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Metric-affine gravity and inflation
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We classify the metric-affine theories of gravitation, in which the metric and the connections are treated
as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert
action, we find that the equations for the distortion tensor (torsion and non-metricity) become algebraic,
which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the
form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini
formalism (in which we assume there is no coupling between matter and the connections), but when matter
field couples to the connections, the effective Einstein equations include an additional hyper energy-
momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally
coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic
inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a
simple form of Galileon scalar field in metric-affine could cause G-inflation.
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I. INTRODUCTION

General relativity (GR) is undoubtedly one of the most
successful relativistic gravitational theories since its pro-
posal over a century ago. Countless experiments have been
conducted to confirm its viability throughout the years (see
e.g., [1,2]). However recent observations of the universe
such as the acceleration of cosmic expansion suggest an
alternative theory of gravity [3,4]. In the early stage of the
universe, we may also expect an accelerating expansion of
the universe, the so-called inflation [5-11] (For many
reviews of inflation see e.g., [12,13]). Although we do
not know the origin of the inflaton field, which is
responsible for the accelerating expansion in the early
stage of the universe, one possible answer could be
modification of a gravitational theory such as Higgs
inflation model [14-24]. Although we have not yet had
a satisfactory viable explanation to solve inflation as well as
dark energy in the framework of modern physics, we
recently find an astounding increase in the proposal of
modified theories of gravity [25,26]. By considering alter-
native theories of gravity, one may not only find a solution
to these problems but also enforce our understanding of
gravity itself.

It is more than common to consider a purely metric
theory with Riemannian geometry when formulating alter-
native gravitational theories. This is more than natural since
the best gravitational theory we know, the general theory of
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relativity, is written in terms of Riemannian geometry.
However, one goes beyond Riemannian geometry and
allow new structures to be included in a gravitational
theory. These theories constructed from non-Riemannian
geometry may naturally exhibit new features into a theory.
Furthermore, one must note that some formalisms give an
equivalent theory as GR, e.g., teleparallel gravity [27] or
symmetric teleparallel gravity [28]. However, once we try
to go to alternative theories of gravity, such as higher
dimensions or nonminimal couplings, these formalisms
could differ from their purely metric counterparts, and
provide some different solutions [29-34].

In this paper, we will use a formalism called metric-
affine geometry, in which the metric and the connection are
independent variables [35-41]. (For a recent review see
e.g., [42]) We consider theories given only by the curva-
tures, but not by the function of the connections such as
torsions. In particular, we mostly assume the Einstein-
Hilbert action.

Keeping the above in mind, another interesting possibility
to consider is a scalar-tensor theory which has come to be
popular throughout this decade. The idea behind these is
relatively simple. To explain the unknown phenomena, e.g.,
inflation, dark matter, or dark energy, one could add an extra
scalar degree of freedom (d.o.f.) to the two tensor d.o.f. of
gravity so that the problems are solved [43,44]. However,
most of these researches are done through the purely metric
approach in which the geometry is Riemannian. There are
extensions to a non-Riemannian case [45-49], however, the
fully metric-aftine formulated theory and, more importantly,
their applications to cosmology are yet to be explored. This
is the main purpose of this paper.

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.104020&domain=pdf&date_stamp=2019-05-13
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1103/PhysRevD.99.104020
https://doi.org/10.1103/PhysRevD.99.104020

SHIMADA, AOKI, and MAEDA

PHYS. REV. D 99, 104020 (2019)

Moreover, recently inflationary scenarios in Palatini/
metric-affine theories have gained increasing attention,
due to the fact that observational variables are different
compared to the Riemannian case [50-53]. These seem to
have other interesting features such as attractors [54] and its
multifield extensions [55]. By considering the inflaton as
the Higgs, one could also consider the Palatini formalism of
Higgs inflation [56-58]. There are also approaches to
consider inflation with a purely an affine approach [59,60].

The organization of this paper is as follows. We start with
briefly classifying metric-affine theories of gravity by some
conditions on the connections in Sec. II. We then proceed to
discuss a minimally coupled scalar field in the metric-affine
formalism in Sec. III. The solutions for the connection of all
classified models are given. Substituting the solution into
the action, we find the effective action described in the form
of Riemannian geometry. Then we apply our formulation to
two inflationary models in Sec. IV. One is a model with a
“minimally” coupled scalar field, and another is G-inflation
in which mimics the action introduced in [61]. We show
that observational constraint from the Planck 2018 results
[4] are satisfied by the appropriate choice of the coupling
parameters. Summary and discussions are presented in
Sec. V. Some further extension of d’Alembertian is also
discussed in the Appendix A.

II. CLASSIFICATION OF
METRIC-AFFINE GRAVITY

A. Torsion, nonmetricity and distortion tensor

We shall start by classifying the metric-affine gravity
theories, in which the (Riemann) metric and the affine
connection are treated as independent variables. Since the
precise definition of geometrical variables is crucial in
metric-affine gravity theories, this section is dedicated to
clarifying how those variables are defined in metric-affine
gravity and classify several approaches.

Once a connection I" is introduced, the covariant deriva-
tive is naturally defined by

r
V,A,=0,A,

(04
H wiv T r WAW

I
V,B* =0,B" +1T*,,B".

The most general connection in metric-affine gravity
theories consists of the Levi-Civita connection as denoted
by {}, which is fixed by the metric as

a 1
{,m/} = Egaﬁ@”gﬁ” + 0094 = OpGu)-

and two additional geometrical tensors; the torsion

r
7%, =2I'", and the nonmetricity Q,”” = V,¢’. Here
the antisymmetrization square brackets withholds a factor

of 1, i.e., [A, B] =4 (AB — BA). Torsion 7%, could nor-
mally be interpreted as a measure of how a vector is
“twisted” on a curved space when it is parallel transported,
whereas nonmetricity Q,”" could be thought as for how the
length of the vector changes through parallel transport.
The Riemann curvature is defined by the connection

I, as

r
Ra/}/w = Ru/ﬁﬂv(r)
— G”F“U/; - 8yraﬂﬁ + FaIMF}LDﬂ - Faw{l—%ﬂﬁ.

Note that, by definition, it is only antisymmetric in the last
two indices.
We introduce the distortion tensor x defined by

a
K%, = Fa} _ { }’
Pr Pr By

which makes calculations in metric-affine gravity theories
greatly simplified. The distortion tensor is given by the
torsion and nonmetricity as

1

KAIWZE

(T}L;w + Tzziﬂ - ,]-ﬂzzjL + Ql//lﬂ + /w}b - Qﬂﬂl/)’

where the indices have been raised by the metric g".
Inversely we have

Tﬁﬂu = 2« [uv] Qaﬂy = 2K<ﬁay)'

By use of the distortion tensor x, the Riemann tensor is
decomposed as

I
Ry = ROy + V5 = VoK% Kk g = K006
(2.1)

where R%,, = R%,,({}) is the Riemann tensor defined by
the Levi-Civita connection {}, and V, is the covariant
derivative with respect to the Levi-Civita connection. We
also have two Bianchi identities:

I

R*apy) = ViaT 3 = Tty T o
r r " T
VieR gy = T 1apR " ujp12-

Because of these identities, one must take extra care when
deriving energy-momentum conservation laws [38].

B. Projective invariance

In what follows, as for the curvature term, we consider
the Einstein-Hilbert action

2
_ My

s =2 [anFaken. (2
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where M3, =

}1 = gic is the reduced Planck mass and R(g, IN=

ywlre iuﬂv is the Ricci scalar. Note that the Ricci scalar is
uniquely defined by the contraction of the Riemann tensor.
One must also keep in mind, however, that the Ricci tensor
is not uniquely defined because the Riemann tensor does
not have the usual (anti) symmetries and the different
contractions become possible. It may compute different
results.

The action (2.2) can be decomposed into the purely
metric part and the distortion tensor as,

Sy =T [ @iy gIRG) + 4 (s = Ko )

where we have dropped the surface terms appeared from
the 2nd and 3rd terms in the right-hand side (r.h.s.) of
Eq. (2.1). This description shows that this model describes
the Einstein gravity in the Riemannian geometry with the
distortion tensor field . In fact, by taking the variation of
the action with respect to the metric ¢** and the distortion
tensor «, we find

58 M3
g B TPI [G’“’ + KAF‘DK”M - Kﬂﬁﬂkﬂvl
1
- Eguygaﬁ(’(iaﬂkﬂaﬂ - Kll(mKo—/M)]? (23)
and
58S M;
5K.aﬂ - TPI [gﬁ}’K-zfga + 55,(766 - Kﬁya - Kyaﬂ]' (24)
4

Note that there is no kinetic term of x, which means it is not
dynamical but fixed by the constraint equations. This
characteristic will become crucial later on in the paper.
In metric-affine geometry, there exists a new symmetry
called “projective symmetry” for the Einstein-Hilbert
action (For geometrical aspects, see Sec. VI of the textbook
[62]). The projective transformation is a transformation of
the connection as
Iy, — 1%, =T% 48U, (2.5)
which preserves the angle of two vectors and leaves the
geodesic equation equivalent up to the redefinition of the

affine parameter such that  — (1), where 1 is given by the
solution of the differential equation

& dx? dj.

T _U.—/—Z =0
a? Parar

which could be integrated as below.

A= / oJ U gy

Under this transformation, the Ricci scalar is invariant as

r roo. r
R(9.T') = R(g.T') = R(g.T). (2.6)
Thus the Einstein-Hilbert action has “projective invari-
ance.” Note that for some gravitational action such as the
curvature-squared gravity theory, such symmetry may no
longer exist.

If the matter action also has the projective invariance, the
full theory has such symmetry. We call it a projective
invariant theory. Although the constraint equations for x do
not fix all components of the connection, this ambiguity
does not appear in the basic equations. It could be
considered as a kind of gauge freedom.

We can see this fact explicitly as follows: The variation
with respect to the distortion tensor provides the constraint
equations for x. For simplicity, we consider the vacuum
case or the model with matter field which does not couple
to the connection (the so-called Palatini gravity theory).
The variation with respect to the distortion tensor leads to

PR i + Sk = kP =K1 P =0,

which is solved as

K%, = Zé‘lykﬂ, (2.7)
where kg := % - This indicates that the distortion tensor ,
and thus the connection I', is undetermined up to the trace
k. These remaining four d.o.f. correspond to the projective
transformation vector Up. This result is also easily under-
stood as follows when we introduce the reduced distortion
tensor defined by

1
R-(l/}y = K”[)’y — ZéayK/}v

which is, by definition, a trace-free tensor.
Now, by the use of k%, the action S is rewritten as

5y = Mpl/d“x\/_[ (9) + ¢ (@5

’?}Lo‘ﬂ’?o—yﬂ)]’
(2.8)
which gives the Einstein equations as

G, —Mpl[T + 7,

where the energy-momentum tensor of usual matter field
T,, is given by
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T, ——25m
H 59””

and the hyper energy-momentum tensor 7, is defined by

= _Rjuvkadl + Eiaykawl
1 - P
+ Eguz/gaﬂ(KiaﬁKUM - KﬂnaKUﬁi)’
which can be treated as an additional energy-momentum

tensor in the Riemannian geometry coming from k%,.
The variation with respect to K’lﬂy is also given only by

&, as
58S M3
— P [gﬁy,-(tfm 4 5&,‘&60 - ,zyaﬁ]. (2.9)
5Kaﬁy 2
Hence the constraint equations are
6Sm
GPIRE o + BRI, — R — R = —2ME 5, (2.10)
and
0Sm
— = 2.11
o (2.11)

When the matter action is projective invariant, Eq. (2.11)
becomes trivial. If there is no coupling between matter field
and the connection, the r.h.s. in Eq. (2.10) vanishes. As a
result, we obtain E‘ﬂv = 0, and then find the conventional
Einstein gravity theory with the Levi-Civita connection.
When the theory has matter field coupled with the distortion
tensor k* u» We have an additional contribution of it s Which
is determined by the constraint equation (2.10). We classify

this projective invariant gravity theory as Model L.

C. Nonprojective invariant gravity theories

Since matter, in general, is not projective invariant, all
components of the connection should be fixed. Hence when
we discuss nonprojective invariant gravity theories, we may
impose an additional constraint on the connections to
eliminate the unfixed components in the Einstein-Hilbert
action. (For further of consequences of fixing the projective
gauge, see e.g., [63]) There are the following two common
approaches. One is to take the torsionfree condition
(T ’1”” = 0), and the other is to take the metric-compatible
condition (Q,”" = 0). In general, these two conditions do
not have to simultaneously coincide in general. We classify
these cases into Model II(a) and Model II(b), respectively.
Both of these conditions are commonly assumed a priori in
the gravitational action. As we will see below, for the
Einstein-Hilbert action, both approaches compute the

Einstein equations and the Levi-Civita connection if matter
does not couple to the connection.
For Model IlI(a), noting that the distortion is restricted as

&'y = T%,,/2 =0, the solution (2.7) for the constraint
equation for the connection reads
k%, =0, (2.12)
which gives the Levi-Civita connecuon
Similarly, for Model II(b), since 4 =9Q,/2=0,

the constraint equations in the metric- compatlble case reads
Eq. (2.12). We again find the Levi-Civita connection.

When the matter couples with the connection, the
reduced distortion tensor k and the trace k, are obtained
by the constraint equations (2.10) and (2.11). The hyper
energy-momentum tensor appears in the Einstein equa-
tions. Although the trace term of the distortion tensor is also
fixed, it does not appear in the Einstein equations.

In Appendix, we present the explicit description of the
Einstein equations and the constraint equations by use of
the nonmetricity tensor Q,# for Model II(a) and the torsion
tensor 7,/ for Model II(b), respectively.

Although the above ansatz of the torsionfree or the
metric compatibility provides a consistent gravity theory,
when we break the projective invariance, such a condition
may be too strict because we have only four undetermined
components in the connection. The minimum condition
that one could impose is constraining some vector C*,
which consists of the distortion tensor, via a Lagrange
multiplier, as

(K}L K AHMK”M)

s =10 [ atxy=giro) +

+ #C,(k)}. (2.13)
The variation of the Lagrange multiplier # gives four
constraint equations C, (k) = 0, which fixes four undeter-
mined components in the connection.

When we perform a projective transformation (2.5), we
find

Tty > Th =Th + AT}, =Th, +25,U
Q/l/w_)Qﬂ/w:

vul
O, +AQY, = Q4 +2g, U

which give U, = AT}, /3 = AQ,;/2 = AQ,*,/8. Hence
in order to break the projective invariance, we could choose
the constrained vector C, (k) either of the following three
vectors;

(a) the torsion vector: 7, =T i

(b) the nonmetricity trace Vector Qﬂ = Qﬂ 1

(c) the Weyl vector: W, = Q’1

We will classify these models III (a), III (b) and III (c),
respectively. The constraint equation C,(k) =0 in each

104020-4
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TABLE L

The classification of metric-affine gravity theories. For the Einstein-Hilbert action, the basic equations turn out to be just the

Einstein equations if the connection does not coupled to matter field (Palatini formalism), but there appears an additional term (the hyper
energy-momentum tensor) from the distortion tensors in general metric-affine gravity theories.

Models Constraint Properties Palatini formalism Metric-affine formalism
I 886/6T*,,65 =0 Projective invariant
II (a) T w =0 Torsionfree
II (b) Q‘”b =0 Metric compatible Einstein equations +7,
G,uu(g) = Ml;lzT,uu
1 (a) T=0
III (b) Q' =0 T, #0and Q*, #0 +7,, + A7y,
1II (c) WA =0 In general +7

case gives K/iﬂ = 0 because 7, = 2%, Q" = 2c“;*), and
W, = %&*,;. As a result, if matter does not couple with the
connection, we find the conventional Einstein equations
with the Levi-Civita connection. In the case with matter
coupled the connection, we have to include the modified
hyper energy-momentum tensor in the basic equations. The
modification of the hyper energy-momentum tensor
appears because of the Lagrange multiplier term. When
we take the variation of the action S with respect to the
metric, we find the Einstein equations as

G, = Mp(T,, + 1, + Ary,),
where

é6C
Az, = —1* z.
gt

For Models III(a) and (c), C, does not contain the metric g,
then the modification term vanishes. While for Model III
(b), since Q; = g’k ), + K* 3, Az, is not trivial. We
find

Aty = =2K)", + Ak ).

The constraint equation for « is

oC 58,
gﬁyKao-a + %Kyo-o' - Kﬂya - Kyaﬁ + ¥ £ = _21‘4l;l2 — ’
5Kaﬂy 5Kaﬂy
(2.14)
where
8,/ -8,/ (Modellll(a))
6C,
K = 50 + ¢P"2, (ModelIII(b)) .
K
KO PO (Model I11(c))

Solving the constraint equation (2.14) with C,(x) = 0,
we obtain the distortion tensor Kﬂw and the Lagrange

multiplier 2%, which fix the hyper energy-momentum tensor
(and its modification).

If there is no coupling between matter field and the
connection, since K’lw =0 and ## = 0, we again recover
the conventional Einstein equations with Levi-Civita
connection.

We summarize the classification of metric-affine gravity
theories in Table 1.

III. SCALAR FIELD IN
METRIC-AFFINE GRAVITY

A. “Canonical” scalar field

Here we consider a minimally coupled ‘“canonical”
scalar field in the metric-affine formalism. The action for
a real scalar field in a flat Minkowski space is given by

1
Slﬁ,ﬂat = /d4x <_ E'l””a;@apqﬁ - V(d))) s (31)

which can be rewritten by integration by parts to the
equivalent action, up to the surface term, as

Som= [ #3(3000-v@9)). 62

where [ =#"0,0, is the flat-space d’Alembertian
operator.

When we discuss a scalar field in a curved spacetime, we
have to extend the above action in a covariant form. In
Riemannian geometry, covariantization is straightforward.
One simply has to substitute the volume density /=g and
replace 0, with V. The result of the covariantization of
(3.1) is equivalent to the covariantization of (3.2) up to the
surface term. However, in metric-affine geometry, as we
will see, not only two covariantizations give the different
results, but also the covariantization of (3.2) is not trivial.

If we start from the action (3.1p, the scalar field does not
couple to the connection since V,¢ = J,¢. On the other
hand, when we covariantize the action (3.2), there exists
some ambiguity in the definition of the d’Alembertian
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r
operator [] in a metric-affine curved spacetime. In the

presence of nonmetricity, one can construct two different
I Iy

VﬂV and

second-order covariant derivative operators;
rur r
VMV with V = ¢"*V,. As it will be shown the two
actlons (3.1)and (3.1), even though equivalent in flat space-
time, differ greagly in metric-affine curved space.

By imposing [J — [ in the limit of a flat spacetime, the
d’Alembertian operator in a curved spacetime could be
defined as

r rul
O=aV 'V,

r ru
+(1=-a)V,V, (3.3)
where o labels the difference between the two operators.

Thus we suggest that the action for a scalar field in a
curved spacetime is described as

1 T
so= [ asv=a(3000-vie)). G4
which is he covariant version of (3.2).
Since [l¢ is described as
r
D¢ = D¢ + [(1 - a)gaﬂKyy/)’ - agﬁykaﬁy]aa¢
=U0¢p — (aQ* —2W* +T%)0,¢, (3.5)
where ¢ == \/l_ga”(, /=99 0,¢), the variation with

respect to the distortion tensor gives

08y —a

o= Lo+ Dolgors. ()
ok”* By

Now we solve the constraint equation for KAW in

each model.

1. Model 1

First one must note that, in general, metric-affine
gravitational theories are not manifestly projectively invari-
ant. So in order to constrain the theory to “become”
projective invariant, one must impose certain conditions
as will be shown below.

When we perform the projective transformation (2.5), we
find

I I
O — O + (1 — 2a)U*0,9.

Thus by fixing a to the value of a = 1/2, the theory
becomes projective invariant.

Now by solving the constraint equation

2
R g+ Ok, — RS~ R L)

1 1
- Zgﬂyql)aagb + Zég¢ay¢ - O, (37)
the connection is obtained as
K, = 4M2 (650, — g5, 0°¢). (3.8)
The torsion and nonmetricity are given by
¢
T, = 2M2 5’1 0,9, (3.9)
o =0, (3.10)

up to gauge freedom. This shows that for a projective
invariant minimally coupled scalar field, there is a gauge
that allows the connection to be metric-compatible while
there is none that cancels out torsion. This is different from
metric-affine f(R) theory which is similarly projective
invariant but admits both a metric-compatible gauge and a
torsionfree gauge [29]. Also, note that under projective
transformation one could also obtain Weyl geometry since
nonmetricity changes as

r-r

Q= Q" =2U, g = 8W,¢".
For history and recent progress in Weyl geometry see
e.g., [64].

Now we find that the Euler-Lagrangian equation of the
distortion tensor is algebraic and then it does not introduce
new d.o.f., whereas the equations for the metric and scalar
field carry the d.o.f. In such a case, inserting the solution of
the distortion tensor into the actions (2.8) and (3.4), one
could obtain an effective Lagrangian. As a result, we find
the total action Sy := S, + S purely in terms of the metric
and the scalar field as

Sy = [ v/3] 2 R0
(125 ) wer - v,

(3.11)
8M3,
Hence this model can be analyzed as a gravity theory with a
scalar field that has a modified kinetic term in the usual
Riemannian geometry formalism.

2. Models II (a) and (b)

Now we consider the Einstein-Hilbert action and the
same action of the scalar field (3.4), but without imposing
projective symmetry. In Model Il(a), we instead impose the

104020-6
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torsionfree condition Tﬁﬂ,/ = (. The parameter « is not
fixed because we do not assume projective invariance.

The constraint equation for the connection Ki,w is now
2
J (P76 0 + 8LK17, — kD), — k7 P)]
~grgon+ S Dslpg =0, (1)

Solving this constraint equation, we find the solution for
the distortion as

Bla—1)gsp0°¢ + 2(a + 1)8(;00,)¢].

1
K‘a = —
Pr M2
6 Pl

which gives the nonmetricity as

QM = ——[(a+ 1)g" ¢ + 2(2a — 1)6/"p") ).

2
3M5,
Inserting this solution into the original action, we again
obtain an effective action written purely in Riemannian

geometry, as

1

S = [ =3[ MR RG) - LT - via)].
(3.13)
with
_ (11a* = 8a—1) ,
flg) =1 +T}%1¢ .

As for Model II(b), we assume Qluv =0, 1.e., the metric-
compatible condition is satisfied a priori. The solutions for
the distortion are given by

. ¢

¥ = gz G50 = ).

which fixes the torsion as

T =2
e 2M3,

1,0,

One may first notice that the distortion of Model II(b) is
the same form as the one from Model I (3.8). However,
the latter admits gauge transformations, while the former
does not.

Furthermore, the equivalent action described in
Riemannian geometry becomes precisely the same as the
previous one (3.8).

3. Models III (a), (b) and (c)

Now just as in the previous section we will consider
constraining the geometry through Lagrange multipliers.

Taking the variation of the Einstein-Hilbert action with
the Lagrange multiplier (2.13) plus the scalar field action
(3.4), we find the constraint equation

6C,
ok Br

+ Mpl[~ag” 0. p + (1 — @)apd’ ¢] = 0.

PIK o+ Ok — KPT = k7 P+ I
(3.14)

Contracting the above equation by &}, we find the Lagrange
multiplier as

(2a-1)

3M2 ¢8 ¢
H (2a—1)

S 00

(ModelIII(a))

(Models ITI(b) and (c))

Interestingly, we find that the results in Models I1I(a) and
(b) are exactly the same as those in Models II(a) and (b),
respectively. We find the same connections «’ - and the
equivalent action (3.13) in Riemannian geometry.

On the other hand, as for Model III(c), neither metric-
compatibility nor the torsionfree condition are satisfied.
The connection becomes

1
K, = ——[2(2a — 3) g5, 0"¢p

16M3,
+ (2a + 3)5(;0,)p + (6a + 1)8),40,p].  (3.15)
which gives the torsion and nonmetricity as
6a + 1
T%, = 428},]45 (3.16)
2a — (B
Q. = ( P $0utp + 465 I ¢).  (3.17)

8M3,

The resulting equivalent action in Riemannian geometry is
given by (3.13) with

3(12% — 12a - 1)
32M3,

f(#) =1+ . (3.18)

IV. APPLICATIONS TO INFLATION

A. Chaotic inflation in metric-affine gravity

In the previous section we have shown that the metric-
affine gravity theory with a “canonical” scalar field could
be rewritten to an equivalent Riemann geometrical action
(3.13) with
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where B(a) is given by

t(11a? —8a—1)

B ={ -1

+(1222 = 12a - 1)

ModelsII(a) and III(a)
Models I, TI(b), and III(b)
Model ITI(c)

Note that B(a) > —29—2 for Models II(a) and III(a) and
B(a) > —3 for Model II(c). The function B(a) coincides
at a single point for all models at @ = 1/2 with B(}) = —3.
This function B(a) solely depends on what geometry is
chosen within the framework of metric-affine geometry.
For the rest of the paper B(a) will be retaken as the
parameter of the theories.

The scalar field in the action (3.13) is canonically
normalized by the redefinition of the scalar field as

4o = 1%B()£Td¢, (4.2)

Pl

which could be integrated as

Lo 1 +35 + ginsinh! (574) | (B> 0)
=19 (B=0).
2 [‘ﬁ [ sin” (%)} (B < 0)

Thus, instead of a modified kinetic term, the action is
simply described by a canonical single field @ with, as a
consequence, a deformed potential in disguise,

/ d4x\/_[ Moip(g )-%apa@—u@))], (4.3)

where U(®) := V(p(D)).

For B = 0, there is no difference from the conventional
Riemannian geometry, while for B < 0, we always find
® < ¢. In particular, ¢ will be constrained as

My,
4.4
=Vl .
to avoid the ghost instability. Therefore, the field value of ¢
cannot exceed the Planck mass typically in order that
inflationary cosmology succeeds. We found that the cases
¢ < My /+/|B| do not introduce new features for infla-

tionary cosmology, so we will not discuss these cases
furthermore.

When B > 0, which only Models II(a), ITI(a) and III(c)
admit, the redefined scalar field ® behaves differently
depending on its energy scale, such that

o {¢
L

i.e., when ¢ is small, the difference between the metric-
affine and its purely metric counterpart is relatively tiny,
while the difference becomes significant when ¢ becomes

(¢ < Mp/VB)
(¢ > MP]/\/E)’

larger than Mp/v/B. In particular, during inflationary
regime, the field value of ¢ can exceed M in which

the effective potential for the canonical field ® o ¢
becomes flatter which may cause a smaller tensor-to-scalar
ratio than the conventional scenario, B = 0.

The action (4.3) simply consists of a single canonical
scalar field ®@. To discuss an inflationary scenario, we
analyze the amplitude of the scalar perturbations as

U
Pr~——5—, 4.5
¢ 247’ey, (4:5)

and evaluate the spectral index and tensor-to-scalar
ratio as

ng~ 1+ 2ny — 6¢y, (4.6)
r~ 16¢ey, (4.7)

where the potential slow-roll parameters are defined by

6&@=%§G%y, (4.8)
1o(®) = My =22, (49

Now assume the potential is a chaotic inflation
type [65] as

1
V= §m2¢2,

and evaluate the observational parameters. The modified
potential is described as

{ Im*@* (® < Mp/VB)
Ux 2 .
#‘D (© > Mp/VB)

If B is very small, since the value of a scalar field is about
the Planck mass at the end of inflation, we find the
conventional chaotic inflation. On the other hand, when
B is around the order of unity, the potential acts as a linear
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T T T T T T T

l><105
Me
05k ‘ ‘ ‘ ‘ ‘ ]
104 0.001 0.010 0.100 1 10 100
B(a)
FIG. 1. The relation between the inflaton mass m and the

parameter B(a) constrained from the observational amplitude of
density fluctuations. The solid and dashed lines correspond to
N = 60 and 50, respectively.

potential, which changes the inflationary scenario, and the
observational parameters with it."

Figure 1 depicts the constraint on the inflaton mass m
and the parameter B(a) from the observed amplitude of the
density fluctuation [4]. When the value of B(a) is small
enough, we find the conventional chaotic inflationary
model, which inflaton mass is fixed by the observation
as m ~ 6.45 x 107°Myp, [4], while for B(a) < 1, the mass
can be several times larger than the conventional model
(see Fig. 1).

We also show the n; — r diagram in Fig. 2. From Fig. 2,
we find that for a sufficiently small B(a) the potential acts
as a chaotic potential, however, when B(a) is the order of
unity, r decreases. As a result, the model is not fully
excluded from the current observations. For the upper
bound of r < 0.10, we find the constraint on the
parameter B as B(a) = 0.034 at N = 50 e-folds. In words
of the parameter «, for the Models II(a) and Ill(a), we
obtain

a>0.86 or

az1.10 or

as—0.13
as—0.10

[ModelsII(a) and III(a)]
[Model ITI(c)].

From the above result, if inflation was indeed caused by a

chaotic inflation and the geometry was written in a metric-
Cur
affine framework, one could say that V.V, (a=1) is
I Tu
observationally favored than V,V (a = 0).

'"We have chosen V() o ¢? to give a concrete observational
constraints. However it could be taken as a general form of, e.g., a
polynomial function V(¢) x ¢". In such case, the resulting
effective potential will become U(®) o @5 in the high energy
region such as an inflationary stage.

025 |

Planck TT,TE,EE+lowE
Planck TT,TE,EE+lowE+lensing

> & +BK144+BAO
020 \\\5\ %
B(a)=0

10.002

005

000

0.98 0.99 1.00

FIG. 2. The n; — r diagram for different values of B(«). The
observational constraint is taken from Planck 2018 [4].

B. G-inflation in metric-affine gravity

1. Scalar field with Galileon symmetry

When we extend the kinetic terms of a scalar field, there
exists one interesting approach, which is the so-called
Horndeski scalar-tensor gravity theory, or its extended
version [66—68]. The equation of motion in such theories
consists of up to the second-order derivatives. Among such
theories, the model with Galileon symmetry may be
interesting because it may be found in the decoupling
limit of the DGP (Dvali-Gabadadze-Porrati) brane world
model [69,70] (For reviews see e.g., [71]).

The Galilean symmetry is defined by the transformation
such that

¢ - ¢+ bix, +c, (4.10)

where b* and ¢ are some constants.
In flat space, the Galileon symmetry fixes the Lagrangian
of a scalar field as

Loy =¢
Loy = 0,00"d
L0) = 0,00"¢0¢ — 0,0, pO* 0 ¢ (4.11)
3 o
= Eaﬂqﬁa”gbﬂqb + (surface terms) (4.12)

up to cubic terms. When we covariantize the above terms,

we have two starting points, i.e., (4.11) and (4.12). The
o r

covariantization [] — [ contains one parameter @ where
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[see Eq. (3.3)], on the other hand in the covariantization of
the second term of (4.11), we have two possibilities;

r I TIulv r'm T'v I' T
V,dV,pV V ¢ and V ¢V ¢V, V, ¢, which may intro-
duce one more parameter . Here just for simplicity, we
analyze the first case. The second case gives a similar result
although we find the constraint on two parameters.

We shall analyze the following covariantized action

r

X
Sg¢:/d4x\/_[ PlR(g, ) -X-—500|.

where X := —1(V¢)? and M is a parameter with mass
dimension. This term is purely Galileon in flat space.
Similar to the calculation in the previous section, the
equivalent action in Riemannian geometry is obtained as

Sg(p:/d‘*x\/—{ —2R(g)- X+:;I§I(M)6X3——D¢

(4.13)

where B(a) is the same function of a as in the previous
subsection IV A.

2. Emergence of G-inflation

The action (4.13) is similar to the G-inflation action
discussed in [61], where the nonlinear term of X naturally
appears. Note that the third term in our action is propor-
tional to X instead of X? in the example proposed in [61],
it also allows a de Sitter solution as we will show soon.

Assuming the flat Friedmann-Lemaitre-Robertson-
Walker spacetime, we find the Friedmann equations and
the equation of motion of the scalar as

.. 5B ¢°
0——3M2H2——¢ top HP +— ,
Pl 2 MM,
) ¢° .
0 = M3 (3H? +2H) — —¢ +2M2M6 M3¢¢,
¢ ¢
0= (—1+3B >(¢+3H¢)+ 12Bp——— YOG
l PlM

+ % (H¢p* +2Hp ¢ +3HP?),

where H =
factor a().

In order to discuss an inflationary scenario, we first look
for a de Sitter solution. Assuming H = H4g = constant and

gb = q}ﬁds = constant, we find two de-Sitter solutions as

% is the Hubble parameter defined by the scale

X—x M>Mp,
= dSi = .
\/3(1 +4B) £ \/3(3 1 168)
aM>
H = HdSi =

3(1£+/3(3 + 16B))as,
where Xgg, = q'bﬁsi /2.

For the + branch, B > —3/16 is required, while for the
— branch, we find B > 0 or —3/16 < B < —1/6. Since H
must be positive, we find that ¢gs, is always positive while

$as. > 0 for =3/16 < B < —1/6 and ¢g5 < O for B > 0.
Models I, II (b) and III(b) are ruled out because B = —3/8
in the three models.

In order to study the stability of the de Sitter solution, we
perturbed the present system. The quadratic action of the
scalar perturbation R, within the unitary gauge (6¢ = 0) is
obtained in [61,67]. In our case, it becomes as

"2
@ Ps..
= :

2(Hgs, — ¢is, | 2M3M?)?

« / dndxa[Gs (R}, — Fs(VR,)?),

where the prime denotes the differentiation with respect to
the conformal time 7, and

1 2(1+2B)X3,
ST3IT T MEMS
B 8B
" 3[3+ 14B £ (1 +2B)
6(1 +6B)Xgs,
ST T

_ [3+16B+ (1+2B)./3(3 1 16B)]

4B

3(3+ 16B)]

If either Fg or Gg is negative, the de Sitter solution is
unstable. It is the case (Fg < (0) when we choose the
— branch (X4g and Hyg ). While for the + branch solution
(Xgs, and Hgs, ), G is always positive for B > —3/16 but
Fs becomes negative for —3/16 < B < 0. As a result, one
de Sitter solution (Xys, and Hgg ) is stable only when
B > 0, while the other solution is unstable.

Once we know the solution of de Sitter phase, we can
evaluate the tensor-to-scalar ratio and the amplitude of the
scalar perturbations, which formula is given in [61,67], as

B*M? 3+ 16B + /3(3+ 16B)
272 mMy \ 2+ 11B + B\/3(3 + 16B))°

__6(1+6B) f@ +6B)[1 + \/3(3 + 16B)]

B 3+ 16B + /3(3 + 16B)
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Relation of r and B

T T T T

104+

0.01F \

L L L L
0.1 10 1000 10°
B

FIG. 3. The tensor-to-scalar ratio r in terms of B(a) in metric-
affine G-inflation.

Since the observational upper bound of the tensor-to-
scalar ratio is 7 < 0.10 [4], the constraint on B becomes
B(a) 2 1.6 x 10* [see Fig. 3, which corresponds to a >
93.7 or a < —92.9 for the Models Il(a) and Ill(a), whereas
az 1196 or a<-118.6 for the Model II(c)].
Furthermore, the mass parameter M is also constrained
from the amplitude of the scalar perturbations and the
constraint of B(a) as M < 0.0060Mp;.

Due to the shift symmetry of the action, one cannot end
the de Sitter phase within this framework. The remedy, as in
[61], is to introduce some function which breaks the scale
invariance and to flip the sign of the ghost in the second
term of the action. We have confirmed that the flip function
whether polynomial or exponential can end inflation. In
order to find a realistic inflation model, not only the de
Sitter phase must end but also the spectral index n, should
be tilted. Hence we may modify the action of the scalar
field to

S0 = [ @t/ (@)X + 0:0) 3 00
AB(P)B 5 | 92(¢)

-/ d4x\/——g[—gl<¢>x+Wx3+ 20 x|,

(4.14)

where ¢;(¢) and ¢,(¢) are appropriate functions of ¢,
which break the Galilean symmetry. For example, we may
choose g;(¢) = tanh[A(p — Penq)/Mpi] to finish an infla-
tionary stage, while g,(¢) = exple,p/Mp] to title the
density perturbations [61]. The parameter ¢.,q can be
absorbed by redefinition of M. In fact, the action (4.14)
is invariant for the shift transformation ¢ — ¢ = ¢ — Pepa
with the redefinition such that

_ €
M — M = exp <— 334221(:>/1M,

61(¢) = §:(P) = tanh (ﬁ)

Pl

()~ 1) = exp 12,

Since B is not changed, P, can be adjusted to the
observational data by tuning the value of ¢.,q.

As for the spectral index ng, it is highly affected by the
choice of those functions, thus we will not explicitly
analyze it here. We note that we can find an appropriate
function to satisfy the observational data.

V. SUMMARY AND DISCUSSIONS

In this paper, assuming the Einstein-Hilbert action, we
have classified the metric-affine theory of gravitation into
three models (six cases). By separating the distortion tensor
from the connection, one can easily find the distortion
tensor by solving an algebraic equation. Since the con-
nection is nonpropagating, i.e., it does not have new d.o.f.,
substituting the solution of the distortion tensor into the
metric-affine action, we obtain an equivalent effective
action in the Riemannian geometry solely constructed by
the metric, which differs from its counterpart model in
Riemannian geometry.

If matter field does not couple to the connection (Palatini
formalism), the effective action described in Riemannian
geometry is equivalent to GR. While if matter field couples
to the connection, an additional energy-momentum appears
from the coupling in the effective equations. The additional
terms by the distortion tensor are suppressed by the Planck
mass. This Planck mass suppression is a characteristic
feature that appears naturally in these metric-affine gravity
theories, and the additional terms will become important in
a high-energy scale.

We have then applied the formalism into two inflationary
models: the “minimally” coupled model and the G-inflation
type model. Both models are rather simple in the metric-
affine case, and the models are characterized by the
parameter B(a) which differs in the six classified cases,
and the structure of the resultant action is all the same. In
any case, the observational parameters are drastically
different from the Riemannian geometry counterpart. A
key feature of minimally coupled models is that the
effective potential becomes flatter than the conventional
scenario in ¢ > M,/ VB with B > 0 and then the tensor-
to-scalar ratio becomes smaller. For instance, the chaotic
inflation scenario is not fully excluded by the current
observations in the metric-affine formalism. As for
Galileon models, the metric-affine formalism naturally
yields the X3 term and a stable de Sitter solution, although
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the G-inflationary model requires slightly unnatural large
coupling parameters to be consistent with observations.

Here we would like to comment on the extension of the
present formalism. Although we consider only the Einstein-
Hilbert action (the scalar curvature) in this paper, we can
discuss more general action with the Riemann tensor or the
higher-order terms of the curvatures. In that case, we must
note that there are more curvature tensors than the usual
Riemannian case since the Riemann tensor does not satisfy

r r r

some (anti)symmetries (e.g., R*,;, #R,*,, R*;,, #0).
Nevertheless, we have confirmed that this is drastically
simplified when we assume a projective symmetry on the
theory [49]. The scalar-tensor theory of gravity in metric-
affine geometry with projective invariance becomes
equivalent to the Degenerate-Higher-Order-Scalar-Tensor
(DHOST) theory, which guarantees that there is no
ghost [72-74]. Hence metric-affine geometry could be a
key to understanding ghostfree properties of scalar-tensor
theories.

There are numerous extensions and applications that one
may consider from this work. For example, one may first
note that the properties of “integrating out the connection”
could only be done when the connection does not withhold
new d.o.f. This is not the case of Palatini/metric-affine
higher curvature gravity [30,31,75-77]. When the higher
order terms of the Riemannian curvatures are present,
which may appear in the in quantum corrections, the
connection obtains new d.o.f. The analysis is not simple,
because the theory cannot be described by the effective
action in Riemannian geometry. It is expected that metric-
affine geometry differs greatly from Riemannian geometry.
One may hope that metric-affine geometry will provide us
rich phenomena that the Riemann case does not.

Another interesting issue that one must consider is that in
metric-affine gravity, bosons and fermions react differently
even in the standard model of particles [38,78,79]. This is
due to the fact that the Dirac particles couple to both the
metric and the connection, whereas gauge bosons just
follow the orbit determined only by the metric. This is a key
factor of metric-affine geometry since in principle all matter
behaves alike in Riemannian geometry. More specifically,
geodesics of spin integers and spin halves will be different
[80—82]. One may also expect that fermionic matter with
higher spin, such as the Rarita-Schwinger field [83], are yet
to be formulated in metric-affine gravity and could intro-
duce new phenomenology. This may be able to be verified
by tests of the equivalence principle [1,2]. It would be also
interesting to see if whether there could be imprints of
metric-affine geometry through the CMB(bosons) and the
cosmic neutrino background [CrB] (fermions), if any,
which could lead to verification from future observations
[4,84,85].

Finally, we would also like to mention on further
application to cosmology. Recently, interesting results
appeared from the Palatini approach of Higgs inflation

[56-58]. It would be interesting to extend this to further
cases such as new Higgs inflation [22] and hybrid Higgs
inflation [24]. In addition, since fermions and bosons react
differently in the metric-affine formalism, it is hoped that
the reheating phase would compute different results. This
fact, that fermions and bosons couple differently with the
Higgs, has not been considered in any literature and it is
worth investigating using a concrete model such as above.
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APPENDIX A: METRIC-AFFINE GENERAL
RELATIVITY REWRITTEN WITH TORSION
OR NONMETRICITY

As shown in Sec. II distortion tensor and the Riemann
tensor could be written as

1
K/l;w = E (Tl;w +TI.//1/4 _7‘/41//1 + QUA[,{ + pr/1 - Qi/w)’ (Al)
r
Raﬂ/u/ (F) = Raﬁﬂv({}) + vﬂKav/J - vykay/}
+ Ka”lKlUﬁ - KaDlKAMﬁ. (A2)

In this section, we will write the explicit form of equation of
motions in general relativity, when either the torsionless or
metric-compatiblility is satisfied, with using the torsion
tensor and the non-metricity tensor.

1. Metric-Affine EH
a. Torsionless

r
For T =0 and £, = R(g,I") the Einstein Hilbert could
be rewritten as,

r 1 1
R(g’ F) = R(g’ {}) + Z Qi;wQ/wy - 5 Q/I;WQ;MD

+2Q, W — 4AWHW,. (A3)
The equation of motion for the connection could be derived
by taking caution of the symmetry of the connection (the
last two indices are symmetric) as,
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L3S, 1y
— 15}/ 57/5ﬂ !
Y — g 5K‘Iﬁ/ , 2 p + )

= —Q./ +2Q,¢ —2WIs]) + QUsY).

(A4)
If you take the variation of the action with respect to Q,

1585, 1 1 1
i — O, woZ u
\/__95Q,4M D) Q VA 4 Q(/lu) + ZQMQ

+28, Wy = 29,0, (A5)

Notice that there is an equality

18, )
——— L (g + 5LV

1 4S,
\/—~ OK” gy (5;;,57 5/3’5/}’)

(A6)

Since

5Q vA 1
51("[1/ 02

8 (A L),
(0,8, + 8,8)) = &1 6l g7 (5/;,5; + 5%55,)
= (8hg'"¥ + 8Lg"v)

this should also hold for the matter sector with its hyper
energy-momentum tensor as,

oS
‘4ol = o

‘SS_M % (éﬁgy( =
K ﬂ/},/

5Q”M
The equation for the metric is

1 6S r 1 T
\/_—_gég”(’]“ :R(/w) (F) _Eg;wR(g’F)

= G;w(g’ {}) + 29/11/ Qi Q/I - g;wW” Q,u

1
-wWe Q(l/w + Zg;w Qaﬂy Qﬂay

T2V Q)

1
ap;
_ggﬂvQ lrgaﬁy

1

3 Q..

1 1
+ 5 Q(lﬁﬂ Qaﬁy - 5 Qaﬁ/,t Q/}au
(A7)

b. Metric compatible
For @ = 0, the following holds as,
ThT l’T T IT THw
- u + Z A + 5 Ay .

R(9.T) = R(g. {})

(A8)

The EoM for the connection could be derived by taking
caution of the symmetry of the connection (the last first and
third indices are antisymmetric) as,

1 oS 1 /
L3 (38, = gy ™) = TH

— YT 4 ShT7.
1/—96]('6’ ﬂ}’/ 2 g/

(A9)

If you take the action with respect to the torsion,

1 oS
\/_—_gé’fig =T =T, +5/T")
uv

Now since,

(A10)

1 oS
Nt e
MY
1

158, , ,
=— X > (658) = Gay 9°7)-
/_—95K0//3y/ 2 Y 4

The equation for the metric is

(Al1)

1 r
Y g;wR (97 F)

1 oS r

N1z
1 1
= G/u/(g’ {}) + Eg/wTaTa + ETAT(/UJ)/I

1 o 1 a
- gg;wTa/)’yT br — Zg,uszaﬁyTﬂ 4

1 1
T T+ ;T T (A1

APPENDIX B: AN EXTENDED D’ALEMBERTIAN
AND THE CONSTRAINTS FROM THE
OBSERVATIONAL DATA FOR INFLATION

Here we consider an extended version of d’Alembertian
(3.5), which is

E]¢ = |:|¢ + (C(QQJL + aWVW + aTTi)ald’v (Bl)

where 7, = Tﬁp =3 Q/M’ Q, = wa. With the choice
of ag = —a, ayy = 2 ar = —1 the d’Alembertian reduces
to (3.5). We assume a canonical scalar field which action is
given by (3.4), and then present the Riemann effective
action

g¢_/dx\/_[ —R(9)
-5 (145 ) war - v ®2

M5,
in each model discussed in Sec. III. Based on this reduction,
we show the constraints on the parameters o; (I = Q,W,
and T') from the observational data for inflation. Note that
in the further calculations, all of the coefficients «; can be
also arbitrary functions of ¢ and X as a;(¢, X), however,
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just for simplicity, the analysis would be done assuming «;
as a constant. Furthermore, this could be considered as a
scalar-tensor theory minimally coupled to the connection.
A similar action was considered in the context of classi-
fication of torsionless metric-affine scalar-tensor theories
through the transformation of the metric and the connection
in [86,87].

1. Model I (projective invariant model)
The projective transformation (2.5) gives
r r
O¢ — O¢ = O¢ + ar (T+ +3U*)0,¢
+ oW +2U0%)0,¢ 4 ap(Q* +2U*)0,¢
r
=0+ [Bay + 2(ay +ag)|U*0,¢.
Hence, in order for the theory to have projective invariance,

one must impose the condition of 3ar 4 2(ay + ag) = 0.
Furthermore we find the following solution:

pt0 4 ¢ 104 (¢4
K TS [(Bar +aw)gp,0 ¢+(a7+aw)5 d,¢], (B3)
Pl

+a
T, =T 5 0 B4
v TG $67,0,9, (B4)

2 .

g =0T LW 5 g, (B5)

MPI

up to gauge freedom. As a result, the Riemann equivalent
action becomes (B2) with

1
B(ay) = 3 (2702 + 113y, + 3darayy
+ 20ayyag + 40arag). (B6)
2. Model 11
a. Model II(a) (Torsionfree model)
Assuming 7*,, = 0 (and thus a; = 0), we find
a ¢ x (04
K ﬂy:_TM%lB(aW+2aQ)gﬁ}'a ¢—2(aw —2a0)5;0,)4).
(B7)
v ¢ v
Q= o (aw — 2a0)9" 00~ 2ary + dag)5} 0.
Pl

(B3)
The Riemann equivalent action becomes (B2) with

agy — 16ayagy — 44a;,

B(oy) = — 24

(B9)

b. Model I1(b) (Metric-compatible model)
Assuming Q = 0 (ayy = ag = 0), we find

a
Ky = m Hop 0" —50,4).  (BI0)
Pl

a _ _ % e
T = =331 P05 (B11)

The Riemann equivalent action becomes (B2) with

B(a;) = —%aZT. (B12)

3. Model III (constraint with a Lagrange multiplier)

In the Model I, the Lagrange multiplier 4,, is introduced
to fix the gauge freedom. We find the following solutions
for each model.

a. Model III(a) (7 =0, ar=0)
The solution is

104 —

Ky = =" [3(aw + 2ag)gp, 00
Pr 12M%>1 0J)Ipy
- 2(aW - 2aQ)5{(l/ja},)¢},
T%, =0,
Q" = o (aw = 2a0)g# 0 = 2ayy + dag)s] 9.
Pl
with
W= = = (a0,

The Riemann equivalent action becomes (B2) with

gy — 16ayag — 44ay,
24 ’

Blay) = - (B13)

b. Model III(b) (,=0, ag=0)

The solution is

p 3CT + CW o ar + aW
o=, Pt g, P00
5((17 + Z(XV\;)
— =L 58D
v SA e
1lazs + 6ayy
T, = ———— 03,01,
pr — SMP
2
Q.7 = 22T o (5pr0,p — 25000 ).
2M3,

104020-14



METRIC-AFFINE GRAVITY AND INFLATION

PHYS. REV. D 99, 104020 (2019)

with
M= = b (Bar + 2ayy) o .
2M3,

The Riemann equivalent action becomes (B2) with
3 2 2
B(a;) = 3 (1laz + 12azayy + 3a3),).

c¢. Model II(¢c) W, =0, ayy,=0)

The solution is

o 36(7* - 2(XQ

Ay, = 0P — ———=p5%p0
K Py SM%,I ¢gﬂy ¢ 8M1231 ¢ /j¢ 4
ar —2ag
——————= %P0y,
16M123] ¢ y¢ s
. _ artbag
T pr — 8M]231 ¢5[ﬁ81’]¢’
—2a
pr— 2T =29 yibrg b — asPor)
with
M= = ! 3 2 ot
=ty = 3z Gar ~200)09

The Riemann equivalent action becomes (B2) with

3
B(a;) = -3 (aF + 12a7ag — 12a7).

4. Relation between the three models

We find one interesting result, which is some relation
between the three models I, II, and III.

In Model I, since the theory is invariant under the
projective transformation, we can eliminate one of the
three connection terms using the gauge freedom. For
example, when we choose U¥ = —7# /3, the connection
term of 7# disappears. Then only two parameters ag and
ayy remain in the extended d’ Alembertian (B1). Similarly
when we choose U* = —WH/2 and U¥ = —QF/2, we find
two parameters ar, ag and az, ayy in (B1), respectively.

The solution for each case becomes

12?412:, [=3(aw +2a0) g, 0%¢ + (aw —2a0)530,4)]
#})‘ [((Bar —2ag)gp,0" — (ar + 2aQ)5;8},¢] ,

ﬁ [((Bar +aw)gp, 0 + (ar + aW)5§37¢]

o —
K gy =

with the gauge function U* as

ayw—2ag9
12M3, ¢aﬂ¢
- _oar —2ag
UM - 16M3, ¢8ﬂ¢

_5(2a7+aw) ¢aﬂ¢

2
AMy,

The parameter B(a;) becomes

L
24

(ay — 16ayay — 44a)

B(ay) = —%(aZT + 12a7ag — 12a29) ,

(113 + 1R2azay + 3a3y)

which are obtained from (B6) by eliminating one
parameter by use of the projective invariance condition
3(17* + 2((ZW + (ZQ) =0.

When we compare the above results with those in
Models II or III, we find that Models III (a), (b) and
(c) correspond to the above three values in Model I (B14),
respectively. We also find that Model II (a) is the same as
the first case in Model I (B14). As for Model II (b), it
cannot be obtained from Model I with an appropriate gauge
choice except for some special case of the parameters. Only
the case of ayy = —2a7 and ag = %aT, which satisfies the
projective invariance condition, we find the same result for
Model II (b) and Model 1.

Although the effective action in Model III is the same as
that in the Model I with gauge fixing, the Model III has no
projective invariance in general. If we impose the projective
invariant condition for three parameters in Model III, we
expect that it is a subclass of the Model I with the
corresponding gauge fixing.

5. Observational constraints on the parameters a;

In this final section, we consider the observational
constraints on the parameters in the extended

LS s S — — —— —————————
2

2 e — E————————————————

FIG. 4. Constraints on ay and a, in Model I with two
parameters (ay, ap), and Model II(a) and Model IIl(a). The
shaded region is consistent with the observational data for the
tensor-scalar ratio r.
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T T T
2

-2
1
S
N

FIG. 5. Constraints on ay and ay in Model 1 with two
parameters (ar, ay), and Model III(b). The shaded region is
consistent with the observational data for the tensor-scalar ratio r.

d’Alembertian for the chaotic potential V(¢) = 3m?¢*.
From the observational constraints on the tensor-mass ratio
r, we find B(a;) Z 0.034. The projective invariant Model I
consists of three parameters, which must satisfy the
projective condition 3ay + 2(ay + ap) = 0. By projecting
the observational constraints on B(e;) with (B6) onto two-
parameter plane, we find the allowed regions for two

parameters shown in Figs. 4-6.

R ., S — S — ————— S ———
2 a|

4 oo s ——————————
-2 -1 0 1 2
ar

FIG. 6. Constraints on ay and ar in Model T with two
parameters (g, ar), and Model IIl(c). The shaded region is
consistent with the observational data for the tensor-scalar ratio 7.

Models III(a), IlI(b) and III(c) give the same function
B(a;) as those in Model I with specific gauges (7# = 0),
(Q,=0) and W, =0), respectively. As a result, the
constraints on the two parameters are given by Figs. 4, 5
and 6, respectively. Model II(a) is the same as Model I1I(a),
which constraints on two parameters are shown in
Fig. 4. Model II(b) is observationally excluded because
of B(a;) < 0.
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