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We classify the metric-affine theories of gravitation, in which the metric and the connections are treated
as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert
action, we find that the equations for the distortion tensor (torsion and non-metricity) become algebraic,
which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the
form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini
formalism (in which we assume there is no coupling between matter and the connections), but when matter
field couples to the connections, the effective Einstein equations include an additional hyper energy-
momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally
coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic
inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a
simple form of Galileon scalar field in metric-affine could cause G-inflation.
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I. INTRODUCTION

General relativity (GR) is undoubtedly one of the most
successful relativistic gravitational theories since its pro-
posal over a century ago. Countless experiments have been
conducted to confirm its viability throughout the years (see
e.g., [1,2]). However recent observations of the universe
such as the acceleration of cosmic expansion suggest an
alternative theory of gravity [3,4]. In the early stage of the
universe, we may also expect an accelerating expansion of
the universe, the so-called inflation [5–11] (For many
reviews of inflation see e.g., [12,13]). Although we do
not know the origin of the inflaton field, which is
responsible for the accelerating expansion in the early
stage of the universe, one possible answer could be
modification of a gravitational theory such as Higgs
inflation model [14–24]. Although we have not yet had
a satisfactory viable explanation to solve inflation as well as
dark energy in the framework of modern physics, we
recently find an astounding increase in the proposal of
modified theories of gravity [25,26]. By considering alter-
native theories of gravity, one may not only find a solution
to these problems but also enforce our understanding of
gravity itself.
It is more than common to consider a purely metric

theory with Riemannian geometry when formulating alter-
native gravitational theories. This is more than natural since
the best gravitational theory we know, the general theory of

relativity, is written in terms of Riemannian geometry.
However, one goes beyond Riemannian geometry and
allow new structures to be included in a gravitational
theory. These theories constructed from non-Riemannian
geometry may naturally exhibit new features into a theory.
Furthermore, one must note that some formalisms give an
equivalent theory as GR, e.g., teleparallel gravity [27] or
symmetric teleparallel gravity [28]. However, once we try
to go to alternative theories of gravity, such as higher
dimensions or nonminimal couplings, these formalisms
could differ from their purely metric counterparts, and
provide some different solutions [29–34].
In this paper, we will use a formalism called metric-

affine geometry, in which the metric and the connection are
independent variables [35–41]. (For a recent review see
e.g., [42]) We consider theories given only by the curva-
tures, but not by the function of the connections such as
torsions. In particular, we mostly assume the Einstein-
Hilbert action.
Keeping the above inmind, another interesting possibility

to consider is a scalar-tensor theory which has come to be
popular throughout this decade. The idea behind these is
relatively simple. To explain the unknown phenomena, e.g.,
inflation, dark matter, or dark energy, one could add an extra
scalar degree of freedom (d.o.f.) to the two tensor d.o.f. of
gravity so that the problems are solved [43,44]. However,
most of these researches are done through the purely metric
approach in which the geometry is Riemannian. There are
extensions to a non-Riemannian case [45–49], however, the
fullymetric-affine formulated theory and,more importantly,
their applications to cosmology are yet to be explored. This
is the main purpose of this paper.
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Moreover, recently inflationary scenarios in Palatini/
metric-affine theories have gained increasing attention,
due to the fact that observational variables are different
compared to the Riemannian case [50–53]. These seem to
have other interesting features such as attractors [54] and its
multifield extensions [55]. By considering the inflaton as
the Higgs, one could also consider the Palatini formalism of
Higgs inflation [56–58]. There are also approaches to
consider inflation with a purely an affine approach [59,60].
The organization of this paper is as follows. We start with

briefly classifying metric-affine theories of gravity by some
conditions on the connections in Sec. II. We then proceed to
discuss a minimally coupled scalar field in the metric-affine
formalism in Sec. III. The solutions for the connection of all
classified models are given. Substituting the solution into
the action, we find the effective action described in the form
of Riemannian geometry. Then we apply our formulation to
two inflationary models in Sec. IV. One is a model with a
“minimally” coupled scalar field, and another is G-inflation
in which mimics the action introduced in [61]. We show
that observational constraint from the Planck 2018 results
[4] are satisfied by the appropriate choice of the coupling
parameters. Summary and discussions are presented in
Sec. V. Some further extension of d’Alembertian is also
discussed in the Appendix A.

II. CLASSIFICATION OF
METRIC-AFFINE GRAVITY

A. Torsion, nonmetricity and distortion tensor

We shall start by classifying the metric-affine gravity
theories, in which the (Riemann) metric and the affine
connection are treated as independent variables. Since the
precise definition of geometrical variables is crucial in
metric-affine gravity theories, this section is dedicated to
clarifying how those variables are defined in metric-affine
gravity and classify several approaches.
Once a connection Γ is introduced, the covariant deriva-

tive is naturally defined by

∇Γ μAν ≡ ∂μAν − Γα
μνAα;

∇Γ μBν ≡ ∂μBν þ Γν
μαBα:

The most general connection in metric-affine gravity
theories consists of the Levi-Civita connection as denoted
by f α

βγg, which is fixed by the metric as

n α

μν

o
≡ 1

2
gαβð∂μgβν þ ∂νgμβ − ∂βgμνÞ;

and two additional geometrical tensors; the torsion

T λ
μν ≡ 2Γλ½μν� and the nonmetricity Qα

βγ ≡∇Γ αgβγ. Here
the antisymmetrization square brackets withholds a factor

of 1
2
, i.e., ½A; B� ¼ 1

2
ðAB − BAÞ. Torsion T λ

μν could nor-
mally be interpreted as a measure of how a vector is
“twisted” on a curved space when it is parallel transported,
whereas nonmetricityQα

βγ could be thought as for how the
length of the vector changes through parallel transport.
The Riemann curvature is defined by the connection

Γα
βγ as

R
Γ
α
βμν ≡ Rα

βμνðΓÞ
¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ:

Note that, by definition, it is only antisymmetric in the last
two indices.
We introduce the distortion tensor κ defined by

καβγ ≡ Γα
βγ −

n α

βγ

o
;

which makes calculations in metric-affine gravity theories
greatly simplified. The distortion tensor is given by the
torsion and nonmetricity as

κλμν ¼
1

2
ðT λ

μν þ T ν
λ
μ − T μν

λ þQν
λ
μ þQμν

λ −Qλ
μνÞ;

where the indices have been raised by the metric gμν.
Inversely we have

T λ
μν ¼ 2κλ½μν� Qα

βγ ¼ 2κðβαγÞ:

By use of the distortion tensor κ, the Riemann tensor is
decomposed as

R
Γ α

βμν ¼ Rα
βμν þ∇μκ

α
νβ −∇νκ

α
μβ þ καμλκ

λ
νβ − κανλκ

λ
μβ;

ð2:1Þ

where Rα
βμν ¼ Rα

βμνðfgÞ is the Riemann tensor defined by
the Levi-Civita connection fg, and ∇μ is the covariant
derivative with respect to the Levi-Civita connection. We
also have two Bianchi identities:

R
Γ
λ½αβγ� ¼ ∇½αT λ

βγ� − T σ ½αβT λ
γ�σ;

∇Γ ½αR
Γ
μjνjβγ� ¼ T λ½αβR

Γ
μjνjγ�λ:

Because of these identities, one must take extra care when
deriving energy-momentum conservation laws [38].

B. Projective invariance

In what follows, as for the curvature term, we consider
the Einstein-Hilbert action

Sg ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R
Γ ðg;ΓÞ; ð2:2Þ
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whereM2
Pl ≡ 1

8πG is the reduced Planck mass and R
Γ ðg;ΓÞ≡

gμνR
Γ
λ
μλν is the Ricci scalar. Note that the Ricci scalar is

uniquely defined by the contraction of the Riemann tensor.
One must also keep in mind, however, that the Ricci tensor
is not uniquely defined because the Riemann tensor does
not have the usual (anti) symmetries and the different
contractions become possible. It may compute different
results.
The action (2.2) can be decomposed into the purely

metric part and the distortion tensor as,

Sg ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½RðgÞ þ gμνðκλμνκσσλ − κλσμκ
σ
νλÞ�;

where we have dropped the surface terms appeared from
the 2nd and 3rd terms in the right-hand side (r.h.s.) of
Eq. (2.1). This description shows that this model describes
the Einstein gravity in the Riemannian geometry with the
distortion tensor field κ. In fact, by taking the variation of
the action with respect to the metric gμν and the distortion
tensor κ, we find

δS
δgμν

¼ M2
Pl

2
½Gμν þ κλμνκ

σ
σλ − κλσμκ

σ
νλ

−
1

2
gμνgαβðκλαβκσσλ − κλσακ

σ
βλÞ�; ð2:3Þ

and

δS
δκαβγ

¼ M2
Pl

2
½gβγκσσα þ δβακγσσ − κβγα − κγα

β�: ð2:4Þ

Note that there is no kinetic term of κ, which means it is not
dynamical but fixed by the constraint equations. This
characteristic will become crucial later on in the paper.
In metric-affine geometry, there exists a new symmetry

called “projective symmetry” for the Einstein-Hilbert
action (For geometrical aspects, see Sec. VI of the textbook
[62]). The projective transformation is a transformation of
the connection as

Γα
βγ → Γ̃α

βγ ¼ Γα
βγ þ δαγUβ; ð2:5Þ

which preserves the angle of two vectors and leaves the
geodesic equation equivalent up to the redefinition of the
affine parameter such that λ → λ̃ðλÞ, where λ̃ is given by the
solution of the differential equation

d2λ̃
dλ2

− Uβ
dxβ

dλ
dλ̃
dλ

¼ 0;

which could be integrated as below.

λ̃ ¼
Z

e
R

Uβdxβdλ:

Under this transformation, the Ricci scalar is invariant as

R
Γ ðg;ΓÞ → R

Γ̃ ðg; Γ̃Þ ¼ R
Γ ðg;ΓÞ: ð2:6Þ

Thus the Einstein-Hilbert action has “projective invari-
ance.” Note that for some gravitational action such as the
curvature-squared gravity theory, such symmetry may no
longer exist.
If the matter action also has the projective invariance, the

full theory has such symmetry. We call it a projective
invariant theory. Although the constraint equations for κ do
not fix all components of the connection, this ambiguity
does not appear in the basic equations. It could be
considered as a kind of gauge freedom.
We can see this fact explicitly as follows: The variation

with respect to the distortion tensor provides the constraint
equations for κ. For simplicity, we consider the vacuum
case or the model with matter field which does not couple
to the connection (the so-called Palatini gravity theory).
The variation with respect to the distortion tensor leads to

gβγκσσα þ δβακγσσ − κβγα − κγα
β ¼ 0;

which is solved as

καβγ ¼
1

4
δαγκβ; ð2:7Þ

where κβ ≔ κλβλ. This indicates that the distortion tensor κ,
and thus the connection Γ, is undetermined up to the trace
κβ. These remaining four d.o.f. correspond to the projective
transformation vector Uβ. This result is also easily under-
stood as follows when we introduce the reduced distortion
tensor defined by

κ̄αβγ ≡ καβγ −
1

4
δαγκβ;

which is, by definition, a trace-free tensor.
Now, by the use of κ̄αβγ , the action S is rewritten as

Sg ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½RðgÞ þ gμνðκ̄λμνκ̄σσλ − κ̄λσμκ̄
σ
νλÞ�;

ð2:8Þ

which gives the Einstein equations as

Gμν ¼ M−2
Pl ½Tμν þ τμν�;

where the energy-momentum tensor of usual matter field
Tμν is given by
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Tμν ¼ −2
δSm
δgμν

;

and the hyper energy-momentum tensor τμν is defined by

τμν ≡ −κ̄λμνκ̄σσλ þ κ̄λσμκ̄
σ
νλ

þ 1

2
gμνgαβðκ̄λαβκ̄σσλ − κ̄λσακ̄

σ
βλÞ;

which can be treated as an additional energy-momentum
tensor in the Riemannian geometry coming from κ̄αβγ .
The variation with respect to κλμν is also given only by

κ̄λμν as

δS
δκαβγ

¼ M2
Pl

2
½gβγκ̄σσα þ δβακ̄γσσ − κ̄βγα − κ̄γα

β�: ð2:9Þ

Hence the constraint equations are

gβγκ̄σσα þ δβακ̄γσσ − κ̄βγα − κ̄γα
β ¼ −2M−2

Pl
δSm
δκ̄αβγ

; ð2:10Þ

and

δSm
δκβ

¼ 0: ð2:11Þ

When the matter action is projective invariant, Eq. (2.11)
becomes trivial. If there is no coupling between matter field
and the connection, the r.h.s. in Eq. (2.10) vanishes. As a
result, we obtain κ̄λμν ¼ 0, and then find the conventional
Einstein gravity theory with the Levi-Civita connection.
When the theory has matter field coupled with the distortion
tensor κλμν, we have an additional contribution of κ̄λμν, which
is determined by the constraint equation (2.10). We classify
this projective invariant gravity theory as Model I.

C. Nonprojective invariant gravity theories

Since matter, in general, is not projective invariant, all
components of the connection should be fixed. Hence when
we discuss nonprojective invariant gravity theories, we may
impose an additional constraint on the connections to
eliminate the unfixed components in the Einstein-Hilbert
action. (For further of consequences of fixing the projective
gauge, see e.g., [63]) There are the following two common
approaches. One is to take the torsionfree condition
(T λ

μν ¼ 0), and the other is to take the metric-compatible
condition (Qα

βγ ¼ 0). In general, these two conditions do
not have to simultaneously coincide in general. We classify
these cases into Model II(a) and Model II(b), respectively.
Both of these conditions are commonly assumed a priori in
the gravitational action. As we will see below, for the
Einstein-Hilbert action, both approaches compute the

Einstein equations and the Levi-Civita connection if matter
does not couple to the connection.
For Model II(a), noting that the distortion is restricted as

κλ½μν� ¼ T λ
μν=2 ¼ 0, the solution (2.7) for the constraint

equation for the connection reads

καβγ ¼ 0; ð2:12Þ

which gives the Levi-Civita connection.
Similarly, for Model II(b), since κðβαγÞ ¼ Qα

βγ=2 ¼ 0,
the constraint equations in the metric-compatible case reads
Eq. (2.12). We again find the Levi-Civita connection.
When the matter couples with the connection, the

reduced distortion tensor κ̄ and the trace κμ are obtained
by the constraint equations (2.10) and (2.11). The hyper
energy-momentum tensor appears in the Einstein equa-
tions. Although the trace term of the distortion tensor is also
fixed, it does not appear in the Einstein equations.
In Appendix, we present the explicit description of the

Einstein equations and the constraint equations by use of
the nonmetricity tensorQα

βγ for Model II(a) and the torsion
tensor T α

βγ for Model II(b), respectively.
Although the above ansatz of the torsionfree or the

metric compatibility provides a consistent gravity theory,
when we break the projective invariance, such a condition
may be too strict because we have only four undetermined
components in the connection. The minimum condition
that one could impose is constraining some vector Cμ,
which consists of the distortion tensor, via a Lagrange
multiplier, as

Sg ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p fRðgÞ þ gμνðκλμνκσσλ − κλσμκ
σ
νλÞ

þ λμCμðκÞg: ð2:13Þ

The variation of the Lagrange multiplier λμ gives four
constraint equations CμðκÞ ¼ 0, which fixes four undeter-
mined components in the connection.
When we perform a projective transformation (2.5), we

find

T λ
μν → T̃ λ

μν ¼ T λ
μν þ ΔT λ

μν ¼ T λ
μν þ 2δλ½νUμ�

Qλ
μν → Q̃λ

μν ¼ Qλ
μν þ ΔQλ

μν ¼ Qλ
μν þ 2gμνUλ;

which give Uμ ¼ ΔT λ
μλ=3 ¼ ΔQλ

μλ=2 ¼ ΔQμ
λ
λ=8. Hence

in order to break the projective invariance, we could choose
the constrained vector CμðκÞ either of the following three
vectors;
(a) the torsion vector: T μ ≡ T λ

μλ,
(b) the nonmetricity trace vector: Qμ ≡Qλ

μλ,
(c) the Weyl vector: Wμ ≡ 1

4
Qλ

μλ.
We will classify these models III (a), III (b) and III (c),
respectively. The constraint equation CμðκÞ ¼ 0 in each
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case gives κβαβ ¼ 0 because T μ ¼ 2κλ½μλ�,Qμ ¼ 2κðλλμÞ, and
Wμ ¼ 1

2
κλμλ. As a result, if matter does not couple with the

connection, we find the conventional Einstein equations
with the Levi-Civita connection. In the case with matter
coupled the connection, we have to include the modified
hyper energy-momentum tensor in the basic equations. The
modification of the hyper energy-momentum tensor
appears because of the Lagrange multiplier term. When
we take the variation of the action S with respect to the
metric, we find the Einstein equations as

Gμν ¼ M−2
Pl ðTμν þ τμν þ ΔτμνÞ;

where

Δτμν ¼ −λα
δCα

δgμν
:

For Models III(a) and (c), Cα does not contain the metric g,
then the modification term vanishes. While for Model III
(b), since Qλ ¼ gαβgλσκβλσ þ κλμλ, Δτμν is not trivial. We
find

Δτμν ¼ −λðμκνÞλλ þ λακ
αðμνÞ:

The constraint equation for κ is

gβγκσσα þ δβακγσσ − κβγα − κγα
β þ λμ

δCμ

δκαβγ
¼ −2M−2

Pl
δSm
δκαβγ

;

ð2:14Þ

where

λμ
δCμ

δκαβγ
¼

8>><
>>:

δα
γλβ − δα

βλγ ðModel IIIðaÞÞ
δα

βλγ þ gβγλα ðModel IIIðbÞÞ
1
2
δα

γλβ ðModel IIIðcÞÞ
:

Solving the constraint equation (2.14) with CμðκÞ ¼ 0,
we obtain the distortion tensor κλμν and the Lagrange

multiplier λμ, which fix the hyper energy-momentum tensor
(and its modification).
If there is no coupling between matter field and the

connection, since κλμν ¼ 0 and λμ ¼ 0, we again recover
the conventional Einstein equations with Levi-Civita
connection.
We summarize the classification of metric-affine gravity

theories in Table I.

III. SCALAR FIELD IN
METRIC-AFFINE GRAVITY

A. “Canonical” scalar field

Here we consider a minimally coupled “canonical”
scalar field in the metric-affine formalism. The action for
a real scalar field in a flat Minkowski space is given by

Sϕ;flat ¼
Z

d4x

�
−
1

2
ημν∂μϕ∂νϕ − VðϕÞ

�
; ð3:1Þ

which can be rewritten by integration by parts to the
equivalent action, up to the surface term, as

Sϕ;flat ¼
Z

d4x

�
1

2
ϕ□

∘
ϕ − VðϕÞ

�
; ð3:2Þ

where □

∘ ≡ ημν∂μ∂ν is the flat-space d’Alembertian
operator.
When we discuss a scalar field in a curved spacetime, we

have to extend the above action in a covariant form. In
Riemannian geometry, covariantization is straightforward.
One simply has to substitute the volume density

ffiffiffiffiffiffi−gp
and

replace ∂μ with ∇μ. The result of the covariantization of
(3.1) is equivalent to the covariantization of (3.2) up to the
surface term. However, in metric-affine geometry, as we
will see, not only two covariantizations give the different
results, but also the covariantization of (3.2) is not trivial.
If we start from the action (3.1), the scalar field does not

couple to the connection since ∇Γ μϕ ¼ ∂μϕ. On the other
hand, when we covariantize the action (3.2), there exists
some ambiguity in the definition of the d’Alembertian

TABLE I. The classification of metric-affine gravity theories. For the Einstein-Hilbert action, the basic equations turn out to be just the
Einstein equations if the connection does not coupled to matter field (Palatini formalism), but there appears an additional term (the hyper
energy-momentum tensor) from the distortion tensors in general metric-affine gravity theories.

Models Constraint Properties Palatini formalism Metric-affine formalism

I δSG=δΓλ
μνδ

λ
ν ¼ 0 Projective invariant

II (a) T λ
μν ¼ 0 Torsionfree

II (b) Qλ
μν ¼ 0 Metric compatible Einstein equations þτμν

GμνðgÞ ¼ M−2
Pl Tμν

III (a) T λ ¼ 0
III (b) Qλ ¼ 0 T λ

μν ≠ 0 and Qλ
μν ≠ 0 þτμν þ Δτμν

III (c) Wλ ¼ 0 In general þτμν
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operator □

Γ
in a metric-affine curved spacetime. In the

presence of nonmetricity, one can construct two different

second-order covariant derivative operators; ∇Γ μ∇
Γ μ

and

∇Γ μ∇Γ μ with ∇Γ μ

≔ gμν∇Γ ν. As it will be shown the two
actions (3.1) and (3.1), even though equivalent in flat space-
time, differ greatly in metric-affine curved space.
By imposing □

Γ
→ □

∘
in the limit of a flat spacetime, the

d’Alembertian operator in a curved spacetime could be
defined as

□

Γ
¼ α∇Γ μ∇Γ μ þ ð1 − αÞ∇Γ μ∇

Γ μ

; ð3:3Þ

where α labels the difference between the two operators.
Thus we suggest that the action for a scalar field in a

curved spacetime is described as

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕ□

Γ
ϕ − VðϕÞ

�
; ð3:4Þ

which is the covariant version of (3.2).
Since □

Γ
ϕ is described as

□

Γ
ϕ ¼ □ϕþ ½ð1 − αÞgαβκγγβ − αgβγκαβγ�∂αϕ

¼ □ϕ − ðαQλ − 2Wλ þ T λÞ∂λϕ; ð3:5Þ

where □ϕ ≔ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νϕÞ, the variation with

respect to the distortion tensor gives

δSϕ
δκαβγ

¼ −
α

2
gβγϕ∂αϕþ ð1 − αÞ

2
δβαϕ∂γϕ: ð3:6Þ

Now we solve the constraint equation for κλμν in
each model.

1. Model I

First one must note that, in general, metric-affine
gravitational theories are not manifestly projectively invari-
ant. So in order to constrain the theory to “become”
projective invariant, one must impose certain conditions
as will be shown below.
When we perform the projective transformation (2.5), we

find

□

Γ
ϕ → □

Γ
ϕþ ð1 − 2αÞUλ∂λϕ:

Thus by fixing α to the value of α ¼ 1=2, the theory
becomes projective invariant.

Now by solving the constraint equation

M2
Pl

2
ðgβγκ̄σσα þ δβακ̄σ

γσ − κ̄α
βγ − κ̄γα

βÞ

−
1

4
gβγϕ∂αϕþ 1

4
δβαϕ∂γϕ ¼ 0; ð3:7Þ

the connection is obtained as

κ̄αβγ ¼
ϕ

4M2
Pl

ðδαβ∂γϕ − gβγ∂αϕÞ: ð3:8Þ

The torsion and nonmetricity are given by

T λ
μν ¼

ϕ

2M2
Pl

δλ½μ∂ν�ϕ; ð3:9Þ

Qλ
μν ¼ 0; ð3:10Þ

up to gauge freedom. This shows that for a projective
invariant minimally coupled scalar field, there is a gauge
that allows the connection to be metric-compatible while
there is none that cancels out torsion. This is different from
metric-affine fðRÞ theory which is similarly projective
invariant but admits both a metric-compatible gauge and a
torsionfree gauge [29]. Also, note that under projective
transformation one could also obtain Weyl geometry since
nonmetricity changes as

Qβγ
α ⟶

Γ→Γ̃
Q̃α

βγ ¼ 2Uαgβγ ¼ 8Wαgβγ:

For history and recent progress in Weyl geometry see
e.g., [64].
Now we find that the Euler-Lagrangian equation of the

distortion tensor is algebraic and then it does not introduce
new d.o.f., whereas the equations for the metric and scalar
field carry the d.o.f. In such a case, inserting the solution of
the distortion tensor into the actions (2.8) and (3.4), one
could obtain an effective Lagrangian. As a result, we find
the total action Sgϕ ≔ Sg þ Sϕ purely in terms of the metric
and the scalar field as

Sgϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RðgÞ

−
1

2

�
1 −

3ϕ2

8M2
Pl

�
ð∇ϕÞ2 − VðϕÞ

�
: ð3:11Þ

Hence this model can be analyzed as a gravity theory with a
scalar field that has a modified kinetic term in the usual
Riemannian geometry formalism.

2. Models II (a) and (b)

Now we consider the Einstein-Hilbert action and the
same action of the scalar field (3.4), but without imposing
projective symmetry. In Model II(a), we instead impose the
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torsionfree condition T λ
μν ¼ 0. The parameter α is not

fixed because we do not assume projective invariance.
The constraint equation for the connection κλμν is now

M2
Pl

2
½gβγκσσα þ δðβα κγÞσσ − κðβγÞα − κðγαβÞ�

−
α

2
gβγϕ∂αϕþ ð1 − αÞ

2
δðβα ϕ∂γÞϕ ¼ 0: ð3:12Þ

Solving this constraint equation, we find the solution for
the distortion as

καβγ ¼
1

6M2
Pl

½3ðα − 1Þgβγϕ∂αϕþ 2ðαþ 1Þδαðβϕ∂γÞϕ�;

which gives the nonmetricity as

Qλ
μν ¼ 1

3M2
Pl

½ðαþ 1Þgμνϕ∂λϕþ 2ð2α − 1Þδðμλ ϕ∂νÞϕ�:

Inserting this solution into the original action, we again
obtain an effective action written purely in Riemannian
geometry, as

Sgϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RðgÞ − 1

2
fðϕÞð∇ϕÞ2 − VðϕÞ

�
;

ð3:13Þ

with

fðϕÞ ≔ 1þ ð11α2 − 8α − 1Þ
6M2

Pl

ϕ2:

As for Model II(b), we assumeQλ
μν ¼ 0, i.e., the metric-

compatible condition is satisfied a priori. The solutions for
the distortion are given by

καβγ ¼
ϕ

4M2
Pl

ðδαβ∂γϕ − gβγ∂αϕÞ;

which fixes the torsion as

T λ
μν ¼

ϕ

2M2
Pl

δλ½μ∂ν�ϕ:

One may first notice that the distortion of Model II(b) is
the same form as the one from Model I (3.8). However,
the latter admits gauge transformations, while the former
does not.
Furthermore, the equivalent action described in

Riemannian geometry becomes precisely the same as the
previous one (3.8).

3. Models III (a), (b) and (c)

Now just as in the previous section we will consider
constraining the geometry through Lagrange multipliers.
Taking the variation of the Einstein-Hilbert action with

the Lagrange multiplier (2.13) plus the scalar field action
(3.4), we find the constraint equation

gβγκσσα þ δβακγσσ − κβγα − κγα
β þ λμ

δCμ

δκαβγ

þM−2
Pl ½−αgβγϕ∂αϕþ ð1 − αÞδβαϕ∂γϕ� ¼ 0: ð3:14Þ

Contracting the above equation by δγα, we find the Lagrange
multiplier as

λμ ¼
8<
:

ð2α−1Þ
3M2

Pl
ϕ∂μϕ ðModel IIIðaÞÞ

ð2α−1Þ
2M2

Pl
ϕ∂μϕ ðModels IIIðbÞ and ðcÞÞ

:

Interestingly, we find that the results in Models III(a) and
(b) are exactly the same as those in Models II(a) and (b),
respectively. We find the same connections κλμν, and the
equivalent action (3.13) in Riemannian geometry.
On the other hand, as for Model III(c), neither metric-

compatibility nor the torsionfree condition are satisfied.
The connection becomes

καβγ ¼
1

16M2
Pl

½2ð2α − 3Þgβγϕ∂αϕ

þ ð2αþ 3Þδαðβϕ∂γÞϕþ ð6αþ 1Þδα½βϕ∂γ�ϕ�; ð3:15Þ

which gives the torsion and nonmetricity as

T α
βγ ¼

6αþ 1

8M2
Pl

δα½βϕ∂γ�ϕ; ð3:16Þ

Qα
βγ ¼ 2α − 1

8M2
Pl

ð−gβγϕ∂αϕþ 4δðβα ϕ∂γÞϕÞ: ð3:17Þ

The resulting equivalent action in Riemannian geometry is
given by (3.13) with

fðϕÞ ¼ 1þ 3ð12α2 − 12α − 1Þ
32M2

Pl

ϕ2: ð3:18Þ

IV. APPLICATIONS TO INFLATION

A. Chaotic inflation in metric-affine gravity

In the previous section we have shown that the metric-
affine gravity theory with a “canonical” scalar field could
be rewritten to an equivalent Riemann geometrical action
(3.13) with
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fðϕÞ ¼ 1þ BðαÞ ϕ2

M2
Pl

; ð4:1Þ

where BðαÞ is given by

BðαÞ ¼

8>><
>>:

1
6
ð11α2 − 8α− 1Þ Models IIðaÞ and IIIðaÞ

− 3
8

Models I; IIðbÞ; and IIIðbÞ
3
32
ð12α2 − 12α− 1Þ Model IIIðcÞ

Note that BðαÞ ≥ − 9
22

for Models II(a) and III(a) and
BðαÞ ≥ − 3

8
for Model III(c). The function BðαÞ coincides

at a single point for all models at α ¼ 1=2 with Bð1
2
Þ ¼ − 3

8
.

This function BðαÞ solely depends on what geometry is
chosen within the framework of metric-affine geometry.
For the rest of the paper BðαÞ will be retaken as the
parameter of the theories.
The scalar field in the action (3.13) is canonically

normalized by the redefinition of the scalar field as

dΦ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BðαÞ ϕ2

M2
Pl

s
dϕ; ð4:2Þ

which could be integrated as

Φ ¼

8>>><
>>>:

1
2

h
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bϕ2

M2
Pl

q
þ MPl

B1=2 sinh−1
�
B1=2ϕ
MPl

�i
ðB > 0Þ

ϕ ðB ¼ 0Þ
1
2

h
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jBjϕ2

M2
Pl

q
þ MPl

jBj1=2 sin
−1
�
jBj1=2ϕ
MPl

�i
ðB < 0Þ

:

Thus, instead of a modified kinetic term, the action is
simply described by a canonical single field Φ with, as a
consequence, a deformed potential in disguise,

SgΦ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RðgÞ−1

2
∂μΦ∂μΦ−UðΦÞÞ

�
; ð4:3Þ

where UðΦÞ ≔ VðϕðΦÞÞ.
For B ¼ 0, there is no difference from the conventional

Riemannian geometry, while for B < 0, we always find
Φ ≤ ϕ. In particular, ϕ will be constrained as

0 ≤ ϕ ≤
MPlffiffiffiffiffiffijBjp ; ð4:4Þ

to avoid the ghost instability. Therefore, the field value of ϕ
cannot exceed the Planck mass typically in order that
inflationary cosmology succeeds. We found that the cases
ϕ ≪ Mpl=

ffiffiffiffiffiffijBjp
do not introduce new features for infla-

tionary cosmology, so we will not discuss these cases
furthermore.

When B > 0, which only Models II(a), III(a) and III(c)
admit, the redefined scalar field Φ behaves differently
depending on its energy scale, such that

Φ ≈

(
ϕ ðϕ ≪ MPl=

ffiffiffiffi
B

p Þffiffiffi
B

p
2MPl

ϕ2 ðϕ ≫ MPl=
ffiffiffiffi
B

p Þ ;

i.e., when ϕ is small, the difference between the metric-
affine and its purely metric counterpart is relatively tiny,
while the difference becomes significant when ϕ becomes
larger than MPl=

ffiffiffiffi
B

p
. In particular, during inflationary

regime, the field value of ϕ can exceed Mpl in which
the effective potential for the canonical field Φ ∝ ϕ2

becomes flatter which may cause a smaller tensor-to-scalar
ratio than the conventional scenario, B ¼ 0.
The action (4.3) simply consists of a single canonical

scalar field Φ. To discuss an inflationary scenario, we
analyze the amplitude of the scalar perturbations as

Pζ ∼
U

24π2ϵU
; ð4:5Þ

and evaluate the spectral index and tensor-to-scalar
ratio as

ns ∼ 1þ 2ηU − 6ϵU; ð4:6Þ

r ∼ 16ϵU; ð4:7Þ

where the potential slow-roll parameters are defined by

ϵUðΦÞ ¼ M2
Pl

2

�
U;Φ

U

�
2

; ð4:8Þ

ηUðΦÞ ¼ M2
Pl
U;ΦΦ

U
: ð4:9Þ

Now assume the potential is a chaotic inflation
type [65] as

V ¼ 1

2
m2ϕ2;

and evaluate the observational parameters. The modified
potential is described as

U ≈

(
1
2
m2Φ2 ðΦ ≪ MPl=

ffiffiffiffi
B

p Þ
m2MPlffiffiffi

B
p Φ ðΦ ≫ MPl=

ffiffiffiffi
B

p Þ :

If B is very small, since the value of a scalar field is about
the Planck mass at the end of inflation, we find the
conventional chaotic inflation. On the other hand, when
B is around the order of unity, the potential acts as a linear
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potential, which changes the inflationary scenario, and the
observational parameters with it.1

Figure 1 depicts the constraint on the inflaton mass m
and the parameter BðαÞ from the observed amplitude of the
density fluctuation [4]. When the value of BðαÞ is small
enough, we find the conventional chaotic inflationary
model, which inflaton mass is fixed by the observation
as m ∼ 6.45 × 10−6MPl [4], while for BðαÞ ≲ 1, the mass
can be several times larger than the conventional model
(see Fig. 1).
We also show the ns − r diagram in Fig. 2. From Fig. 2,

we find that for a sufficiently small BðαÞ the potential acts
as a chaotic potential, however, when BðαÞ is the order of
unity, r decreases. As a result, the model is not fully
excluded from the current observations. For the upper
bound of r < 0.10, we find the constraint on the
parameter B as BðαÞ≳ 0.034 at N ¼ 50 e-folds. In words
of the parameter α, for the Models II(a) and III(a), we
obtain

α ≳ 0.86 or α≲ −0.13 ½Models IIðaÞ and IIIðaÞ�
α ≳ 1.10 or α≲ −0.10 ½Model IIIðcÞ�:

From the above result, if inflation was indeed caused by a
chaotic inflation and the geometry was written in a metric-

affine framework, one could say that ∇Γ μ∇Γ μ (α ¼ 1) is

observationally favored than ∇Γ μ∇
Γ μ

(α ¼ 0).

B. G-inflation in metric-affine gravity

1. Scalar field with Galileon symmetry

When we extend the kinetic terms of a scalar field, there
exists one interesting approach, which is the so-called
Horndeski scalar-tensor gravity theory, or its extended
version [66–68]. The equation of motion in such theories
consists of up to the second-order derivatives. Among such
theories, the model with Galileon symmetry may be
interesting because it may be found in the decoupling
limit of the DGP (Dvali-Gabadadze-Porrati) brane world
model [69,70] (For reviews see e.g., [71]).
The Galilean symmetry is defined by the transformation

such that

ϕ → ϕþ bμxμ þ c; ð4:10Þ
where bμ and c are some constants.
In flat space, the Galileon symmetry fixes the Lagrangian

of a scalar field as

Lð1;0Þ ¼ ϕ

Lð2;0Þ ¼ ∂μϕ∂μϕ

Lð3;0Þ ¼ ∂μϕ∂μϕ□
∘
ϕ − ∂μϕ∂νϕ∂μ∂νϕ ð4:11Þ

¼ 3

2
∂μϕ∂μϕ□

∘
ϕþ ðsurface termsÞ ð4:12Þ

up to cubic terms. When we covariantize the above terms,
we have two starting points, i.e., (4.11) and (4.12). The

covariantization □

∘
→ □

Γ
contains one parameter α where

PI

×

α

4

FIG. 1. The relation between the inflaton mass m and the
parameter BðαÞ constrained from the observational amplitude of
density fluctuations. The solid and dashed lines correspond to
N ¼ 60 and 50, respectively.

FIG. 2. The ns − r diagram for different values of BðαÞ. The
observational constraint is taken from Planck 2018 [4].

1We have chosen VðϕÞ ∝ ϕ2 to give a concrete observational
constraints. However it could be taken as a general form of, e.g., a
polynomial function VðϕÞ ∝ ϕn. In such case, the resulting
effective potential will become UðΦÞ ∝ Φn

2 in the high energy
region such as an inflationary stage.

METRIC-AFFINE GRAVITY AND INFLATION PHYS. REV. D 99, 104020 (2019)

104020-9



[see Eq. (3.3)], on the other hand in the covariantization of
the second term of (4.11), we have two possibilities;

∇Γ μϕ∇
Γ
νϕ∇

Γ μ∇Γ ν

ϕ and ∇Γ μ

ϕ∇Γ ν

ϕ∇Γ μ∇
Γ
νϕ, which may intro-

duce one more parameter β. Here just for simplicity, we
analyze the first case. The second case gives a similar result
although we find the constraint on two parameters.
We shall analyze the following covariantized action

Sgϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R
Γ ðg;ΓÞ − X −

X
M3

□

Γ
ϕ

�
;

where X ≔ − 1
2
ð∇ϕÞ2 and M is a parameter with mass

dimension. This term is purely Galileon in flat space.
Similar to the calculation in the previous section, the
equivalent action in Riemannian geometry is obtained as

Sgϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RðgÞ−X þ 4BðαÞ

M2
PlM

6
X3 −

X
M3

□ϕ

�
;

ð4:13Þ

where BðαÞ is the same function of α as in the previous
subsection IVA.

2. Emergence of G-inflation

The action (4.13) is similar to the G-inflation action
discussed in [61], where the nonlinear term of X naturally
appears. Note that the third term in our action is propor-
tional to X3 instead of X2 in the example proposed in [61],
it also allows a de Sitter solution as we will show soon.
Assuming the flat Friedmann-Lemaître-Robertson-

Walker spacetime, we find the Friedmann equations and
the equation of motion of the scalar as

0 ¼ −3M2
PlH

2 −
1

2
_ϕ2 þ 3

M3
H _ϕ3 þ 5B

2

_ϕ6

M6M2
Pl

;

0 ¼ M2
Plð3H2 þ 2 _HÞ − 1

2
_ϕ2 þ B

2

_ϕ6

M2
PlM

6
−

1

M3
ϕ̈ _ϕ2;

0 ¼
�
−1þ 3B

_ϕ4

MPlM6

�
ðϕ̈þ 3H _ϕÞ þ 12Bϕ̈

_ϕ4

M2
PlM

6

þ 3

M3
ð _H _ϕ2 þ 2Hϕ̈ _ϕþ3H2 _ϕ2Þ;

where H ¼ _a
a is the Hubble parameter defined by the scale

factor aðtÞ.
In order to discuss an inflationary scenario, we first look

for a de Sitter solution. AssumingH ¼ HdS ¼ constant and
_ϕ ¼ _ϕdS ¼ constant, we find two de-Sitter solutions as

X ¼ XdS� ≔
M3MPlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ 4BÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 16BÞpq ;

H ¼ HdS� ≔
4M3

3ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 16BÞp Þ _ϕdS�

;

where XdS� ¼ _ϕ2
dS�=2.

For the þ branch, B > −3=16 is required, while for the
− branch, we find B > 0 or −3=16 < B < −1=6. Since H
must be positive, we find that _ϕdSþ is always positive while
_ϕdS− > 0 for −3=16 < B < −1=6 and _ϕdS− < 0 for B > 0.
Models I, II (b) and III(b) are ruled out because B ¼ −3=8
in the three models.
In order to study the stability of the de Sitter solution, we

perturbed the present system. The quadratic action of the
scalar perturbationRϕ within the unitary gauge (δϕ ¼ 0) is
obtained in [61,67]. In our case, it becomes as

Sð2Þ� ¼
_ϕ2
dS�

2ðHdS� − _ϕ3
dS�=2M

2
PlM

3Þ2

×
Z

dηd3xa2½GSðR0
ϕÞ2 − FSð∇RϕÞ2�;

where the prime denotes the differentiation with respect to
the conformal time η, and

FS ¼
1

3
−
2ð1þ 2BÞX2

dS�

M2
PlM

6

¼ 8B

3½3þ 14B� ð1þ 2BÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 16BÞp � ;

GS ¼ 1þ 6ð1þ 6BÞX2
dS�

M2
PlM

6

¼ ½3þ 16B� ð1þ 2BÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 16BÞp �

4B
:

If either FS or GS is negative, the de Sitter solution is
unstable. It is the case (FS < 0) when we choose the
− branch (XdS− and HdS− ). While for the þ branch solution
(XdSþ and HdSþ), GS is always positive for B > −3=16 but
FS becomes negative for −3=16 < B < 0. As a result, one
de Sitter solution (XdSþ and HdSþ) is stable only when
B > 0, while the other solution is unstable.
Once we know the solution of de Sitter phase, we can

evaluate the tensor-to-scalar ratio and the amplitude of the
scalar perturbations, which formula is given in [61,67], as

Pζ ∼
B2M3

27π2M3
Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 16Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3þ 16B
p Þ

½2þ 11Bþ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 16BÞp �3

s
;

r ∼
6ð1þ 6BÞ

B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ 6BÞ½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3þ 16BÞp �
3þ 16Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3þ 16BÞp
s

:
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Since the observational upper bound of the tensor-to-
scalar ratio is r < 0.10 [4], the constraint on B becomes
BðαÞ ≳ 1.6 × 104 [see Fig. 3, which corresponds to α ≳
93.7 or α ≲ −92.9 for the Models II(a) and III(a), whereas
α≳ 119.6 or α≲ −118.6 for the Model III(c)].
Furthermore, the mass parameter M is also constrained
from the amplitude of the scalar perturbations and the
constraint of BðαÞ as M ≲ 0.0060MPl.
Due to the shift symmetry of the action, one cannot end

the de Sitter phase within this framework. The remedy, as in
[61], is to introduce some function which breaks the scale
invariance and to flip the sign of the ghost in the second
term of the action. We have confirmed that the flip function
whether polynomial or exponential can end inflation. In
order to find a realistic inflation model, not only the de
Sitter phase must end but also the spectral index ns should
be tilted. Hence we may modify the action of the scalar
field to

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−g1ðϕÞX þ g2ðϕÞ

X
M3

□

Γ
ϕ

�
;

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−g1ðϕÞX þ 4g22ðϕÞB

M2
PlM

6
X3 þ g2ðϕÞ

M3
X□ϕ

�
:

ð4:14Þ

where g1ðϕÞ and g2ðϕÞ are appropriate functions of ϕ,
which break the Galilean symmetry. For example, we may
choose g1ðϕÞ ¼ tanh½λðϕ − ϕendÞ=MPl� to finish an infla-
tionary stage, while g2ðϕÞ ¼ exp½ϵgϕ=MPl� to title the
density perturbations [61]. The parameter ϕend can be
absorbed by redefinition of M. In fact, the action (4.14)
is invariant for the shift transformation ϕ → ϕ̃ ¼ ϕ − ϕend

with the redefinition such that

M → M̃ ¼ exp

�
−
ϵgϕend

3λMPl

�
λM;

g1ðϕÞ → g̃1ðϕ̃Þ ¼ tanh

�
λϕ̃

MPl

�
;

g2ðϕÞ → g̃2ðϕ̃Þ ¼ exp

�
ϵgϕ̃

λMPl

�
:

Since B is not changed, Pζ can be adjusted to the
observational data by tuning the value of ϕend.
As for the spectral index ns, it is highly affected by the

choice of those functions, thus we will not explicitly
analyze it here. We note that we can find an appropriate
function to satisfy the observational data.

V. SUMMARY AND DISCUSSIONS

In this paper, assuming the Einstein-Hilbert action, we
have classified the metric-affine theory of gravitation into
three models (six cases). By separating the distortion tensor
from the connection, one can easily find the distortion
tensor by solving an algebraic equation. Since the con-
nection is nonpropagating, i.e., it does not have new d.o.f.,
substituting the solution of the distortion tensor into the
metric-affine action, we obtain an equivalent effective
action in the Riemannian geometry solely constructed by
the metric, which differs from its counterpart model in
Riemannian geometry.
If matter field does not couple to the connection (Palatini

formalism), the effective action described in Riemannian
geometry is equivalent to GR. While if matter field couples
to the connection, an additional energy-momentum appears
from the coupling in the effective equations. The additional
terms by the distortion tensor are suppressed by the Planck
mass. This Planck mass suppression is a characteristic
feature that appears naturally in these metric-affine gravity
theories, and the additional terms will become important in
a high-energy scale.
We have then applied the formalism into two inflationary

models: the “minimally” coupled model and the G-inflation
type model. Both models are rather simple in the metric-
affine case, and the models are characterized by the
parameter BðαÞ which differs in the six classified cases,
and the structure of the resultant action is all the same. In
any case, the observational parameters are drastically
different from the Riemannian geometry counterpart. A
key feature of minimally coupled models is that the
effective potential becomes flatter than the conventional
scenario in ϕ > Mpl=

ffiffiffiffi
B

p
with B > 0 and then the tensor-

to-scalar ratio becomes smaller. For instance, the chaotic
inflation scenario is not fully excluded by the current
observations in the metric-affine formalism. As for
Galileon models, the metric-affine formalism naturally
yields the X3 term and a stable de Sitter solution, although

r

FIG. 3. The tensor-to-scalar ratio r in terms of BðαÞ in metric-
affine G-inflation.
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the G-inflationary model requires slightly unnatural large
coupling parameters to be consistent with observations.
Here we would like to comment on the extension of the

present formalism. Although we consider only the Einstein-
Hilbert action (the scalar curvature) in this paper, we can
discuss more general action with the Riemann tensor or the
higher-order terms of the curvatures. In that case, we must
note that there are more curvature tensors than the usual
Riemannian case since the Riemann tensor does not satisfy

some (anti)symmetries (e.g., R
Γ

λ
μλν ≠ R

Γ
μ
λ
νλ, R

Γ
λ
λμν ≠ 0).

Nevertheless, we have confirmed that this is drastically
simplified when we assume a projective symmetry on the
theory [49]. The scalar-tensor theory of gravity in metric-
affine geometry with projective invariance becomes
equivalent to the Degenerate-Higher-Order-Scalar-Tensor
(DHOST) theory, which guarantees that there is no
ghost [72–74]. Hence metric-affine geometry could be a
key to understanding ghostfree properties of scalar-tensor
theories.
There are numerous extensions and applications that one

may consider from this work. For example, one may first
note that the properties of “integrating out the connection”
could only be done when the connection does not withhold
new d.o.f. This is not the case of Palatini/metric-affine
higher curvature gravity [30,31,75–77]. When the higher
order terms of the Riemannian curvatures are present,
which may appear in the in quantum corrections, the
connection obtains new d.o.f. The analysis is not simple,
because the theory cannot be described by the effective
action in Riemannian geometry. It is expected that metric-
affine geometry differs greatly from Riemannian geometry.
One may hope that metric-affine geometry will provide us
rich phenomena that the Riemann case does not.
Another interesting issue that one must consider is that in

metric-affine gravity, bosons and fermions react differently
even in the standard model of particles [38,78,79]. This is
due to the fact that the Dirac particles couple to both the
metric and the connection, whereas gauge bosons just
follow the orbit determined only by the metric. This is a key
factor of metric-affine geometry since in principle all matter
behaves alike in Riemannian geometry. More specifically,
geodesics of spin integers and spin halves will be different
[80–82]. One may also expect that fermionic matter with
higher spin, such as the Rarita-Schwinger field [83], are yet
to be formulated in metric-affine gravity and could intro-
duce new phenomenology. This may be able to be verified
by tests of the equivalence principle [1,2]. It would be also
interesting to see if whether there could be imprints of
metric-affine geometry through the CMB(bosons) and the
cosmic neutrino background [CνB] (fermions), if any,
which could lead to verification from future observations
[4,84,85].
Finally, we would also like to mention on further

application to cosmology. Recently, interesting results
appeared from the Palatini approach of Higgs inflation

[56–58]. It would be interesting to extend this to further
cases such as new Higgs inflation [22] and hybrid Higgs
inflation [24]. In addition, since fermions and bosons react
differently in the metric-affine formalism, it is hoped that
the reheating phase would compute different results. This
fact, that fermions and bosons couple differently with the
Higgs, has not been considered in any literature and it is
worth investigating using a concrete model such as above.
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APPENDIX A: METRIC-AFFINE GENERAL
RELATIVITY REWRITTEN WITH TORSION

OR NONMETRICITY

As shown in Sec. II distortion tensor and the Riemann
tensor could be written as

κλμν¼
1

2
ðT λ

μνþT ν
λ
μ−T μν

λþQν
λ
μþQμν

λ−Qλ
μνÞ; ðA1Þ

Rα
βμν

Γ ðΓÞ ¼ Rα
βμνðfgÞ þ∇μκ

α
νβ −∇νκ

α
μβ

þ καμλκ
λ
νβ − κανλκ

λ
μβ: ðA2Þ

In this section, we will write the explicit form of equation of
motions in general relativity, when either the torsionless or
metric-compatiblility is satisfied, with using the torsion
tensor and the non-metricity tensor.

1. Metric-Affine EH

a. Torsionless

For T ¼ 0 and Lg ¼ R
Γ ðg;ΓÞ the Einstein Hilbert could

be rewritten as,

R
Γ ðg;ΓÞ ¼ Rðg; fgÞ þ 1

4
QλμνQλμν −

1

2
QλμνQμλν

þ 2QμWμ − 4WμWμ: ðA3Þ

The equation of motion for the connection could be derived
by taking caution of the symmetry of the connection (the
last two indices are symmetric) as,
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1ffiffiffiffiffiffi−gp δSg
δκαβ0γ0

×
1

2
ðδββ0δγγ0 þ δγβ0δ

β
γ0 Þ

¼ −Qα
βγ þ 2Qαgβγ − 2WðβδγÞα þQðβδγÞα : ðA4Þ

If you take the variation of the action with respect to Q,

1ffiffiffiffiffiffi−gp δSg
δQμ

νλ ¼
1

2
Qμ

νλ −
1

4
QðλνÞμ þ

1

2
gνλQμ

þ 2δμðνWλÞ − 2gνλWμ: ðA5Þ

Notice that there is an equality

1ffiffiffiffiffiffi−gp δSg
δQμ

νλ × ðδβμgγðν þ δγμgβðνÞδλÞα

¼ 1ffiffiffiffiffiffi−gp δSg
δκαβ0γ0

×
1

2
ðδββ0δγγ0 þ δγβ0δ

β
γ0 Þ: ðA6Þ

Since

δQμ
νλ

δκαβ0γ0
1

2
ðδββ0δγγ0 þ δγβ0δ

β
γ0 Þ ¼ δβ

0
μ δ

ðλ
α gνÞγ

0 ðδββ0δγγ0 þ δγβ0δ
β
γ0 Þ

¼ ðδβμgγðν þ δγμgβðνÞδλÞα ;

this should also hold for the matter sector with its hyper
energy-momentum tensor as,

δSM
δQμ

νλ × ðδβμgγðν þ δγμgβðνÞδλÞα ¼ δSM
δκαβ0γ0

:

The equation for the metric is

1ffiffiffiffiffiffi−gp δSg
δgμν

¼R
Γ
ðμνÞðΓÞ−

1

2
gμνR

Γ ðg;ΓÞ

¼Gμνðg;fgÞþ2gμνQλQλ−gμνWμQμ

þ2WαQðμνÞα−WαQαμνþ
1

4
gμνQαβγQβαγ

−
1

8
gμνQαβγQαβγ þ

1

2
Qαβ

μQαβν−
1

2
Qαβ

μQβαν

−
1

4
QμαβQν

αβ: ðA7Þ

b. Metric compatible

For Q ¼ 0, the following holds as,

R
Γ ðg;ΓÞ ¼ Rðg; fgÞ − T μT μ þ

1

4
T λμνT λμν þ 1

2
T λμνT μλν:

ðA8Þ

The EoM for the connection could be derived by taking
caution of the symmetry of the connection (the last first and
third indices are antisymmetric) as,

1ffiffiffiffiffiffi−gp δSg
δκα

0
βγ0

×
1

2
ðδα0α δγγ0 − gαγ0gα

0γÞ ¼ T βγ
α − gβγT α þ δβαT γ:

ðA9Þ

If you take the action with respect to the torsion,

1ffiffiffiffiffiffi−gp δSg
δT λ

μν
¼ T λ

μν − T ½μν�
λ þ δ½μλ T

ν�; ðA10Þ

Now since,

1ffiffiffiffiffiffi−gp δSg
δT λ

μν
× δβ½μðδγν�δλα − gν�αgλγÞ

¼ 1ffiffiffiffiffiffi−gp δSg
δκα

0
βγ0

×
1

2
ðδα0α δγγ0 − gαγ0gα

0γÞ: ðA11Þ

The equation for the metric is

1ffiffiffiffiffiffi−gp δSg
δgμν

¼ R
Γ
ðμνÞðΓÞ −

1

2
gμνR

Γ ðg;ΓÞ

¼ Gμνðg; fgÞ þ
1

2
gμνT αT α þ

1

2
T λT ðμνÞλ

−
1

8
gμνT αβγT αβγ −

1

4
gμνT αβγT βαγ

−
1

4
T αβðμT νÞαβ þ

1

4
T μαβT ν

αβ: ðA12Þ

APPENDIX B: AN EXTENDED D’ALEMBERTIAN
AND THE CONSTRAINTS FROM THE

OBSERVATIONAL DATA FOR INFLATION

Here we consider an extended version of d’Alembertian
(3.5), which is

□

Γ
ϕ ≔ □ϕþ ðαQQλ þ αWWλ þ αT T λÞ∂λϕ; ðB1Þ

where T μ ¼ Tλ
μλ;Wμ ¼ 1

4
Qλ

μλ;Qμ ¼ Qλ
λμ. With the choice

of αQ ¼ −α; αW ¼ 2; αT ¼ −1 the d’Alembertian reduces
to (3.5). We assume a canonical scalar field which action is
given by (3.4), and then present the Riemann effective
action

Sgϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RðgÞ

−
1

2

�
1þ BðαIÞ

M2
Pl

ϕ2

�
ð∇ϕÞ2 − VðϕÞ

�
; ðB2Þ

in each model discussed in Sec. III. Based on this reduction,
we show the constraints on the parameters αI (I ¼ Q,W,
and T) from the observational data for inflation. Note that
in the further calculations, all of the coefficients αI can be
also arbitrary functions of ϕ and X as αIðϕ; XÞ, however,
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just for simplicity, the analysis would be done assuming αI
as a constant. Furthermore, this could be considered as a
scalar-tensor theory minimally coupled to the connection.
A similar action was considered in the context of classi-
fication of torsionless metric-affine scalar-tensor theories
through the transformation of the metric and the connection
in [86,87].

1. Model I (projective invariant model)

The projective transformation (2.5) gives

□

Γ
ϕ→□

Γ̃
ϕ ¼ □ϕþ αT ðT μ þ 3UμÞ∂μϕ

þ αWðWμ þ 2UμÞ∂μϕþ αQðQμ þ 2UμÞ∂μϕ

¼ □

Γ
ϕþ ½3αT þ 2ðαW þ αQÞ�Uμ∂μϕ:

Hence, in order for the theory to have projective invariance,
one must impose the condition of 3αT þ 2ðαW þ αQÞ ¼ 0.
Furthermore we find the following solution:

κ̄αβγ¼
ϕ

4M2
Pl

½ð3αT þαWÞgβγ∂αϕþðαT þαWÞδαβ∂γϕ�; ðB3Þ

T λ
μν ¼

αT þ αW
4M2

Pl

ϕδλ½μ∂ν�ϕ; ðB4Þ

Qλ
μν ¼ 2αT þ αW

M2
Pl

ϕδðμλ ∂νÞϕ; ðB5Þ

up to gauge freedom. As a result, the Riemann equivalent
action becomes (B2) with

BðαIÞ ¼ −
1

8
ð27α2T þ 11α2W þ 34αT αW

þ 20αWαQ þ 40αT αQÞ: ðB6Þ

2. Model II

a. Model II(a) (Torsionfree model)

Assuming T μ
νρ ¼ 0 (and thus αT ¼ 0), we find

καβγ¼−
ϕ

12M2
Pl

½3ðαWþ2αQÞgβγ∂αϕ−2ðαW−2αQÞδαðβ∂γÞϕ�;

ðB7Þ

Qλ
μν ¼ ϕ

6M2
Pl

½ðαW − 2αQÞgμν∂λϕ − 2ðαW þ 4αQÞδðμλ ∂νÞϕ�:

ðB8Þ
The Riemann equivalent action becomes (B2) with

BðαIÞ ¼ −
α2W − 16αWαQ − 44α2Q

24
: ðB9Þ

b. Model II(b) (Metric-compatible model)

Assuming Q ¼ 0 (αW ¼ αQ ¼ 0), we find

καβγ ¼
αT
4M2

Pl

ϕðgβγ∂αϕ − δαβ∂γϕÞ; ðB10Þ

T α
βγ ¼ −

αT
2M2

Pl

ϕδα½β∂γ�ϕ: ðB11Þ

The Riemann equivalent action becomes (B2) with

BðαIÞ ¼ −
3

8
α2T : ðB12Þ

3. Model III (constraint with a Lagrange multiplier)

In the Model III, the Lagrange multiplier λμ is introduced
to fix the gauge freedom. We find the following solutions
for each model.

a. Model III(a) (T μ = 0; αT = 0)

The solution is

καβγ ¼ −
ϕ

12M2
Pl

½3ðαW þ 2αQÞgβγ∂αϕ

− 2ðαW − 2αQÞδαðβ∂γÞϕ�;
T α

βγ ¼ 0;

Qλ
μν ¼ ϕ

6M2
Pl

½ðαW − 2αQÞgμν∂λϕ − 2ðαW þ 4αQÞδðμλ ∂νÞϕ�;

with

λμ ¼ λμT ≡ −
2

3M2
Pl

ðαW þ αQÞϕ∂μϕ:

The Riemann equivalent action becomes (B2) with

BðαIÞ ¼ −
α2W − 16αWαQ − 44α2Q

24
: ðB13Þ

b. Model III(b) (Qμ = 0; αQ = 0)

The solution is

καβγ ¼
3CT þ CW

4M2
Pl

ϕgβγ∂αϕþ αT þ αW
4M2

Pl

ϕδαβϕ∂γ

−
5ðαT þ 2αWÞ

4M2
Pl

ϕδαγϕ∂β;

T α
βγ ¼

11αT þ 6αW
8M2

Pl

ϕδα½β∂γ�ϕ;

Qα
βγ ¼ −

2αT þ αW
2M2

Pl

ϕð5gβγ∂αϕ − 2δðβα ∂γÞϕÞ;

SHIMADA, AOKI, and MAEDA PHYS. REV. D 99, 104020 (2019)

104020-14



with

λμ ¼ λμW ≡ −
1

2M2
Pl

ð3αT þ 2αWÞϕ∂μϕ:

The Riemann equivalent action becomes (B2) with

BðαIÞ ¼
3

8
ð11α2T þ 12αT αW þ 3α2WÞ:

c. Model III(c) (Wμ = 0; αW = 0)

The solution is

καβγ ¼
3αT − 2αQ

8M2
Pl

ϕgβγ∂αϕ −
αT þ 2αQ
8M2

Pl

ϕδαβϕ∂γ

−
αT − 2αQ
16M2

Pl

ϕδαγϕ∂β;

T α
βγ ¼ −

αT þ 6αQ
8M2

Pl

ϕδα½β∂γ�ϕ;

Qα
βγ ¼ −

αT − 2αQ
8M2

Pl

ϕðgβγ∂αϕ − 4δðβα ∂γÞϕÞ;

with

λμ ¼ λμQ ≡ −
1

M2
Pl

ð3αT − 2αQÞϕ∂μϕ:

The Riemann equivalent action becomes (B2) with

BðαIÞ ¼ −
3

32
ðα2T þ 12αT αQ − 12α2QÞ:

4. Relation between the three models

We find one interesting result, which is some relation
between the three models I, II, and III.
In Model I, since the theory is invariant under the

projective transformation, we can eliminate one of the
three connection terms using the gauge freedom. For
example, when we choose Uμ ¼ −T μ=3, the connection
term of T μ disappears. Then only two parameters αQ and
αW remain in the extended d’ Alembertian (B1). Similarly
when we choose Uμ ¼ −Wμ=2 and Uμ ¼ −Qμ=2, we find
two parameters αT ; αQ and αT ; αW in (B1), respectively.
The solution for each case becomes

κ̄αβγ ¼

8>>><
>>>:

ϕ
12M2

Pl
½−3ðαW þ2αQÞgβγ∂αϕþðαW −2αQÞδαβ∂γϕ�

ϕ
8M2

Pl
½ð3αT −2αQÞgβγ∂αϕ− ðαT þ2αQÞδαβ∂γϕ�

ϕ
4M2

Pl
½ð3αT þαWÞgβγ∂αϕþðαT þαWÞδαβ∂γϕ�

;

with the gauge function Uμ as

Uμ ¼

8>>><
>>>:

αW−2αQ
12M2

Pl
ϕ∂μϕ

− αT −2αQ
16M2

Pl
ϕ∂μϕ

− 5ð2αT þαWÞ
4M2

Pl
ϕ∂μϕ

:

The parameter BðαIÞ becomes

BðαIÞ ¼

8>><
>>:

− 1
24
ðα2W − 16αWαQ − 44α2QÞ

− 3
32
ðα2T þ 12αT αQ − 12α2QÞ

3
8
ð11α2T þ 12αT αW þ 3α2WÞ

;

which are obtained from (B6) by eliminating one
parameter by use of the projective invariance condition
3αT þ 2ðαW þ αQÞ ¼ 0.
When we compare the above results with those in

Models II or III, we find that Models III (a), (b) and
(c) correspond to the above three values in Model I (B14),
respectively. We also find that Model II (a) is the same as
the first case in Model I (B14). As for Model II (b), it
cannot be obtained fromModel I with an appropriate gauge
choice except for some special case of the parameters. Only
the case of αW ¼ −2αT and αQ ¼ 1

2
αT , which satisfies the

projective invariance condition, we find the same result for
Model II (b) and Model I.
Although the effective action in Model III is the same as

that in the Model I with gauge fixing, the Model III has no
projective invariance in general. If we impose the projective
invariant condition for three parameters in Model III, we
expect that it is a subclass of the Model I with the
corresponding gauge fixing.

5. Observational constraints on the parameters αI

In this final section, we consider the observational
constraints on the parameters in the extended

FIG. 4. Constraints on αW and αQ in Model I with two
parameters (αW , αQ), and Model II(a) and Model III(a). The
shaded region is consistent with the observational data for the
tensor-scalar ratio r.
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d’Alembertian for the chaotic potential VðϕÞ ¼ 1
2
m2ϕ2.

From the observational constraints on the tensor-mass ratio
r, we find BðαIÞ ≳ 0.034. The projective invariant Model I
consists of three parameters, which must satisfy the
projective condition 3αT þ 2ðαW þ αQÞ ¼ 0. By projecting
the observational constraints on BðαIÞ with (B6) onto two-
parameter plane, we find the allowed regions for two
parameters shown in Figs. 4–6.

Models III(a), III(b) and III(c) give the same function
BðαIÞ as those in Model I with specific gauges (T μ ¼ 0),
(Qμ ¼ 0) and (Wμ ¼ 0), respectively. As a result, the
constraints on the two parameters are given by Figs. 4, 5
and 6, respectively. Model II(a) is the same as Model III(a),
which constraints on two parameters are shown in
Fig. 4. Model II(b) is observationally excluded because
of BðαIÞ < 0.
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