ψ0

1 − ð̄Ψ0
2

r3
þOðr−4Þ; ð14Þ

Ψ4 ¼
Ψ0

4

r
þ 3Λσ̄0Ψ0

2 − ð̄Ψ0
3

r2
þOðr−3Þ; ð15Þ

TABLE I. Spin weights.

ð ∂u γ0 ν0 μ0 σ0 λ0 Ψ0
4 Ψ0

3 Ψ0
2 Ψ0

1 Ψ0
0 P Q

s 1 0 0 −1 0 2 −2 −2 −1 0 1 2 1 1

2To compare to the result in Ref. [17], one needs to do the
following replacement: π → −τ0, ϵ → −γ0, ν → −κ0, μ → −ρ0,
β → −α0, λ → −σ0, Λ → Λ

6
, Ψs → −Ψs.
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ρ ¼ −
1

r
−
σ0σ̄0

r3
þOðr−5Þ; ð16Þ

σ ¼ σ0

r2
þ σ0σ0σ̄0 − 1

2
Ψ0

0

r4
−
Ψ1

0

3r5
þOðr−6Þ; ð17Þ

α ¼ α0

r
þ σ̄0ᾱ0

r2
þ σ0σ̄0α0

r3
þOðr−4Þ;

τ ¼ −
Ψ0

1

2r3
þOðr−4Þ; ð18Þ

β ¼ −
ᾱ0

r
−
σ0α0

r2
−
σ0σ̄0ᾱ0 þ 1

2
Ψ0

1

r3
þOðr−4Þ; ð19Þ

μ ¼ Λrþ μ0

r
−
σ0λ0 þ Ψ0

2

r2

þ μ0σ0σ̄0 þ 1
2
ð̄Ψ0

1 þ 1
3
Λðσ̄0Ψ0

0 þ σ0Ψ̄0
0Þ

r3
þOðr−4Þ;

ð20Þ

λ¼ Λσ̄0 þ λ0

r
−
σ̄0μ0

r2
þ λ0σ̄0σ0 þ 1

2
σ̄0Ψ0

2 þ 1
6
ΛΨ̄1

0

r3
þOðr−4Þ;

ð21Þ

γ ¼ −Λrþ γ0 −
Ψ0

2

2r2
þ 2ð̄Ψ0

1 þ α0Ψ0
1 − ᾱ0Ψ̄0

1 − 2Λσ̄0Ψ0
0

6r3

þOðr−4Þ; ð22Þ

ν¼ ν0 þ
1
2
ΛΨ̄0

1 −Ψ0
3

r
þ 3ð̄Ψ0

2 −ΛðΨ̄0
0 − 5Λσ̄0Ψ0

1

6r2
þOðr−3Þ;

ð23Þ

Xz ¼ P̄Ψ0
1 þQΨ̄0

1

6r3
þOðr−4Þ; ð24Þ

ω ¼ ð̄σ0

r
−
σ0ðσ̄0 þ 1

2
Ψ0

1

r2
þOðr−3Þ; ð25Þ

U ¼ Λr2 − rðγ0 þ γ̄0Þ þU0 −
Ψ0

2 þ Ψ̄0
2

2r

þ ð̄Ψ0
1 þ ðΨ̄0

1 − ΛσΨ̄0
0 − Λσ̄0Ψ0

0

6r2
þOðr−3Þ; ð26Þ

Lz ¼ Q
r
−
P̄σ0

r2
þQσ0σ̄0

r3
þ P̄ðΨ0

0 − 6σ02σ̄0Þ
6r4

þOðr−5Þ;
ð27Þ

Lz̄ ¼ P
r
−
Q̄σ0

r2
þ Pσ0σ̄0

r3
þ Q̄ðΨ0

0 − 6σ02σ̄0Þ
6r4

þOðr−5Þ;
ð28Þ

Lz ¼
−Pr

PP̄ −QQ̄
þ Q̄σ0

PP̄ −QQ̄
−

1

6r2
Q̄Ψ0

0

PP̄ −QQ̄

þ 1

12r3
Pσ̄0Ψ0

0 − Q̄Ψ1
0

PP̄ −QQ̄
þOðr−4Þ; ð29Þ

Lz̄ ¼
Qr

PP̄ −QQ̄
−

P̄σ0

PP̄ −QQ̄
þ 1

6r2
P̄Ψ0

0

PP̄ −QQ̄

−
1

12r3
Qσ̄0Ψ0

0 − P̄Ψ1
0

PP̄ −QQ̄
þOðr−4Þ; ð30Þ

where

α0 ¼ 1

2
L̄0BðLA

0∂AL̄B
0 − L̄A

0∂ALB
0 Þ; ð31Þ

Λσ0 ¼ 1

2
L0A∂uLA

0 ; ð32Þ

γ0 ¼ 1

2
L0A∂uL̄A

0 ; ð33Þ

μ0 ¼ −ðα0 − ð̄ᾱ0 − 2Λσ0σ̄0; ð34Þ

λ0 ¼ ∂uσ̄
0 þ ð3γ0 − γ̄0Þσ̄0; ð35Þ

ν0 ¼ ð̄ðγ0 þ γ̄0Þ − 2Λðσ̄0; ð36Þ

U0 ¼ μ0 − Λσ0σ̄0; ð37Þ

ω0 ¼ ð̄σ0; ð38Þ

Ψ0
2 − Ψ̄0

2 ¼ λ̄0σ̄0 − λ0σ0 þ ð̄2σ0 − ð2σ̄0; ð39Þ

Ψ0
3 ¼ ð̄μ0 − ðλ0 þ Λð̄σ̄0 − ΛΨ̄0

1; ð40Þ

Ψ0
4 ¼ ð̄ν0 − ∂uλ

0 − 4γ0λ0 − 4Λμ0σ̄0 þ Λ2Ψ̄0
0; ð41Þ

and the time evolutions of the Weyl tensors

∂uΨ0
0 þ ðγ0 þ 5γ̄0ÞΨ0

0 ¼ ðΨ0
1 þ 3σ0Ψ0

2 þ ΛΨ1
0;

∂uΨ0
1 þ 2ðγ0 þ 2γ̄0ÞΨ0

1 ¼ ðΨ0
2 þ 2σ0Ψ0

3 − Λð̄Ψ0
0;

∂uΨ0
2 þ 3ðγ0 þ γ̄0ÞΨ0

2 ¼ ðΨ0
3 þ σ0Ψ0

4 − Λð̄Ψ0
1 þ Λ2σ̄0Ψ0

0;

∂uΨ0
3 þ 2ð2γ0 þ γ̄0ÞΨ0

3 ¼ ðΨ0
4 − Λð̄Ψ0

2 þ 2Λ2σ̄0Ψ0
1; ð42Þ

as well as the identities

∂uμ
0 ¼ ðð̄ðγ0 þ γ̄0Þ − 2ðγ0 þ γ̄0Þμ0 − Λðð2σ̄0 þ ð̄2σ0Þ

− 2Λðλ̄0σ̄0 þ λ0σ0Þ;
∂uα

0 ¼ Λðσ̄0 þ 2Λᾱ0σ̄0 − 2γ0α0 − ð̄γ̄0: ð43Þ
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The commutator of the ð operator is3

½ð̄; ð�ηðsÞ ¼ 2sððα0 þ ð̄ᾱ0ÞηðsÞ: ð44Þ
The solution space in metric form can be easily obtained

by inserting the tetrad solution (24)–(30) into (3). The
gauge choice in (6) is the so-called Newman-Unti gauge
[40]. To compare to the results in Bondi gauge in
Refs. [13,37], one just needs to apply a transformation
in the radial direction [47]. A conformally flat boundary
2-metric explored in Ref. [9] corresponds to Ψ0

4 ¼ Ψ0
3 ¼

ImðΨ0
2Þ ¼ 0 in the NP formalism. Those conditions will

eventually yield Q ¼ ∂uP ¼ 0 in the above solution space.
There is a very interesting exact solution with gravitational
waves in truncated forms, i.e., the (A)dS Robinson-
Trautman solution [39] (see also earlier references therein).
It is a generalization of the Robinson-Trautman waves [48]
to the nonzero Λ case. Adapted to our convention, the
metric of the solution is4

ds2 ¼ 2

�
−Λr2 − r∂u lnPþ P2∂∂̄ lnPþΨ0

2

r

�
du2

þ 2dudr − 2
r2

P2
dzdz̄; ð45Þ

where P is a real function of ðu; z; z̄Þ and Ψ0
2 is a real

constant. The time evolution equation of the conformal
factor is

3Ψ0
2∂uPþ P3∂̄2P∂2P − P4∂2∂̄2P ¼ 0: ð46Þ

In the NP formalism, the solution is given by

Ψ0¼Ψ1¼σ¼ λ¼ τ¼XA¼ω¼Q¼0;

Ψ2¼
Ψ0

2

r3
; Ψ0

2 is a real constant;

Ψ3¼
P∂μ0
r2

; Ψ4¼
−∂ðP2∂∂u lnPÞ

r
−
P2∂∂̄μ0

r2
;

μ0¼−P2∂∂̄ lnP
ρ¼−

1

r
; α¼∂P

2r
; β¼−

∂̄P
2r

; μ¼Λrþμ0

r
−
Ψ0

2

r2
;

γ¼−Λr−
1

2
∂u lnP−

Ψ0
2

r2
; ν¼−P∂∂u lnP−

P∂μ0
r

;

U¼Λr2þ∂u lnPrþμ0−
Ψ0

2

r
; Lz¼0; Lz̄¼P

r
: ð47Þ

IV. RESIDUAL GAUGE TRANSFORMATION

In this section, we will work out the residual gauge
transformation preserving the solution space derived in the
previous section. We follow closely the process of
Ref. [49], in which the residual gauge transformation
preserving the forms of the Newman-Unti solution space
[40] was studied in detail (see also earlier references
therein). A gauge transformation of the first-order formal-
ism of Einstein gravity is a combination of a change of
coordinates and a local Lorentz transformation. In the NP
formalism, the local Lorentz transformation is described in
the standard three classes of rotation [41]. A combined
rotation II∘I∘III of the tetrad basis is given by5

l̃ ¼ ð1þ ĀBÞð1þ AB̄ÞeERlþ BB̄e−ERn

þ B̄ð1þ ĀBÞeiEImþ Bð1þ AB̄Þe−iEI m̄;

ñ ¼ AĀeERlþ e−ERnþ ĀeiEImþ Ae−iEI m̄;

m̃ ¼ Að1þ ĀBÞeERlþ Be−ERn

þ ð1þ ĀBÞeiEImþ ABe−iEI m̄: ð48Þ
The change of coordinates is in the form

u ¼ uðu0; r0; z0; z̄0Þ; r ¼ rðu0; r0; z0; z̄0Þ;
xA ¼ xAðu0; r0; z0; z̄0Þ: ð49Þ
The gauge condition l0 ¼ ∂

∂r0 implies

∂xμ
∂r0 ¼ l̃μ: ð50Þ

Hence,

∂u
∂r0 ¼BB̄e−ER;

∂z
∂r0 ¼XzBB̄e−ER þLzB̄ð1þ ĀBÞeiEI þ L̄zBð1þAB̄Þe−iEI ;

∂r
∂r0 ¼ ð1þ ĀBÞð1þAB̄ÞeER þUBB̄e−ER

þωB̄ð1þ ĀBÞeiEI þ ω̄Bð1þAB̄Þe−iEI ; ð51Þ

which is Eq. (6.41) in Ref. [49]. This will fix the unprimed
coordinates up to four integration constants of r0. To
implement the gauge condition κ ¼ π ¼ ϵ ¼ 0, one has
to go back to the original definition in (4). The transformed
spin coefficients are

κ0 ¼ −l̃νl̃μ∇νm̃μ; π̄0 ¼ −l̃νm̃μ∇νñμ; ϵ0 ¼ l̃νñμ∇νl̃μ:

ð52Þ

3One should use the identity ðL̄A
0 ¼ ð̄LA

0 .4We use the ðþ;−;−;−Þ signature. ∂ and ∂̄ denote ∂z and ∂ z̄,
respectively. We follow the convention of Ref. [41], in which
Einstein’s equations with a cosmological constant in the metric
formalism are Rμν − 1

2
gμνRþ 6Λgμν ¼ 0. To compare with the

metric in Ref. [39], one needs to do the following replacement:
P → e−

Φ
2 , Λ → Λ

6
, Ψ0

2 → −m.

5To connect with the notation in Ref. [41], one just needs to set
A ↔ a, B ↔ b, e−ER ↔ A, EI ↔ θ.
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Inserting (48) into the transformed spin coefficients and
applying the relation in Appendix A, the gauge conditions
κ0 ¼ π0 ¼ ϵ0 ¼ 0 eventually lead to

D̃B¼eE½BB̄e−ERτþB̄ð1þĀBÞeiEIσþBð1þAB̄Þe−iEIρ�;
D̃Ā¼ Ā2eE½BB̄e−ERτþB̄ð1þĀBÞeiEIσþBð1þAB̄Þe−iEIρ�

−e−E½BB̄e−ERνþB̄ð1þĀBÞeiEIμþBð1þAB̄Þe−iEIλ�;
D̃E¼−2ĀeE½BB̄e−ERτþB̄ð1þĀBÞeiEIσ

þBð1þAB̄Þe−iEIρ�−2½BB̄e−ERγþB̄ð1þĀBÞeiEIβ

þBð1þAB̄Þe−iEIα�; ð53Þ

where D̃ ¼ l̃μ∂μ. In the primed coordinates, D̃0 ¼ ∂
∂r0

because of the gauge condition on l. Thus, Eq. (53) is
precisely Eq. (6.44) in Ref. [49]. In the flat case, the
following asymptotic behavior is assumed:

r ¼ eER0r0 þOð1Þ; u ¼ Oð1Þ; xA ¼ Oð1Þ;
A ¼ Oð1Þ; E ¼ Oð1Þ; B ¼ Oðr−1Þ: ð54Þ

The three classes of rotation will be fixed up to six
integration constants of r0. However, the appearance of
the cosmological constant will involve logarithms of r in
the third equation of (53) because γ ¼ −ΛrþOðr0Þ. Then,
logarithmic terms will show up in the transformed solution
space, which violates the assumption that the solution is
given in 1

r expansion and should be ruled out.6 Therefore,
we have to set B ¼ Oðr−2Þ. When using the first equation
of (53), B ¼ 0. Consequently, all the subleadings of A, E,
u, r, and xA are zero. This gives

r ¼ eER0
ðu0;z0;z̄0Þr0 þ r0ðu0; z0; z̄0Þ;

u ¼ u0ðu0; z0; z̄0Þ; xA ¼ xA0 ðu0; z0; z̄0Þ;
A ¼ A0ðu0; z0; z̄0Þ; E ¼ E0ðu0; z0; z̄0Þ; B ¼ 0:

ð55Þ

To proceed, we check the asymptotic behavior of the
transformed tetrad. From n0, we get

n0u0 ¼ e−ER0∂uu00 þOðr−1Þ;
n0r0 ¼ e−2ER0Λr2 þOðrÞ;
n0z0 ¼ e−ER0∂uz00 þOðr−1Þ: ð56Þ

This implies

ER0 ¼ 0; u00 ¼ uþ u00ðz; z̄Þ; z00 ¼ Yðz; z̄Þ: ð57Þ

We continue to check m0,

m0u0 ¼ eiEIðP∂̄u00 þQ∂u00Þ þOðr−2Þ;
m0r0 ¼ A0 þOðr−1Þ;
m0z0 ¼ Oðr−1Þ: ð58Þ

This leads to

A0¼0; u00¼uþc; where c is a real constant: ð59Þ

The condition that the terms of 1
r02 in ρ0 is absent yields

r0 ¼ 0. Since we did not require the boundary 2-metric to
be conformally flat, there is no more constraint on Y and Ȳ.
The full residual gauge transformation is a DiffðS2Þ and a
third class of rotationm0 ¼ eiEI0m as well as a translation in
the time direction. All the residual transformations are
performed on the boundary 2-surface. The action on the
boundary 2-surface is very simple:

Q0 ¼ eiEIðY; P0 ¼ eiEIðȲ: ð60Þ

V. FLAT LIMIT AND CONSTANT FOLIATION

A flat limit of the solution space in Sec. III can be taken
directly by setting Λ ¼ 0. However, from (17), P and Q
will have the following constraint:

Q∂uP ¼ P∂uQ: ð61Þ
This leads to Q ¼ PQ̃, and Q̃ is a function of ðz; z̄Þ.
Newman and Unti [40] have set the boundary 2-metric to be
conformally flat, namely, Q̃ ¼ 0. Removing the condition
on the boundary 2-metric, the solution space of NP
equations can be even larger.7 Via a Weyl transformation,
one can reorganize the flat solution space in the present
work, such that both P and Q are u independent, i.e.,
choosing a constant foliation. The residual gauge trans-
formation of this case is supertranslation ⋉ DiffðS2Þ since
the boundary 2-metric is not conformally flat. This is the
phase space discussed in Refs. [53–55], and it has impor-
tant applications in the study of the equivalence between
asymptotic symmetries and soft graviton theorems [56].
With a cosmological constant, as we have shown in the

previous section, the residual gauge transformation only
consists of a DiffðS2Þ and a third class of rotation (some-
how half of Weyl transformation).8 Accordingly, it is not

6Expansion involving logarithms is called polyhomogeneous
expansion [50–52]. It is of interest to explore such solution space,
but we leave it for future investigation.

7To be more precise, the boundary 2-metric was set to be
conformally flat before solving the nonradial equations in Ref. [40].
Hence, the flat limit of the solution space inSec. III is larger than that
in Ref. [40] in the sense that α0 and γ0 are more general.

8Here, we only deal with transformations in the NP formalism.
In the conformal frame [38], there is considerable freedom in the
choice of the conformal factor. It is of interest to study the effect
of the residual conformal freedom in the NP formalism else-
where.
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possible to reorganize the solution space to have both P and
Q ben u independent (hence, γ0 ¼ 0) by residual gauge
transformation. One can only set Imðγ0Þ ¼ 0 via a third
class of rotation. This is another reason to remove the
constant foliation condition γ0 ¼ 0 in Refs. [17,29].
Though any boundary 2-metric is connected by DiffðS2Þ,
most elements of the DiffðS2Þ transformations are singular
and will arise (new) topological degree of freedom. If we
just focus on the issues of gravitational radiation in (A)dS
space-times, it is better to restrict ourselves to the Lorentz
transformations.

VI. DISCUSSIONS

In this work, we have derived the solution space of the
Newman-Penrose formalism with a cosmological constant.
The residual gauge transformation that preserves the
solution space has also been worked out. The solution
space has a well-defined flat limit. The residual gauge
transformation of the resulting solution space consists of
supertranslation ⋉ DiffðS2Þ, and this phase space should
have certain relevance to soft graviton theorems according
to recently discovered equivalence between soft theorems
and asymptotic symmetries [57].
There are several interesting questions about the solution

space with a cosmological constant that need to be
addressed in the future:

(i) In the case Λ ¼ 0, a solution of NP equations is
determined by spesifying the news function σ0 and
conformal factor P at any time u; Ψ0

1, Ψ0
2 þ Ψ̄0

2, and
Ψ0 (the entire series) at the initial time u0, a full
solution of NP equations is completely determined.
According to (42), the time evolution equations of
Weyl tensors are mixed due to the appearance of the
cosmological constant. Hence, the initial data that
determine a solution are not yet fully understood.

(ii) Newman-Penrose conserved quantities: In Ref. [58],
an infinite number of gravitationally conserved
quantities was discovered from the Newman-Unti
solution space. Once the characteristic initial value
problem is solved in the case with a cosmological
constant, gravitationally conserved quantities should
be constructed as well.

(iii) Bondi mass and mass loss: The analogue of the
Bondi mass aspect and the mass-loss formula with
respect to the solution space need to be stressed
elsewhere. A second relevant (generalized) problem
is to study the full current algebra of the asymptotic
symmetries group [59].

(iv) Polyhomogeneous series: Expansion with loga-
rithms can be applied to derive a larger solution
space. Correspondingly, one should apply the

asymptotic behavior Ψ0 ¼ Ψ0
0

r5
þ oðr−5Þ rather than

Ψ0 ¼ Ψ0
0

r5
þOðr−6Þ in the present treatment.
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APPENDIX A: USEFUL RELATIONS IN
NEWMAN-PENROSE FORMALISM

From the orthogonality conditions and normalization
conditions of the basis vectors, one can obtain the following
relations:

lν∇νlμ ¼ ðϵþ ϵ̄Þlμ − κm̄μ − κ̄mμ;

nν∇νlμ ¼ ðγ þ γ̄Þlμ − τm̄μ − τ̄mμ;

mν∇νlμ ¼ ðβ þ ᾱÞlμ − σm̄μ − ρ̄mμ;

m̄ν∇νlμ ¼ ðαþ β̄Þlμ − ρm̄μ − σ̄mμ; ðA1Þ

lν∇νnμ ¼ −ðϵþ ϵ̄Þnμ þ π̄m̄μ þ πmμ;

nν∇νnμ ¼ −ðγ þ γ̄Þnμ þ ν̄m̄μ þ νmμ;

mν∇νnμ ¼ −ðβ þ ᾱÞnμ þ λ̄m̄μ þ μmμ;

m̄ν∇νnμ ¼ −ðαþ β̄Þnμ þ μ̄m̄μ þ λmμ; ðA2Þ

lν∇νmμ ¼ ðϵ − ϵ̄Þmμ − κnμ þ π̄lμ;

nν∇νmμ ¼ ðγ − γ̄Þmμ − τnμ þ ν̄lμ;

mν∇νmμ ¼ ðβ − ᾱÞmμ − σnμ þ λ̄lμ;

m̄ν∇νmμ ¼ ðα − β̄Þmμ − ρnμ þ μ̄lμ: ðA3Þ

APPENDIX B: NP EQUATIONS

1. Radial equations

Dρ ¼ ρ2 þ σσ̄; ðB1Þ

Dσ ¼ 2ρσ þΨ0; ðB2Þ

Dτ ¼ τρþ τ̄σ þ Ψ1; ðB3Þ

Dα ¼ ραþ βσ̄; ðB4Þ

Dβ ¼ ασ þ ρβ þ Ψ1; ðB5Þ

Dγ ¼ ταþ τ̄β þΨ2 − Λ; ðB6Þ

Dλ ¼ ρλþ σ̄μ; ðB7Þ
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Dμ ¼ ρμþ σλþ Ψ2 þ 2Λ; ðB8Þ

Dν ¼ τ̄μþ τλþ Ψ3; ðB9Þ

DU ¼ τ̄ωþ τω̄ − ðγ þ γ̄Þ; ðB10Þ

DXA ¼ τ̄LA þ τL̄A; ðB11Þ

Dω ¼ ρωþ σω̄ − τ; ðB12Þ

DLA ¼ ρLA þ σL̄A; ðB13Þ

DΨ1 − δ̄Ψ0 ¼ 4ρΨ1 − 4αΨ0; ðB14Þ

DΨ2 − δ̄Ψ1 ¼ 3ρΨ2 − 2αΨ1 − λΨ0; ðB15Þ

DΨ3 − δ̄Ψ2 ¼ 2ρΨ3 − 2λΨ1; ðB16Þ

DΨ4 − δ̄Ψ3 ¼ ρΨ4 þ 2αΨ3 − 3λΨ2: ðB17Þ

2. Nonradial equations

Δλ ¼ δ̄ν − ðμþ μ̄Þλ − ð3γ − γ̄Þλþ 2αν −Ψ4; ðB18Þ

Δρ ¼ δ̄τ − ρμ̄ − σλ − 2ατ þ ðγ þ γ̄Þρ − Ψ2 − 2Λ; ðB19Þ

Δα ¼ δ̄γ þ ρν − ðτ þ βÞλþ ðγ̄ − γ − μ̄Þα −Ψ3; ðB20Þ

Δμ ¼ δν − μ2 − λλ̄ − ðγ þ γ̄Þμþ 2βν; ðB21Þ

Δβ ¼ δγ − μτ þ σνþ βðγ − γ̄ − μÞ − αλ̄; ðB22Þ

Δσ ¼ δτ − σμ − ρλ̄ − 2βτ þ ð3γ − γ̄Þσ; ðB23Þ

Δω ¼ δU þ ν̄ − λ̄ ω̄þðγ − γ̄ − μÞω; ðB24Þ

ΔLA ¼ δXA − λ̄L̄A þ ðγ − γ̄ − μÞLA; ðB25Þ

δρ − δ̄σ ¼ ρτ − σð3α − β̄Þ −Ψ1; ðB26Þ

δα − δ̄β ¼ μρ − λσ þ αᾱþ ββ̄ − 2αβ −Ψ2 þ Λ; ðB27Þ

δλ − δ̄μ ¼ μτ̄ þ λðᾱ − 3βÞ −Ψ3; ðB28Þ

δω̄ − δ̄ω ¼ μ − μ̄ − ðα − β̄Þωþ ðᾱ − βÞω̄; ðB29Þ

δL̄A − δ̄LA ¼ ðᾱ − βÞL̄A − ðα − β̄ÞLA; ðB30Þ

ΔΨ0 − δΨ1 ¼ ð4γ − μÞΨ0 − ð4τ þ 2βÞΨ1 þ 3σΨ2; ðB31Þ

ΔΨ1 − δΨ2 ¼ νΨ0 þ ð2γ − 2μÞΨ1 − 3τΨ2 þ 2σΨ3; ðB32Þ

ΔΨ2 − δΨ3 ¼ 2νΨ1 − 3μΨ2 þ ð2β − 2τÞΨ3 þ σΨ4; ðB33Þ

ΔΨ3 − δΨ4 ¼ 3νΨ2 − ð2γ þ 4μÞΨ3 þ ð4β − τÞΨ4: ðB34Þ

APPENDIX C: DETAILS IN SOLVING NP
EQUATIONS

The method of solving NP equations was originally
schemed in Ref. [4], later implemented by Newman and
Unti in detail [40]. We follow exactly the derivation of
Newman and Unti. The radial equations are solved in
different groups. The first group is (B1) and (B2). Those
equations are not affected by Λ. Once the whole series of
Ψ0 is given as initial data by (11), ρ and σ are solved out as
(16) and (17). Inserting the solutions of ρ and σ into (B13),
one gets LA as (27) and (28), then LA by the condition
LALA ¼ 0, LAL̄A ¼ −1. The second group of radial equa-
tions consists of (B4), (B5), (B12), and (B14). Those
equations are not modified byΛ either. One can work out α,
β, ω, and Ψ1 as (18), (19), (25), and (12), respectively, then
τ from gauge condition τ ¼ ᾱþ β. Inserting τ and LA into
(B11), XA is obtained as (24). Until now, the cosmological
constant has not appeared yet. We are just repeating the
result of Ref. [40]. We continue with the third group of
radial equations that include (B7), (B8), and (B15). One
can see the cosmological constant appears for the first time
in (B8). But one can just apply the same method as the first
two groups to solve out μ, λ, and Ψ2, which are (20), (21),
and (13). Then, γ is derived from (B6) as (22), U is derived
from (B10) as (26), Ψ3 is derived from (B16) as (14), ν is
derived from (B9) as (23), and finally Ψ4 is derived from
(B17) as (15).
The solutions to the radial equations are less affected

by cosmological constant. Now, we will check the con-
straints from nonradial equations on the integration con-
stants of the radial equations. By inserting the solutions of
the radial equations into the nonradial equations, the
leading term of the Bianchi identities (B31)–(B34) will
lead to the time evolution equations (42). The Weyl tensors
are more entangled because of Λ. More constraints are
obtained from the leading term of the rest of the nonradial
equations:

(i) (B30) yields (31).
(ii) (B26) yields (38)
(iii) (B28) yields (40).
(iv) (B27) yields (34).
(v) (B29) yields the magnetic part of Ψ0

2 as (39).
(vi) (B25) yields (32) and (33).
(vii) (B19) yields (37).
(viii) (B23) yields (35).
(ix) (B18) yields (41).
(x) (B24) yields (36).
(xi) (B21) and (B20) yield two identities (43).

PUJIAN MAO PHYS. REV. D 99, 104024 (2019)

104024-8



The last one (B22) just yields the complex conjugate of the second identity in (43). Though it is not completely clear that
if there is new information coming from higher powers of 1

r,
9 we computed the next-to-leading order of (B19), (B23),

(B25)–(B27), (B29), and (B30) and found no more information. Because of the tediousness of the computation, we did not
continue with other equations and higher orders. Some arguments from the structure of NP equations should be made to
justify that all higher orders have no more information.
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