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In this work, we show the existence of asymptotically anti-de Sitter (AdS) wormhole geometries in which
the scalar probe has an equispaced, fully resonant spectrum, as that of a scalar on AdS spacetime, and explore
its dynamics when nonlinearities are included. The spacetime is a solution of Einstein-Gauss-Bonnet theory
with a single maximally symmetric vacuum. Introducing a nonminimal coupling between the scalar probe
and the Ricci scalar remarkably leads to a fully resonant spectrum for a scalar field fulfilling reflective
boundary conditions at both infinities. Applying perturbative methods, which are particularly useful for
unveiling the dynamics at time scales of order ε−2 (where ε characterizes the amplitude of the initial
perturbation), we observe both direct and inverse energy cascades between modes. This motivates us to
explore the energy returns in the case in which the dynamics is dominated by a single mode. We find
numerical and perturbative evidence that near-exact returns do exist in this regime. We also provide some
comments on the fully backreracting case and provide a proof of the universality of the weakly nonlinear
dynamics around AdS, in the context of Lovelock theories with generic couplings, up to times of order ε−2.
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I. INTRODUCTION

General Relativity (GR) in dimensions higher than 4 can
be extended, still fulfilling the requirements of second-order
field equations and diffeomorphism invariance. In general,
in dimensions D ≥ 5, the precise combination of higher
curvature terms can be added to the Einstein-Hilbert action,
leading also to second-order field equations [1]. These
combinations are dimensional continuations of the Euler
densities of the lower, even dimensions. These combinations
may appear as low-energy effective actions in string theory,
as it is the case for theR2 term in the heterotic and bosonic
string theories [2]. The simplest deformation from GR is
obtained in five dimensions, in which the Einstein-Gauss-
Bonnet theory has the following action principle:

I½gμν� ¼
1

16πG5

Z
½R−2ΛþαðR2−4RμνRμνþRμνγσRμνγσÞ�

×
ffiffiffiffiffiffi
−g

p
d5x: ð1Þ

Note that the coupling α has mass dimension−2, and here it
represents a free coupling.
For generic values of the couplings, the theory admits a

local Lorentz invariance that can be made manifest in the

first-order formulation in which the vielbein and the spin
connection transform as a vector and connection of
SOð4; 1Þ, respectively. When αΛ ¼ −3=4, the local sym-
metry group is enlarged to SOð4; 2Þ [3], the theory admits a
unique maximally symmetric anti-de Sitter (AdS) solution,
and it has the maximum number of propagating degrees of
freedom [4]. At this particular point, the space of solutions
is also enlarged and contains, in addition to black holes [5]
and analytic rotating solutions [6,7], asymptotically locally
AdS wormholes [8]. The line element of the wormhole
metric reads

ds2 ¼ l2½−cosh2ρdt2 þ dρ2 þ cosh2ρðdφ2 þ dΣ2
2Þ�; ð2Þ

where −∞ < t < þ∞, −∞ < ρ < þ∞, 0 < φ ≤ 2π, and
dΣ2 stands for the line element of a compact, smooth
quotient of the pseudosphere with radius 3−1=2. Here,
l2 ¼ 4α ¼ −3=Λ. The two asymptotically locally AdS5
regions ρ → �∞ are connected by a traversable throat
located at ρ ¼ 0, and the spacetime is symmetric under the
reflection ρ → −ρ. This spacetime being devoid of singu-
larities and horizons represents a soliton in the nonlinear
Einstein-Gauss-Bonnet theory.1
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1It is interesting to notice that a similar situation occurs
for Einsteinian gravities [9], in which it was shown that a
wormhole exists for a particular value of the coupling constants.
See also Ref. [10] for Lorentzian wormholes in GR supported by
a Skyrme field.
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The propagation of a scalar probe on the background geo-
metry (2) was originally explored in Ref. [11], in which the
focuswas on the computation, in a closed form, of the normal
frequencies fulfilling different possible boundary conditions.
In Ref. [12], this problem was partially revisited, and it was
shown that for a particular value of a nonminimal coupling
with the scalar curvature the propagation of the scalar is
controlled by an effective Schrödinger problem in a Rosen-
Morse potential, forwhich the energies are proportional to the
square of the frequencies of the scalar probe. Since the eigen-
values of the Schrödinger operator inRosen-Morse potentials
are quadratic in the mode number n [13], the spectrum of the
purely radial scalar probe turns out to be equispaced or fully
resonant. Equispaced spectra play an important role in tur-
bulent energy transfer leading to the nonperturbative AdS
instability [14–19]. These kind of fully resonant spectra lead
to a rich phenomenology that also appears in nonlinear
models of different physical nature as in self-gravitating
scalars on a spherical cavity in 3þ 1 [20], on systems descri-
bing Bose-Einstein condensates [21], and vortex precession
[22], as well as in the conformal dynamics on the Einstein
universe [23]. A program to classify all the spacetimes in
which a minimally coupled scalar probe may lead to an ex-
actly solvable effective Schroedinger problem, suggestively
dubbed “Klein-Gordonization,” was initiated in Ref. [24].
In this paper, we go beyond the linear level and

perturbatively explore different aspects of the nonlinear
dynamics of a fully resonant, self-interacting scalar probe
on the wormhole spacetime (2).
In Sec. II, we revisit with detail the linear propagation of a

scalar probe with a precise nonminimal coupling with the
Ricci scalar. The solutions to this linear problem are dubbed
“wormhole oscillons,” and we show that the spectrum of
these oscillons is linear in the mode number. After introduc-
ing a self-interaction, in Sec. III, we construct the system of
equations that control the dynamics of the infinite oscillators
in the two-time framework (TTF) [25] or the time-averaged
system [17–18]. This approach has been particularly useful in
the context of the nonperturbative instability of AdS, since it
captures the dynamics at times of order ε−2, where ε
characterizes the energy content of the initial perturbation.
By truncating the system of oscillators, we study the energy
transfer between modes and show that there are direct and
inverse energy cascades. In particular, when the dynamics is
dominated by a single mode, we find evidence of near-exact
energy returns, which is confirmed in Sec. IV analytically
usingperturbation theory. SectionVis devoted to conclusions
and further comments on the universality of the weakly
nonlinear dynamics on AdS for Lovelock theories with
generic couplings. It is well known that higher curvature
gravity theories may have more than one maximally sym-
metric vacuum. We show that for an arbitrary Lovelock
theory, provided the couplings are generic, the form of the
equation for the infinite oscillators that control the dynamics
in the TTF is universal.

II. LINEAR SCALAR PROBE

Let us consider the equation for a scalar probe on
the wormhole geometry (2), with a fixed nonminimal
coupling,2 �

□ −m2 −
3

8
R

�
ϕ1ðxμÞ ¼ 0: ð3Þ

We will see below that, even though the Ricci scalar is a
nontrivial function of the radial coordinate

R ¼ −
20

l2
þ 6

l2cosh2ðρÞ ; ð4Þ

the equation for the scalar probe can be solved analytically.
Hereafter, for simplicity, we fix l ¼ 1.
Introducing a mode separation and considering only a

radial spatial dependence

ϕ1ðt; ρÞ ¼ e−iωtRðρÞ ð5Þ

and the radial coordinate ρ� ¼ 2 arctanðeρÞ which maps
ρ ∈�∞;∞½ to ρ� ∈�0; π½, we obtain

−
d2Sðρ�Þ
dρ�2

þ Uðρ�ÞSðρ�Þ ¼ ω2Sðρ�Þ; ð6Þ

where SðρÞ ¼ coshðρÞ3=2RðρÞ and the effective potential
reads

Uðρ�Þ ≔ 1

4

4m2 − 15

sin2ðρ�Þ : ð7Þ

In terms of the coordinate ρ�, the metric is manifestly
conformal to the product of Rt ×R × S1 × Σ2 and reads

ds2 ¼ 1

sin2ðρ�Þ ½−dt
2 þ dρ�2 þ dφ2 þ dΣ2

2�; ð8Þ

and the wormhole boundaries are located at the divergences
of the conformal factor.
Equation (6) is that of a quantum particle moving in a

Rosen-Morse potential. For the following analysis, it is
convenient to introduce the coordinate z such that

tanhðρÞ ¼ 1 − 2z; ð9Þ

which maps ρ ∈�∞;∞½ to z ∈�1; 0½. The wave equation (3)
leads to

ϕ̈1 þ Lϕ1 ¼ 0; ð10Þ

2Note that this is not the conformal coupling since in general
ξconf ¼ D−2

4ðD−1Þ.
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where the operator L is defined as

L≔−z2ð1− zÞ2 d
dz

�
1

zð1− zÞ
d
dz

�
þm2−15=2

4zð1− zÞ þ9

4
: ð11Þ

This operator admits the asymptotic behaviors

RðzÞ ∼z→0D1zΔþ þD2zΔ− ;

RðzÞ ∼z→1D̃1ð1 − zÞΔþ þ D̃2ð1 − zÞΔ− ; ð12Þ

where Δ� ¼ 1� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 7

2

q
. Note that Δþ > 0, while

Δ− ≤ 0 for m2 ≥ 15=2. Assuming m2 ≥ 15=2 (which in
global AdS would correspond to m2 ≥ 0), we impose
reflective boundary conditions at both boundaries z ¼ 1

and z ¼ 0, setting D2 ¼ D̃2 ¼ 0, and consequently the
operator L is essentially self-adjoint on L2ð½1; 0�;− 1

z2ð1−zÞ2Þ.
This differential eigenvalue problem therefore leads to the
following normal frequencies and normal modes:

ω2
j ¼

�
jþ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

7

2

r �2

; ð13Þ

ejðzÞ ¼ Cjz
1þ1

2

ffiffiffiffiffiffiffiffi
m2−7

2

p
ð1 − zÞ1−1

2

ffiffiffiffiffiffiffiffi
m2−7

2

p

× 2F1

�
−j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

7

2

r
; 1þ jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

7

2

r
; 1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

7

2

r
; z

�
: ð14Þ

The latter can also be written in terms of Jacobi poly-

nomials Pða;bÞ
n ð1 − 2zÞ, such that

ejðzÞ ¼ Djz
1þ1

2

ffiffiffiffiffiffiffiffi
m2−7

2

p
ð1 − zÞ1−1

2

ffiffiffiffiffiffiffiffi
m2−7

2

p

× P

� ffiffiffiffiffiffiffiffi
m2−7

2

p
;−

ffiffiffiffiffiffiffiffi
m2−7

2

p �
jþ

ffiffiffiffiffiffiffiffi
m2−7

2

p ð1 − 2zÞ ð15Þ

where Cj and Dj are normalization constants that depend
on the mass of the scalar probe and are proportional, the
proportionality factor being a quotient of Gamma func-
tions. Hereafter, we refer to (14) as wormhole oscillons.
The general solution to the linear problem is given by an
arbitrary superposition of the modes (14), leading to

ϕ1ðt; zÞ ¼
X∞
j¼0

aj cosðωjtþ βjÞejðzÞ: ð16Þ

For simplicity, and mimicking the massless case in AdS, we
set m2 ¼ 15=2. In this case, the normalization constants in
(14) fulfill

2Cj ¼ ½ðjþ 1Þðjþ 2Þðjþ 3Þðjþ 4Þð5þ 2jÞ�1=2; ð17Þ

leading to ðeiðzÞ; ejðzÞÞ ¼ δij. The frequencies which were
already equispaced in (13) further reduce to

ωj ¼
5

2
þ j ð18Þ

with j ¼ 0; 1; 2;….
Note that we have been able to find a fully resonant,

equispaced spectrum for a scalar probe propagating
on a spacetime with nontrivial topology. Below, we
introduce a self-interaction on the scalar to characterize
the energy transfer between modes. As mentioned above, it
has been shown that such a problem captures some features
of the backreacting, massless scalar in AdS (see, e.g.,
Refs. [26,27]).

III. SELF-INTERACTING SCALAR PROBE

Now, we will introduce a nonlinearity in the scalar probe
we discussed in the previous section. In particular, we will
focus on

□ϕ −
�
m2 þ 3

8
R
�
ϕ −

λ

3!
ϕ3 ¼ 0; ð19Þ

setting m2 ¼ 15=2, since this value leads to Δ− ¼ 0 in (12)
and mimics the massless case in AdS. Here, λ is a constant
with mass dimension −1. Following the TTF, we introduce
the slow time τ ¼ ϵ2t and the perturbative ansatz

ϕðt; τ; zÞ ¼
X∞
j¼0

ϵ2jþ1ϕ2jþ1ðt; τ; zÞ: ð20Þ

Note that a direct perturbative approach leads to resonant
terms, some of which could be perturbatively absorbed by a
Poincare-Lindstedt shift. The TTF helps deal with this
feature, and even more, its validity is ensured at least up to
times of order ϵ−2. Naturally, at first order in ϵ, one
reobtains the linear problem

∂2
tϕ1 þ Lϕ1 ¼ 0; ð21Þ

where the operator L is given in (11), leading to

ϕ1ðt; τ; xÞ ¼
X∞
l¼0

ðAlðτÞe−iωlt þ ĀlðτÞeiωltÞelðxÞ; ð22Þ

where AlðτÞ are arbitrary functions of the slow time τ. Here,
ĀlðτÞ stands for the complex conjugate of AlðτÞ. At the next
perturbative order in ϵ, one obtains

∂2
tϕ3 þ Lϕ3 þ 2∂t∂τϕ1 ¼ Sðt; τ; xÞ; ð23Þ
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with the source given by the lower-order term

S ¼ − 1
24

ϕ3
1

zð1−zÞ. Here, one proposes a solution for ϕ3 of

the form

ϕ3ðt; τ; xÞ ¼
X∞
n

ðBnðt; τÞ þ B̄nðt; τÞÞenðxÞ: ð24Þ

Projecting Eq. (23) on the basis of wormhole oscillons, one
obtains

∂2
t ðBjþ B̄jÞþω2

jðBjþ B̄jÞ−2iωjð∂τAje−iωjt−∂τĀjeiωjtÞ
¼ ðej;SÞ; ð25Þ

with

ðej; SÞ ¼
X
n;l;m

Sjnlm

3
ðAlAmAne−iðωlþωmþωnÞt

þ 3AlAmĀne−iðωlþωm−ωnÞt

þ 3AlĀmĀne−iðωl−ωm−ωnÞt

þ ĀlĀmĀne−ið−ωl−ωm−ωnÞtÞ; ð26Þ

where the interaction integrals Sjnlm ∈ R are defined as

Sjnlm ¼ 1

8

Z
0

1

ejðzÞenðzÞelðzÞemðzÞ
z3ð1 − zÞ3 dz: ð27Þ

The TTF equations are obtained by imposing that the
functions AðτÞ that appear in the lhs of Eq. (25) exactly
cancel the resonant terms coming from the rhs of the same
equation. This leads to

−2iωj∂τAj ¼
X
n;l;m

Sjnlm

3
½AlAmAnδωj;ωlþωmþωn

þ 3AlAmĀnδωj;ωlþωm−ωn

þ 3AlĀmĀnδωj;ωl−ωm−ωn

þ ĀlĀmĀnδωj;−ωl−ωm−ωn
�: ð28Þ

We observe that the integrals Sjnlm are nonvanishing only
in the channel ωjþωn ¼ωlþωm (or equivalently jþn¼
lþm), leading to the TTF equations

−2iωj∂τAj ¼
X

jþn¼mþl

SjnlmAlAmĀn: ð29Þ

The vanishing of the channels ωj ¼ ωl þ ωm þ ωn and
ωj ¼ ωl − ωm − ωn is a special property of our equispaced
spectrum, as in AdS. The vanishing of the overlap integrals
S in these cases can be proved using the expressions for the
wormhole oscillons in terms of Jacobi polynomials in (15),
as for a scalar probe in AdS [28–29]. Observing the
symmetries in the indices of the overlap integrals Sjnlm

and the fact they vanish unless jþ n ¼ mþ l, one can
deduce that the total energy E ¼ P

jω
2
j ĀjðτÞAjðτÞ and the

“particle number” N ¼ P
jωjĀjðτÞAjðτÞ are conserved

[18,26,30]. The conservation of these quantities is particu-
larly useful for monitoring the stability of the numerical
integration of the truncated version of the system (29).
In what follows, we will solve the system of oscillators

by truncating the sum up to order j ¼ jmax, for different
initial data. We monitor the convergence by increasing jmax
and study the energy transfer between modes induced by
the nonlinearities.
In Fig. 1, we plot the evolution of the spectrum, showing

energy transfer induced by the nonlinearities, for different
initial conditions. We have evolved the truncated TTF
system with jmax ¼ 50. The spectra stabilize after some
time, showing an exponential suppression of the energy
as a function of the mode number. As it occurs for non-
backreacting probes in AdS, these spectra suggest the
absence of a turbulent phenomenology.3

Figure 2 shows the actual time evolution of the energy
per mode, for different initial conditions with jmax ¼ 50.
Even though the energy is initially distributed only in the
fundamental and first excited modes, the nonlinearities

FIG. 1. Evolution of the energy per mode as a function of the mode number j, for ðE0ð0Þ; E1ð0ÞÞ ¼ ð3=4; 1=4Þ (left panel) and
ðE0ð0Þ; E1ð0ÞÞ ¼ ð1=2; 1=2Þ (right panel). For late times, the energy per mode is exponentially suppressed for large j, i.e., Ej ∼ e−j.

3See, e.g., Ref. [31] for a turbulent characterization of the
power spectrum in D ¼ 4, 5 in GR.
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transfer energy to the higher harmonics. The plots suggest
energy returns after a finite time. In the next section, we
provide perturbative evidence of near-exact energy returns

for situations such as that depicted in the upper left panel, in
which the dynamics is clearly dominated by the funda-
mental mode.

FIG. 2. The plots present the evolution of the energy per mode, for different initial excitations in the fundamental and first excited
mode. The upper left panel corresponds to ðE0ð0Þ; E1ð0ÞÞ ¼ ð3=4; 1=4Þ; for the upper right panel, we have used
ðE0ð0Þ; E1ð0ÞÞ ¼ ð3=5; 2=5Þ; the lower left panel corresponds to the two-mode equal energy initial date
ðE0ð0Þ; E1ð0ÞÞ ¼ ð1=2; 1=2Þ; and, finally, for the lower right panel, ðE0ð0Þ; E1ð0ÞÞ ¼ ð1=4; 3=4Þ.

FIG. 3. Time evolution of the energy and spectra for three (upper panel) and four (lower panel) modes with equal energy as initial
conditions.
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It is also illustrative to consider initial data with three and
four modes turned on. Figure 3 shows the time evolution of
the energy content as well as the evolution of the stabilized
spectra. Note that also in this case the energy in modes with
large j are exponentially suppressed.

IV. NEAR-EXACT ENERGY RETURNS

Closely following Ref. [32], a perturbative argument can
be given to have an analytic understanding of the (near-)
exact energy returns suggested by Fig. 2. We will focus on
the situation such that the dynamics is dominated by the
fundamental mode as well as on the case in which the first
excited mode dominates.

A. Fundamental mode dominating the dynamics

In particular, in the case in which the dynamics is
dominated by the fundamental mode, we can introduce
the scaled oscillators qj such that

AjðτÞ ¼
qjðτÞffiffiffiffiffi
ωj

p δj; ð30Þ

with δ a small, perturbative parameter. The time-averaged
system now reads

i∂τqj ¼
Xþ∞

m¼0

Xjþm

k¼0

δ2mCj;m;k;jþm−kqkqnþm−kq̄m; ð31Þ

where

Cj;n;l;m ¼ −
1

2

Sjnlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωjωnωlωm

p ; ð32Þ

and the overlap integrals have been defined in (27). At
leading order in δ, we obtain the nonlinear system

i∂τqj ¼ q̄0
Xj

k¼0

Cj;0;k;j−kqkqn−k: ð33Þ

For j ¼ 0, the system leads to a decoupled, nonlinear
equation for q0, which is solved in a closed form, giving a
constant modulus and a time-dependent phase for q0 ∈ C.
The global symmetries of the system can be used to set the
absolute value of q0 to 1. Then, for j ≥ 1, one obtains a set
of linear equations that can be solved in a recursive manner,
in which the qk<j’s appear as sources. The homogeneous
equations depend only on the coefficients of the form Cj0j0

(Fig. 4 depicts these integrals up to j ∼ 500). A further use
of the symmetries of the system allows us to set

q0ðτÞ ¼ e−iC0000τ and q1ðτÞ ¼ e−2iC1010τ: ð34Þ

With this in mind, one can compute the time
periods of the energies in the higher modes by computing
the periods Tj of Ej ∼ qjq̄j. Using our overlap integrals, we
obtain T2 ¼ 24024π and T3 ¼ 17T2, T4 ¼ 19T3, T5 ¼ T4,
T6 ¼ 23T5. Note that the ratios of the frequencies are
relatively simple fractions (a simple, pictorial method
to see the exact and near-exact returns is outlined in
Fig. 5). The commensurability of the periods of the
energy ensure exact energy returns at finite time within
this perturbative approach. Nevertheless, it must be noted
that the periods Tj are an increasing function of the mode
number j, and therefore as more modes are included
in the analysis, one should have to wait longer for
observing the recurrence. Note that higher modes are
suppressed as δj.

B. First excited mode dominating the dynamics

The lower-right panel of Fig. 2 depicts a case in which
the first excited mode is dominating the dynamics of the
energy content in the system. We can analytically explore
such a case in a perturbative manner by introducing the
ansatz

FIG. 4. The scaled overlap integral Cj0j0 that determines the dynamics when the fundamental mode dominates.
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A0 ¼
q0ðτÞffiffiffiffiffiffi
ω0

p δ and Aj≥1ðτÞ ¼
qjðτÞffiffiffiffiffi
ωj

p δj−1: ð35Þ

Retaining the leading contributions as δ goes to zero, one
obtains

i _q0 ¼ C0211q̄2q21 þ 2C0101jq1j2q0; ð36Þ
and

i _qn¼ q̄1
Xn
k¼1

Cn;1;k;nþ1−kqkqnþ1−kþ q̄0
Xn−1
k¼1

Cn;0;k;n−kqkqn−k;

ð37Þ
where the couplings C’s have been defined in (32).
As before, using the global symmetries, the time
dependence of the leading oscillator appears in its phase,
while the time dependence of the first two subleading
oscillators leads to equal periods of their energy content
given by T0 ¼ T2 ¼ 14586

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14=635

p
π. For the subsublead-

ing modes, after some manipulation (see Sec. 4.2 of
Ref. [32]), one obtains that q3ðτÞ is a superposition of
noncommesurable oscillations (see Fig. 6).
It is important to notice that in both of the cases

developed in Secs. IV. A and IV. B, the returns are only

near exact due to the energy transfer to modes with higher
values of j. Nevertheless, if one truncates the system to
include only low modes, Secs. IV. A and IV. B differ. In the
former, since the frequencies are commensurable, there will
be near-exact as well as exact returns (of the truncated
version), while in the latter, the noncommensurability of the

FIG. 5. The figures depict the exact and near-exact energy returns for the modes with j ¼ 3, 4, and 6. Since in the initial condition
these modes do not have energy, the exact returns are obtained once the dots intersect the horizontal line.

FIG. 6. This plot exhibits the near-exact returns of the energy in
the third mode. Even though some points seem to lie on the
horizontal axis, the actually do not touch it since, for example, for
n ¼ 31, jq3ðnT2Þj is of the order 10−7.
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modes will only allow for near-exact returns with different
levels of precision, even in this truncated version.

V. CONCLUSIONS

In this work, we have shown the existence of a spacetime
with nontrivial topology on which the linear dynamics of a
scalar probe turn out to be fully resonant, leading to a rich
phenomenology when nonlinearities are included. The five-
dimensional wormhole geometry explored in this work can
be generalized to arbitrary odd dimensions D ¼ 2nþ 1
(with n ≥ 2)

ds2 ¼ l2½−cosh2ρdt2 þ dρ2 þ cosh2ρdΣ2
D−2�; ð38Þ

as a solutions of Lovelock theory in the Chern-Simons case
[3], provided the manifold dΣ2

D−2 fulfills a suitable scalar
constraint [8,33,34,35]. It was shown in Ref. [11] that a
linear, nonminimally coupled scalar probe, fulfilling reflec-
tive boundary conditions has the spectrum

ω2
n ¼

0
@nþ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D − 1

2

�
2

þm2
effl

2

s 1
A2

−
�
D − 2

2

�
2

þQþ ξ½ðD − 1ÞðD − 2Þ þ R̃�; ð39Þ

where m2
eff ≔ m2l2 −DðD − 1Þξ, R̃ is the Ricci scalar of

the Euclidean manifold ΣD−2 (which we assume constant),
and Q stands for an eigenvalue of the Laplace operator on
such a Euclidean manifold, normalized as ∇2

ΣY ¼ −QY (Q
being positive if Σ is compact and without boundary).
Generically, this spectrum will be only asymptotically
resonant; nevertheless, in the particular case in which�

D − 2

2

�
2

−Q − ξ½ðD − 1ÞðD − 2Þ þ R̃� ¼ 0; ð40Þ

the spectrum will be exactly equispaced. For a given
rotational dependence of the scalar probe, i.e., for a fixed
value ofQ, resonance can be achieved for a particular value
of the nonminimal coupling parameter ξ, providing a new,
infinite family of gravitational backgrounds with fully
resonant, equispaced spectrum for scalars probes.

A. Universality of the weakly nonlinear
dynamics in Lovelock theories

Some comments on the backreacting case are in order.
For the Einstein-Gauss-Bonnet theory, the scalar field
collapse in AdS has been explored [36]. As shown below,
remarkably, one can give a general analysis of the pertur-
bative TTF, time-averaged approach in a generic Lovelock
theory, in AdS. The field equations of Lovelock theories
coupled to a massless scalar (the analysis can be trivially
extended to the massive case) read

Eμν ≔
X½D=2�

k¼0

αkE
ðkÞ
μν − Tμν ¼ 0; ð41Þ

where Tμν stands for the stress-energy tensor of the
minimally coupled scalar field ϕ and the Lovelock tensor
of order k is defined as

EðkÞ
μν ≔−

1

2kþ1
gðμjσδ

σρ1���ρ2k
jνÞγ1���γ2kR

γ1γ2
ρ1ρ2 ���Rγ2k−1γ2k

ρ2k−1A2k
: ð42Þ

Here, the couplings αk are dimensionful.
Consider a metric of the form

ds2n ¼ gμνdxμdxν ¼ gð2Þab ðycÞdyadyb þ F2ðyÞdΩ2
Sn−2 ; ð43Þ

where dΩSn−2 stands for the line element of the (n − 2)-

sphere; gð2Þab is a metric on a two-dimensional, Lorentzian
manifold M2; and FðyÞ is a scalar on M2.
The components of the pth Lovelock tensor along the

two-dimensional manifoldM2 were explicitly computed in
Ref. [37] and read

EðkÞ
ab ¼ −

kðn − 2Þ!
ðn − 2k − 1Þ!

DaDbF − gð2Þcd D
cFDdFgð2Þab

F

×

�
1 − gð2Þef D

eFDfF

F2

�k−1

−
ðn − 2Þ!

2ðn − 2k − 2Þ! g
ð2Þ
ab

�
1 − gð2Þef D

eFDfF

F2

�k

;

where Da is the Levi-Civita covariant derivative onM2. As
usual, due to diffeomorphism invariance and spherical
symmetry, the Lovelock equations along the angles in
Sn−2 are a consequence of the equation along M2 and the
equation for the scalar field. The expression for the
Lovelock equations on the metric of our interest

ds2 ¼ L2

cos2ðxÞ
�
−e−2fðt;xÞAðt; xÞdt2

þ dx2

Aðt; xÞ þ sin2ðxÞdΩ2
Sn−2

�
ð44Þ

can be directly obtained by setting FðyaÞ ¼ tan x and gð2Þab
as the metric along the ðt; xÞ directions in (44). Following
Ref. [38], here, we will consider the scaled slow time

τ ¼ s1ε2t; ð45Þ

where s1 and s2 (below) are finite constants to be fixed at
convenience. We will consider the expansions

Aðt; τ; xÞ ¼ 1þ s2ε2A2ðt; τ; xÞ þOðε4Þ; ð46Þ
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fðt; τ; xÞ ¼ s2ε2f2ðt; τ; xÞ þOðε4Þ; ð47Þ

ϕðt; τ; xÞ ¼ εϕ1ðt; τ; xÞ þ s2ε3ϕ3ðt; τ; xÞ þOðε5Þ: ð48Þ

At the lowest order, the Lovelock equations determine
the AdS radius L in terms of the couplings αp, through the
equation

P½L−2� ≔
X½D=2�

p¼0

αpð−1Þp
ðn − 2p − 1Þ!

�
1

L2

�
p
¼ 0; ð49Þ

which defines the polynomial P½ξ�. The equation for the
scalar field, at the lowest order, determine ϕ1ðt; xÞ as an
arbitrary superposition of n-dimensional AdS oscillons. At
order ε2, one obtains the expressions for the Et

t, Ex
x, and Et

x

equations in (41):

−
ðn − 2Þ!
2L2

s2
dP½L−2�

dξ

�
A0
2

tan x
−
ð2cos2x − nþ 1Þ

sin2x
A2

�

¼ −
cos2x
2L2

ð _ϕ2
1 þ ϕ02

1 Þ; ð50Þ

−
ðn − 2Þ!
2L2

s2
dP½L−2�

dξ

_A2

tan x
¼ −

cos2x
L2

ϕ0
1
_ϕ1; ð51Þ

−
ðn−2Þ!
2L2

s2
dP½L−2�

dξ

�
A0
2

tanx
−
ð2cos2x−nþ1Þ

sin2x
A2−

2f02
tanx

�

¼ cos2x
2L2

ð _ϕ2
1þϕ02

1 Þ; ð52Þ

where ’ and · denote derivatives with respect to x and t,
respectively. No derivatives with respect to the slow time
appear at this order. From these equations, one can solve
A2ðt; xÞ and f2ðt; xÞ as in GR. Then, substituting this at the
next nontrivial order in the Klein-Gordon equation, one
obtains

ϕ̈3þL½ϕ3�þ
2s1
s2

∂t∂τϕ1

¼ϕ0
1
_A2þϕ0

1A
0
2− _ϕ1

_f2−ϕ0
1f

0
2þ2ðf2−A2ÞL½ϕ1�; ð53Þ

where the action of the operator L½ϕi� is defined as

L½ϕi� ≔ −
∂2ϕi

∂x2 −
ðn − 2Þ

cos x sin x
∂ϕi

∂x : ð54Þ

Therefore, as in Ref. [38] for the Einstein-Gauss-Bonnet
case in five dimensions, but now in the whole family of
Lovelock theories, setting

s1 ¼ s2 ¼
�
dP½L−2�

dξ

�−1
; ð55Þ

we see that the equations for the TTF approach, for a
generic Lovelock theory (50)–(53), take exactly the same
functional form as the equations in GR, provided we are
expanding about AdS with a curvature corresponding to a

simple zero of the polynomial (49), for which dP½L−2�
dξ is

nonvanishing. It is interesting to see that this polynomial
completely controls the perturbative dynamics in Lovelock
theories. On the other hand, for the wormhole studied in
this work, the asymptotic AdS curvature radius exactly
cancels the derivative of the polynomial (this occurs for any
Chern-Simons theory within the Lovelock family), and
therefore the perturbative approach in the backreacting
situation does not apply. This is why we have focused on
the probe limit of the scalar. Notwithstanding, the equations
presented above for Lovelock theories are a signal of the
universality of the weakly nonlinear dynamics up to times
of order ε−2, captured by the TTF, for generic values of the
couplings, when the higher curvature terms belong to the
Lovelock family. This was shown in Ref. [38] (see also
Ref. [39]) for the Einstein-Gauss-Bonnet case, and here we
have shown that such results extend to the whole family of
Lovelock theories for generic values of the couplings.
These results extend also for the family of quasitopological
gravities [40,41,42,43], since the dynamics on the spheri-
cally symmetric dynamical scenarios with matter can be
obtained from the same formulas (50)–(52), by including
extra terms in the polynomial. All the mentioned theories
admit Birkhoff’s theorems; therefore, on a spherically
symmetric scenario, the dynamics is completely driven
by the scalar.
It is well known that for Lovelock theories containing a

kth-order term in dimension n ¼ 2kþ 1 the maximally
symmetric AdS vacuum is gapped with respect to the
smallest black hole (see, e.g., Refs. [44,45]), as it occurs for
the Bañados-Teitelboim-Zanelli black hole [46], a feature
that is captured by the numerical evolutions (see, e.g.,
Refs. [47,48] for the 2þ 1 case and Ref. [49] for 4þ 1
dimensions). It is interesting to note that the structure of the
TTF dynamics, at times ε−2, being universal for Lovelock
theories with generic couplings, does not capture this gap.4

Finally, it would be interesting to explore the dynamics
of a scalar collapse to a black hole in other asymptotically
AdS solitons with two ends, including backreaction. The
recently constructed analytic wormhole solution of General
Relativity with a negative cosmological constant [51]
defines a perfect scenario to initiate such exploration,
since the Einstein-Klein-Gordon system leads to a well-
posed initial boundary value problem in asymptotically
AdS spacetimes.

4In Ref. [50], it was noted that in a direct perturbative at order
ε4 the presence of a Gauss-Bonnet term cannot be scaled out.
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