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A new class of analytic charged spherically symmetric black hole solutions, which behave
asymptotically as flat or (anti-)de Sitter spacetimes, is derived for specific classes of fðRÞ gravity,

i.e., fðRÞ ¼ R − 2α
ffiffiffiffi
R

p
and fðRÞ ¼ R − 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 8Λ

p
, where Λ is the cosmological constant. These

black holes are characterized by the dimensional parameter α that makes solutions deviate from the
standard solutions of general relativity. The Kretschmann scalar and squared Ricci tensor are shown to
depend on the parameter α, which is not allowed to be zero. Thermodynamical quantities, like entropy,
Hawking temperature, quasilocal energy, and the Gibbs free energy are calculated. From these
calculations, it is possible to put a constraint on the dimensional parameter α to have 0 < α < 0.5 so
that all thermodynamical quantities have a physical meaning. The interesting result of these
calculations is the possibility of a negative black hole entropy. Furthermore, present calculations
show that for negative energy particles inside a black hole,behave as if they have a negative entropy.
This fact gives rise to instability for fRR < 0. Finally, we study the linear metric perturbations of the
derived black hole solution. We show that for the odd-type modes our black hole is always stable and
has a radial speed with fixed value equal to 1. We also use the geodesic deviation to derive further
stability conditions.

DOI: 10.1103/PhysRevD.99.104018

I. INTRODUCTION

Challenging problems ranging from quantum gravity to
dark energy (DE) and dark matter (DM) give support to
searching for other gravitational theories beyond the
standard Einstein general relativity (GR). Actually, GR
has many unsolved issues like singularities, the nature of
DE and DM, etc. All these issues encourage scientists to
modify GR or extend it in view of addressing shortcomings
at UV and IR scales [1]. In other words, viable modified/
extended theories should be compatible with the current
experimental constraints and should give motivations on
issues in quantum gravity and cosmology. Thus, it is
straightforward to directly extend GR, considering it as a

limit of a more general theory of gravitation.1 Among the
possible extensions of GR, the so-called fðRÞ gravity
generalizes the Einstein-Hilbert action by substituting the
Ricci scalar R by an analytic differentiable function.
The fundamental reasons for this approach come out of
the formulation of any quantum field theory on curved
spacetime [3]. fðRÞ gravity has some important applica-
tions, like the Starobinsky model, fðRÞ ¼ Rþ αR2, α > 0,
which is successful in explaining inflationary behavior of
early Universe [4–6]. Furthermore, fðRÞ gravity is capable
of explaining the observed cosmic acceleration without
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1In modified gravity, it is not necessary to recover GR,
however, an equivalent form like the teleparallel equivalent of
general relativity can be recovered. Extended gravity means that
in a given limit, or for a given choice, GR is recovered. For a
discussion, see Ref. [2].
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assuming the cosmological constant. Possible toy models
have the form fðRÞ ¼ R − β

Rn, where β and n have positive
values [7–9]. Nevertheless, this model suffers from insta-
bility problems because of the second derivative of the
function f that has a negative value, i.e., fRR < 0 [10–18].
Lately, this problem has been tackled [19] and cosmologi-
cal stable models have been achieved using some limi-
tations on the parameter space. There are many viable
cosmological models constructed using fðRÞ [20,21].
Finally, fðRÞ models give interesting results for structure
formation, as the modification of the spectra of galaxy
clustering, cosmic microwave background, weak lensing,
etc., [22–30]. There are many applications of fðRÞ from the
astrophysical point of view [31–38]; for general reviews of
fðRÞ gravity, see Refs. [1,39–41].
From the viewpoint of mathematically, modified/

extended gravity poses the issue to establish or modified
well-known facts of GR like the stability of solutions,
initial value problem, and problem of deriving new black
hole solutions [42–46]. As is well known, in addition to the
cosmological solutions, there exist axially symmetric as
well as spherical ones that could have a main role in several
astrophysical problems spanning from black hole solutions
to galactic nuclei. Modified gravitational theories must
include black hole solutions like Schwarzschild in order to
be compatible with GR results and, in principle, must give
new black hole solutions that might have physical interest.
Accordingly to this fact, the way to find out exact or
approximate black hole solutions is highly important to
investigate if observations can be matched to modified/
extended gravity [47,48].
In the framework of fðRÞ gravity, there is specific

interest for spherically symmetric black hole solutions.
They have been derived using the constant Ricci scalar
[49]. Moreover, spherically symmetric black hole solu-
tions, including perfect fluid matter, have been analyzed
[50]. Additionally, by using the method of Noether sym-
metry, many spherically symmetric black holes have been
derived [50]. Hollenstein and Lobo [51] derived exact
solutions of static spherically symmetric spacetimes in
fðRÞ coupled to nonlinear electrodynamics. For the
readers interested in the static black holes, we refer to
Refs. [52–87], and the references therein. Using the
Lagrangian multiplier, new analytic solutions with the
dynamical Ricci scalar have been derived [88]. It is
the purpose of the present study, by using the field equation
of fðRÞ, to generalize these black hole solutions [88] and
derive new charged black hole solutions with a dynamical
Ricci scalar asymptotically converging towards flat or
(anti-)de Sitter [(A)dS] spacetimes.
Gravitational stability of a black hole solution is con-

sidered a main problem for checking the adequateness of
any black hole solutions [89,90]. However, the stability
analysis appears to be not directly applicable to fðRÞ black
hole solutions because it involves fourth-order derivative
terms in the linearized equations [91,92]. In that case, it is

necessary that the black holes are free from tachyon and
ghost instabilities that would come into the game as soon as
one is considering fðRÞ gravity [93]. Therefore, one may
transform fðRÞ gravity into the corresponding scalar-tensor
theory to remove the fourth-order derivative terms [94]. It
was suggested that the stability of black hole solutions does
not rely on the frame due to the fact that it is a classical
solution that is considered as the ground state [95]. It is well
known that a nonminimally coupled scalar makes the
linearized GR field equations around the black hole very
intricate when compared to a minimally coupled scalar in
the context of GR [96]. Because of this intricacy, some
people have used conformal transformations to find the
corresponding theory in the Einstein frame where a
minimally coupled scalar appears. Taking into account
these difficulties, several perturbation studies on the black
holes in different modified gravitational theories have been
developed. See, e.g., Refs. [93,97–100].
The paper is organized as follows. In Sec. II, a summary

of Maxwell-fðRÞ gravity is provided. In Sec. III, a spheri-
cally symmetric ansatz is applied to the field equation of
Maxwell-fðRÞ theory, and an exact solution is derived. In
Sec. IV, the same spherically symmetric ansatz is applied to
the field equation of Maxwell-fðRÞ theory that includes a
cosmological constant. Solving the resulting differential
equations, we derive a new black hole solution that behaves
as (A)dS. In Sec. V, the characteristic properties of these
black holes are analyzed. In Sec. VII C, thermodynamical
quantities like entropy, quasilocal energy, Hawking temper-
ature, and Gibbs energy are calculated. We show that the
entropy of the derived black hole solutions is not propor-
tional to the horizon area and show some regions of the
parameter space where the entropy becomes negative. The
main reason for this result is due to the parameter α related
to the higher-order correction. In Sec. VII, we study the
linear stability using the odd perturbations to the black
holes derived in Secs. III and IV. Furthermore, in Sec. VII,
we derive the stability conditions considering the geodesic
motion. In Sec. VIII, we discuss the main results of the
present study and draw conclusions.

II. MAXWELL–f ðRÞ GRAVITY

The theory of gravity that will be considered in this work
is the fðRÞ gravity, which was first taken into account in
Ref. [101]. See also Refs. [1,7–9,102]:

S ≔ Sg þ SE:M:; ð1Þ
where Sg is the gravitational action given by

Sg ≔
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðfðRÞ − ΛÞ; ð2Þ

where Λ represents the cosmological constant, R is the
Ricci scalar, κ is the gravitational constant, g is the
determinant of the metric, and fðRÞ is an analytic differ-
entiable function. In this study, SE:M: is the action of the
nonlinear electrodynamics field, which takes the form
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SE:M: ≔ −
1

2
F2s; ð3Þ

where s ≥ 1 is an arbitrary parameter that is equal to 1 for
the standard Maxwell theory and F2 ¼ FμνFμν, where
Fμν ¼ 2A½μ;ν� with Aμ being the gauge potential 1-form
and the comma denotes the ordinary differentiation2 [82].
The field equations of fðRÞ gravitational theory

can be obtained by carrying out the variations of the action
given by Eq. (1) with respect to the metric tensor gμν and
the strength tensor F that yield the form of the field
equations [103,104]

Iμν ¼ RμνfR −
1

2
gμνfðRÞ − 2gμνΛþ gμν□fR

−∇μ∇νfR − 8πTμν ≡ 0; ð4Þ
∂νð

ffiffiffiffiffiffi
−g

p
FμνFs−1Þ ¼ 0; ð5Þ

with Rμν being the Ricci tensor defined by

Rμν ¼ Rρ
μρν ¼ 2Γρ

μ½ν;ρ� þ 2Γρ
β½ρΓβ

ν�μ;

where Γρ
μν is the Christoffel symbols of second kind. The

d’Alembert operator □ is defined as □ ¼ ∇α∇α, where
∇αVβ is the covariant derivatives of the vector Vβ and
fR ¼ dfðRÞ

dR . In this study Tμν is defined as

Tμν ≔
1

4π

�
sgρσFνρFμσFs−1 −

1

4
gμνF2s

�
; ð6Þ

which is the energy-momentum tensor of the nonlinear
electrodynamic field. When s ¼ 1, we get the standard
energy-momentum tensor of Maxwell field.
The trace of Eq. (4) is

RfR − 2fðRÞ − 8Λþ 3□fR ¼ T;

where T ¼ FsðsF − FsÞ: ð7Þ
It is worth noticing that, for s ¼ 1, it is T ¼ 0. This
property means that the Maxwell field is conformally
invariant. In the following, we are going to assume some
form of the field equations (4) without and with a
cosmological constant to derive exact solutions that asymp-
totically behave as flat or (A)dS spacetimes.

III. EXACT CHARGED BLACK
HOLE SOLUTION

Let us derive a charged black hole solution adopting the
model fðRÞ ¼ R − 2α

ffiffiffiffi
R

p
. To this aim, we are going to use

the spherically symmetric ansatz3

ds2 ¼ BðrÞdt2 − dr2

BðrÞ − r2dΩ2; ð8Þ

where dΩ2 ¼ dθ2 þ sin2θ is the line element on the unit
sphere. The Ricci scalar of the metric (8) has the form

R ¼ 2 − r2B00 − 4rB0 − 2B
r2

: ð9Þ
Applying the ansatz (8) to Eqs. (4), (5), and (7), after using
(9) and putting the parameter s ¼ 1, we get the non-
vanishing field equations4

Itt ¼
1

2r10
ffiffiffiffiffiffi
R9

p fr6
ffiffiffiffiffiffi
R7

p
½r4BB0000 þ B000ð1=2r4B0 þ 6r3BÞ þ 2r2B00ðBþ rB0Þ − r2B02 þ 2B0ðr − 3rBÞ þ 4BðB − 1Þ�

þ r4
ffiffiffiffiffiffi
R5

p
½4r2B02 þ r6RBB0000 − r6BB0002 þ 1=2r3B000fr2B00ðrB0 − 4BÞ þ 2B0ð29rB − rÞ þ 40BðB − 1Þg

þ 2r4B002ðr2q00 − 6Bþ 2rB0 − 1Þ þ r2B00 × ½23r2B02 þ 2rB0ð23Bþ 8r2q02 − 13Þ þ 8ðB − 1Þð6Bþ r2q02 − 1Þ�
þ 28r3B03 þ B02ð34r2Bþ 32r4q02 − 54r2Þ þ 4rB0ðB − 1Þ × ð7Bþ r2q02 − 9Þ þ 8ðB − 1Þ2½r2q02 − 1��
þ r4R2½B

ffiffiffiffi
R

p
½4r2B00 þ r3B000 − 2rB0 þ 4ð1 − BÞ�2 þ αfr6RBB0000 − 3=2r6BB0002 þ 1=2r3B000½r2B00ðrB0 − 12BÞ

þ 4r2B02 þ 2B0ð31rB − rÞ þ 48BðB − 1Þ� − r6B003 − 100r3B03 þ 2r2B02½96B − 85� þ B002ð8r4 − 12r5B0 − 30r4BÞ
þ r2B00½57r2B02 þ 14rB0½3B − 5� þ 20þ 4Bð4 − 3BÞ� − 4rB0ðB − 1Þ½27B − 23� − 16ðB − 1Þ2ð2B − 1Þg�g ¼ 0;

2The square brackets represent the antisymmetrization, i.e., A½μ;ν� ¼ 1
2
ðAμ;ν − Aν;μÞ, and the symmetric one is represented by

Aðμ;νÞ ¼ 1
2
ðAμ;ν þ Aν;μÞ.

3The reason to take the ansatz (8) is to be able to find an exact solution. Other forms make the field equations very complicated and
not easy to solve.

4Here and through all this study, B≡ BðrÞ, B0 ¼ dBðrÞ
dr , B00 ¼ d2BðrÞ

dr2 , etc. Also, in this application, we put Λ ¼ 0.
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Irr ¼ −
1

4r8
ffiffiffiffiffiffi
R7

p fr4
ffiffiffiffiffiffi
R5

p
½ðrB0 þ 4BÞ½4ð1 − BÞ − 2rB0 þ r2ð4B00 þ rB000Þ�

− ðr3B000½rB0 þ 4B� þ 4r2B00½5Bþ r2q02 þ 2rB0 − 1� þ 14r2B02 þ B0½16r3q02 þ 12rB − 20r�
þ 8ðB − 1Þ½r2q02 − B − 1�Þ� − αr4R2ðr3B000½4Bþ rB0� − 2r4B002 þ B00½4r2ðBþ 3Þ − 16r3B0� − 50r2B02

þ 4rB0ð15 − 17BÞ − 16½2B − 1�½B − 1�Þg ¼ 0;

Iθθ ¼ Iϕϕ ¼ −1
2r10

ffiffiffiffiffiffi
R9

p fr6
ffiffiffiffiffiffi
R7

p
½r4BB0000 þ r3B000ðrB0 þ 5BÞ þ 2r2B00ð2rB0 − BÞ þ 2rB0ð2 − 3BÞ − 2r2B02 þ 8BðB − 1Þ�

− r5
ffiffiffiffiffiffi
R5

p
½r5BRB0000 − r5BB0002 þ r2B000fr2B00ðrB0 − 3BÞ þ 4r2B02 þ 2rB0ð13B − 2Þ þ 18BðB − 1Þg

þ r5B003 − 2r3B002ðr2q02 þ 2 − 7rB0 þ 7BÞ þ 2rB00ð23r2B02 − rB0½14þ 8r2q02 − 17B�
þ 2ðB − 1Þ½1 − 10Bþ 2r2q02�Þ þ 24r2B03 − 4rB02ð3þ 8r2q02Þ þ 4B0ðB − 1Þð3B − r2q02Þ − 8rq02ðB − 1Þ2�
þ r4R2½

ffiffiffiffi
R

p
ðB½ðB − 1Þ − r3B000 − 4r2B00 þ 2rB0�2Þ þ αðr6BB0000Rþ 3=2r6BB0002 − r3B000½r2B00frB0 − 7Bg

þ 4r2B02 þ 2rB0½14B − 1� þ 22BðB − 1Þ� þ 2r6B003 þ 2r4B002½18Bþ 9rB0 − 5�
þ 2r2B00½33r2B02 þ rB0ð27B − 34Þ − 2ð9B2 − 5B − 4Þ� þ 104r3B03 þ 2r2B02ð74 − 81BÞ þ 4rB0ðB − 1Þð15B − 16Þ
− 8f1 − 2B3 − 4Bþ 5B2gÞ�g ¼ 0;

I ¼ −3
2r10

ffiffiffiffiffiffi
R9

p fr6
ffiffiffiffiffiffi
R7

p
½r4BB0000 þ r3B000ðrB0 þ 6BÞ þ 2r2B00ðBþ 2rB0Þ − 2r2B02 þ 4rB0ð1 − 2BÞ þ 4BðB − 1Þ�

þ r4
ffiffiffiffiffiffi
R5

p
½r6RBB0000 þ r6BB0002 − r3B000fr2B00½rB0 − 2B� þ 4r2B02 þ 2rB0ð15B − 1Þ þ 20BðB − 1Þg þ 2=3r6B003

þ 2r4B002ð6rB0 − 5B − 2Þ þ 2r2B00f23r2B02 þ 2rB0ð14B − 9Þ þ 4ð6B2 − 7Bþ 1Þg
þ 104=3r3B03 þ 4r2B02ð6B − 11Þ þ 8rB0ðB − 1Þð2B − 3Þ − 8=3ðB3 − 2Þ þ 8B�
− r4R2½B

ffiffiffiffi
R

p
ð4þ r3B000 − 4Bþ 4r2B00 − 2rB0Þ2 − αðr6RBB0000 þ 3=2r6BB0002

− r3B000fr2B00ðrB0 − 6BÞ þ 4r2B02 þ 2rB0ð16B − 1Þ þ 24BðB − 1Þg þ 2r6B003 þ 2r4B002f10rB0 þ 17B − 6g
þ 2r2B00f41r2B02 þ 2rB0ð16B − 23Þ þ 4ð3 − 4B2 þ BÞg þ 136r3B03 − 2r2B02ð106 − 117BÞ
þ 8rB0ðB − 1Þð15B − 13Þ þ 16ð2B − 1ÞðB − 1Þ2Þ�g ¼ 0; ð10Þ

where q is the gauge potential, which is defined as

A ≔ qðrÞdt: ð11Þ

If we subtract Itt from Irr and solve the system Itt − Irr and
Iθθ, which is a closed system for the two unknown
functions BðrÞ and qðrÞ, we get the following exact
solution:

BðrÞ ¼ 1

2
−

1

3αr
þ 1

3αr2
; A ¼ 1ffiffiffiffiffiffi

3α
p

r
: ð12Þ

The analytic solution (12) satisfies the system of differ-
ential equations (10) including the trace equation I. Using
Eq. (9), we get the Ricci scalar in the form

R ¼ 1

r2
; ð13Þ

which is also a consistency check for the whole procedure.
The metric of the above solution takes the form

ds2 ¼
�
1

2
−

1

3αr
þ 1

3αr2

�
dt2 −

�
1

2
−

1

3αr
þ 1

3αr2

�
−1
dr2

− r2dΩ2; ð14Þ
which asymptotically behaves as a flat spacetime. We have
to stress the fact that solution (12) is different from that
obtained in Ref. [88] due to the fact that the authors of
that reference derived their solution using the form
fðRÞ ¼ Rþ α

ffiffiffiffi
R

p
. Therefore, our solution is identical with

theirs when we neglect the term 1
3αr2, which is responsible

for the electric charge, and reverse the negative sign to be
positive to satisfy the field equation of fðRÞ ¼ Rþ α

ffiffiffiffi
R

p
.

We must stress the fact that the dimensional parameter α
must take a positive value so that solution (12) satisfies the
field equations (4), (5), and (7).
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IV. EXACT (A)dS CHARGED BLACK HOLE SOLUTION

Let us now derive a charged (A)dS black hole solution for the model fðRÞ ¼ R − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 8Λ

p
.5 Applying the

anzatz (8) to the field Eqs. (4), (5), and (7), after using (9) and putting s ¼ 1, we get the following nonvanishing field
equations:

Itt ¼
1

2r10
ffiffiffiffiffi
R

p
9
fr6

ffiffiffiffiffiffi
R7

p
½r4BB0000 þB000ð1=2r4B0 þ6r3BÞþ2r2B00ðBþ rB0Þ− r2B02þ2rB0ð1−3BÞþ4BðB−1Þ�

þ r4
ffiffiffiffiffiffi
R5

p
½4r2B02þ r6RBB0000− r6BB2000 þ1=2r3B000fr2B00ðrB0−4BÞþ2B0ð29rB− rþ4r2ΛÞþ8Bð5Bþ12r2Λ−5Þg

þ4r4B002ðr2q00 þ2r2Λ−6Bþ2rB0−1Þþ2r2B00½23r2B02þ2rB0ð23Bþ8r2q02−13þ40r2ΛÞþ8r2q02ðB−1þ4r2ΛÞ
þ48B2þ8Bð8r2Λ−7Þþ16r2Λð4r2Λ−3Þþ8�þ28r3B03þ r2B02ð34Bþ32r2q02þ184r2Λ−54Þ
þ4rB0ðB−1þ4r2ΛÞð7Bþ8r2q02−9þ24r2ΛÞþ8r2q02ðB−1þ4r2ΛÞ2þ8B2½14r2Λ−1�
þ16Bð16r4Λ2−12r2Λþ1Þþ8ð2r2Λ−1Þð4r2Λ−1Þ2�þ r4R2½B

ffiffiffiffiffi
R

p
½4r2B00 þ r3B000−2rB0 þ4ð1−BÞ�2

þαfr6RBB0000−3=2r6BB0002þ1=2r3B000½r2B00ðrB0−12BÞþ4r2B02þ2rB0ð31B−1þ4rΛÞþ48BðB−1þ2r2ΛÞ�
− r6B003−100r3B03þ2r2B02½96B−85þ324r2Λ�þ2r4B002ð4−6rB0−15rBþ16r2ΛÞ
þ r2B00½57r2B02þ2rB0½21B−35þ68r2Λ�þ4Bð4−3B−4r2ΛÞþ ð4r2Λ−1Þ2�−4rB0½27B2þ4Bð47r2Λ−50Þ−23

−4r2Λð88r2Λ−45Þ�−16½ðB−1Þ2ð2B−1Þþ2B2r2Λþ5Br2Λð3r2Λ−11Þþð4r2Λ−1Þ3�g�g¼ 0;

Irr ¼−
1

4r8
ffiffiffiffiffiffi
R7

p fr4
ffiffiffiffiffiffi
R5

p
½ðrB0 þ4BÞ½4ð1−BÞ−2rB0 þ r2ð4B00 þ rB000Þ�− ðr3B000½rB0 þ4B�þ4r2B00½5Bþ r2q02þ2rB0−1

þ2r2Λ�þ14r2B02þ rB0½16r2q02þ12B−20þ64r2Λ�þ8ðB−1þ8r2ΛÞr2q02þ8þ64r4Λ2−8B2−48r2Λð1þBÞÞ�
−αr4R2ðr3B000½4Bþ rB0�−2r4B002þ r2B00½4ðBþ3Þþ48r2Λ−16rB0�−50r2B02þ4rB0ð15−17B− r2ΛÞ
−16½2B−1�½B−1�þ32r2Λð4Bþ8r2Λþ1ÞÞg¼ 0;

Iθθ ¼ Iϕϕ ¼
−1

2r10
ffiffiffiffiffiffi
R9

p fr6
ffiffiffiffiffiffi
R7

p
½r4BB0000 þ r3B000ðrB0 þ5BÞþ2r2B00ð2rB0−BÞþ2rB0ð2−3BÞ−2r2B02þ8BðB−1Þ�

− r5
ffiffiffiffiffiffi
R5

p
½r5BRB0000− r5BB0002þ r2B000fr2B00ðrB0−3BÞþ4r2B02þ2rB0ð13B−1þ2r2ΛÞþ2Bð9B−9þ20r2ΛÞg

þ r5B003−2r3B002ðr2q02þ2−7rB0 þ7B−10r2ΛÞ�þ2rB00ð23r2B02− rB0½14þ8r2q02−17B−80r2Λ�
þ4ðB−1−4r2ΛÞr2q02−B½10Bþ8r2Λ−11�þ4r2Λ½3þ8r2Λ�þ1Þþ24r2B03−4rB02ð3þ8r2q02−44r2ΛÞ
þ4B0½ðB−1þ4r2ΛÞr2q02þB½3B−3þ20r2Λ�þ24r2Λ½4r2Λ−1�− r½q02ðB−1þ4r2ΛÞ−2Bð5Bþ4r2Λ−3Þ
þ4ðr2Λ−1Þ2��þ r4R2½

ffiffiffiffiffi
R

p
B½B−1− r3B000−4r2B00 þ2rB0�2þαðr6RBB0000 þ3=2r6BB0002− r3B000½r2B00frB0−7Bg

þ4r2B02þ2rB0½14B−1þ4r2Λ�þ2Bð11B−11þ20r2ΛÞ�þ2r6B003þ2r4B002½18Bþ9rB0−5þ24r2Λ�
þ2r2B00½33r2B02þ rB0ð27B−34þ160r2ΛÞ−2ð9B2−5B−4Þ− r2Λf88Bþ192r2Λþ80g�þ104r3B03

þ2r2B02ð74−81Bþ328r2ΛÞþ rB0½15B2−31Bþ156Br2Λþ352r4Λ2þ16−152r2Λ�
−8f1−2B3−8r2Λ−4Bþ5B2−90r4Λ2þ24r2Λgþð8r2Λ−1Þð4r2Λ−1Þ2Þ�g ¼ 0;

5We define R ¼ R − 8Λ.
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I ¼ −3
2r10

ffiffiffiffiffiffi
R9

p fr6
ffiffiffiffiffiffi
R7

p
½r4BB0000 þ r3B000ðrB0 þ 6BÞ þ 2r2B00ðBþ 2rB0Þ − 2r2B02 þ 4rB0ð1 − 2BÞ þ 4BðB − 1Þ�

þ r4
ffiffiffiffiffiffi
R5

p
½r6RBB0000 þ r6BB0002 − r3B000fr2B00½rB0 − 2B� þ 4r2B02 þ 2rB0ð15B − 1þ 4r2ΛÞ þ 4Bð5B − 5þ 12r2ΛÞg

þ 2=3r6B003 þ 2r4B002ð6rB0 − 5B − 2þ 8r2ΛÞ þ 2r2B00f23r2B02 þ 2rB0ð14B − 9þ 40r2ΛÞ þ 4Bð6B − 7þ 10r2ΛÞ
þ ð4r2Λ − 1Þ2g þ 104=3r3B03 þ 4r2B02ð6B − 11þ 60r2ΛÞ þ 8rB0ðB − 1þ 4r2ΛÞð2B − 3þ 16r2ΛÞ − 8=3B3 þ 8B

þ 96B2r2Λþ 32r2BΛ½8r2Λ − 5� þ 64=3ð4r2Λ − 1Þ3� − r4R2½B
ffiffiffiffiffi
R

p
ð4þ r3B000 − 4Bþ 4r2B00 − 2rB0Þ2

− αðr6RBB0000 þ 3=2r6BB0002 − r3B000fr2B00ðrB0 − 6BÞ þ 4r2B02 þ 2rB0ð16B − 1þ 4r2ΛÞ þ 24BðB − 1þ 2r2ΛÞg
þ 2r6B003 þ 2r4B002f10rB0 þ 17B − 6þ 80=3r2Λg þ 2r2B00f41r2B02 þ 2rB0ð16B − 23þ 296=3r2ΛÞ
þ 4ð3 − 4B2 þ Bþ 176=3r2ΛÞ þ 16=3r2Λðr2Λ − 20Þg þ 136r3B03 − 2r2B02ð106 − 117B − 1304=3r2ΛÞ
þ 8rB0ð15B2 þ B½344=3r2Λ − 84� þ r2Λ=3½704r2Λ − 332� þ 13Þ þ 32B3 þ 16B2½34=3r2Λ − 5�
þ 32B½2 − 37=3r2Λþ 88=3r4Λ2� þ 16ð4r2Λ − 1Þ2 × ð16r2Λ − 3ÞÞ�g ¼ 0: ð15Þ

If we subtract the component Itt from the component Irr

and solve the system Itt − Irr and Iθθ, which is a closed
system for the two unknown functions BðrÞ and qðrÞ, we
get the exact solution

BðrÞ ¼ 1

2
−
2r2Λ
3

−
1

3αr
þ 1

3αr2
; A ¼ 1ffiffiffiffiffiffi

3α
p

r
: ð16Þ

Using Eq. (16) in (9), we get the Ricci scalar in the form

R ¼ 8r2Λþ 1

r2
: ð17Þ

The metric of the above solution takes the form

ds2 ¼
�
1

2
−
2r2Λ
3

−
1

3αr
þ 1

3αr2

�
dt2

−
�
1

2
−
2r2Λ
3

−
1

3αr
þ 1

3αr2

�−1
dr2 − r2dΩ2; ð18Þ

which behaves asymptotically as (A)dS spacetime.
Solution (16) is different from that derived in Ref. [88]
for the reason discussed for solution (12). The same
constraint put on the parameter α in the noncharged case
is also true here.

V. PHYSICAL PROPERTIES
OF THE BLACK HOLES

The metric of solution (12) can be rewritten in the form

ds2¼
�
1

2
−
2M
r

þq2

r2

�
dt2−

�
1

2
−
2M
r

þq2

r2

�−1
dr2− r2dΩ2;

whereM¼ 1

6α
; q¼ 1ffiffiffiffiffiffi

3α
p ; ð19Þ

which shows clearly that the dimensional parameter α
cannot be equal to zero, and in that case, the line element
coincides with the Reissner-Nordström spacetime. Also,
the metric of solution (16) may be rewritten as

ds2 ¼
�
1

2
−
2r2Λ
3

−
2M
r

þ q2

r2

�
dt2

−
�
1

2
−
2r2Λ
3

−
2M
r

þ q2

r2

�−1
dr2 − r2dΩ2;

where; again M ¼ 1

6α
and q ¼ 1ffiffiffiffiffiffi

3α
p ; ð20Þ

which shows that the line element coincides with the (A)dS
Reissner-Nordström spacetime. Equations (19) and (20)
show in a clear way that the dimensional parameter α must
not equal zero.
Let us now study the regularity of solutions (12) and (16)

when BðrÞ ¼ 0. For solution (12), we evaluate the scalar
invariants and get

RμνλρRμνλρ ¼
56þ 9r4α2 þ 12αr3 þ 12r2½αþ 1� þ 48r

9α2r8
;

RμνRμν ¼
9r4α2 − 12αr2 þ 8

18α2r8
; R ¼ 1

r2
; ð21Þ

where RμνλρRμνλρ, RμνRμν, and R are the Kretschmann
scalars, the Ricci tensor square, the Ricci scalar, respec-
tively. Equations (21) show that the solutions, at r ¼ 0,
have true singularities and the dimensional parameter
α ≠ 0. Also, Eq. (12) as well as Eq. (14) show clearly
that the dimensional parameter α cannot be equal to zero,
which ensures that solution (12) cannot reduce to GR. This
means that this solution is a new exact charged one in the
frame of fðRÞ gravitational theory.
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Using Eq. (16) we get the scalar invariants in the form

RμνλρRμνλρ ¼
96r8Λ2α2 þ 24r6Λα2 þ 9r4α2 þ 12αr3 þ 12r2½αþ 1� þ 48rþ 56

9α2r8
;

RμνRμν ¼
288r8Λ2α2 þ 72r6Λα2 þ 9α2r4 − 12αr2 þ 8

18α2r8
; R ¼ 8r2Λþ 1

r2
: ð22Þ

The same considerations carried out for solution (12) can
also be applied for solution (16) which insure also that
solution (16) is a novel charged one in the framework of
fðRÞ gravity that cannot reduce to GR.

VI. BLACK HOLE THERMODYNAMICS

Now, we are going to explore the thermodynamics of the
new black hole solutions derived in the previous sections.
The Hawking temperature is defined as [105–108]

Tþ ¼ B0ðrþÞ
4π

; ð23Þ

where the event horizon is located at r ¼ rþ, which is the
largest positive root of BðrþÞ ¼ 0 that fulfills B0ðrþÞ ≠ 0.
The Bekenstein-Hawking entropy in the framework of
fðRÞ gravity is given as [105–110]

SðrþÞ ¼
1

4
AfRðrþÞ; ð24Þ

where A is the area of the event horizon. The form of the
quasilocal energy in the framework of fðRÞ gravity is
defined as [105–110]

EðrþÞ ¼
1

4

Z
½2fRðrþÞ

þ rþ2ffðRðrþÞÞ − RðrþÞfRðrþÞg�drþ: ð25Þ
At the horizon, one has the constraint BðrþÞ ¼ 0, which

gives

rþEq:ð12Þ ¼
1

3α

h
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p i

;

r−Eq:ð12Þ ¼
1

3α

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6α

p i

rþEq:ð16Þ ¼ Rootð4x4αΛ − 3αx2 þ 2xþ 2Þ; ð26Þ

where Rootð4x4αΛ − 3αx2 þ 2xþ 2Þ is the roots of the
equation (4x4αΛ − 3αx2 þ 2xþ 2 ¼ 0). It is clear from the
first equation of Eqs. (26) that α should not be equal to zero
to ensure that the black hole (12) has no analogy with GR.
Moreover, Eqs. (26) tell us that the dimensional parameter
α should be positive so that the horizons have a positive real
value. Therefore, we must put on the restriction α > 0;
otherwise, we get a nonreal value for the horizon. This
constraint is consistent with the relation given by Eqs. (19)

and (20), which allows the mass parameter to have the
correct sign in the metric, and the charge parameter has a
real value. Moreover, if the parameter α takes a negative
value, the solutions (12) and (16) do not satisfy the field
equations (4), (5), and (7).
The relation between the radial coordinate r and the

dimensional parameter α of the black hole (12) is repre-
sented in Fig. 1. From this figure, we can see the root of
BðrÞ defining the black hole outer event horizon rþ [111].
We can continue the study of thermodynamics assuming
α > 0 according to the pervious analysis and taking into
account the outer event horizon rþ only, which is consistent
with α > 0.
Using Eq. (24), the entropies of the black holes (12) and

(16) are computed as

SþEq:ð12Þ ¼
π

27α2

h
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p i

2
h
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6α

p i
;

SþEq:ð16Þ ¼
πrþ2

4
½1 − αrþ�: ð27Þ

The first equation of Eq. (27) shows that, in order to have a
positive entropy, the dimensional parameter αmust take the
value 0 < α < 0.5. The second equation of (27) tells us that

FIG. 1. Schematic plot of the radial coordinate r vs the
dimensional parameter α that characterizes the spherically sym-
metric black hole [12].
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we must have α < 1
rþ

for positive entropy. Equations (27)

are drawn in Fig. 2. As one can see, from Fig. 2(a), for
0.5 > α > 0, the black hole (12) has þve entropy. For the
black hole6 (16), as Fig. 2(b) shows, we have a phase
transition at 2.738612788, and then the entropy has a −ve
value for 0 < α < 2.738612788, and it evolves to þve at
r ¼ 2.187. The following remarks must be taken into
account. It is remarkable that the entropy S is not propor-
tional to the area of the horizon due to Eq. (24). We should
also note that the entropy S is proportional to the area if
there is no Ricci scalar squared term, i.e., fR ¼ 1. The
Hawking temperatures associated with the black hole
solutions (12) and (16) are

TþEq:ð12Þ ¼
3αð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p þ 6αÞ

4πð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6α

p Þ3 ;

TþEq:ð16Þ ¼
rþ − 4αΛrþ4 þ 2

12παrþ3
; ð28Þ

where Tþ is the Hawking temperature at the event
horizon. We represent the Hawking temperature in
Fig. 3. Figure 3(a), which is related to the black hole
(12), shows that we have a positive temperature when the
parameter α has the value 0 < α < 0.5. Figure 3(b) is
related to the black hole (16). Here, the temperature always
has a þve value. From Eq. (25), the quasilocal energies of
the two black holes (12) and (16) are calculated as

EþEq:ð12Þ ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p

− 3α

12α
;

EþEq:ð16Þ ¼
rþ
8
ð4 − 3αrþ þ 4Λαrþ3Þ: ð29Þ

The first equation of (29) shows that the dimensional
parameter has to be α ≠ 0. We plot the energy in Fig. 4,
which shows that for Fig. 4(a) the quasilocal energy has a
þve value when 0 < α < 0.5. In the other case, we have a
negative value for the quasilocal energy until rþ ¼ 1, and
then the energy becomes positive as Fig. 4(b) shows.
The free energy in the grand canonical ensemble, also

called Gibbs free energy, can be defined as [110,112]

GðrþÞ ¼ EðrþÞ − TðrþÞSðrþÞ; ð30Þ

where EðrþÞ, TðrþÞ, and SðrþÞ are the quasilocal energy,
the temperature, and entropy at the event horizons, respec-
tively. Using Eqs. (24), (26), (27), and (29) in (30), we get

GþEq:ð12Þ ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p

− 3α

12α

−
αrþ2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p þ 6αÞð2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6α
p Þ

4ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6α

p Þ3 ;

GþEq:ð16Þ ¼
rþð4 − 3αrþ 4Λαrþ3Þ

8

−
ðr − 4Λαr3 þ 2Þð1 − αrÞ

48αrþ
: ð31Þ

The behaviors of the Gibbs energy of our black holes
are presented in Figs. 5(a) and 5(b) for particular

(a) The entropy of the black hole solution (12) (b) The entropy of the black hole solution (16)

FIG. 2. Schematic plot of the entropy of the two black holes (12) and (16) vs the dimensional parameter α and rþ respectively.

6We substitute the value of α in terms of Λ using Eq. (16)
throughout this section.
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values of the model parameters. As Fig. 5(a) shows,
for the black hole solution (12), the Gibbs energy is
positive when 0 < α < 0.5, which means that it is
more globally stable. For the black hole solution (16),
the Gibbs energy has a phase transition. It has a
negative value when r < 2.73 and a positive one when
2.73 < r.

VII. STABILITY OF CHARGED BLACK HOLE
SOLUTIONS IN f ðRÞ GRAVITY

To study the stability of the above black hole solutions, it
is better recast fðRÞ gravity in terms of the corresponding
scalar- tensor theory. Discarding the cosmological term, the
Lagrangian (2) can be rewritten as

(a) The Hawking temperature of the black hole solution (12) (b) The Hawking temperature of the black hole solution (16)

FIG. 3. Schematic plot of the Hawking temperature of the two black holes (12) and (16) vs the dimensional parameter α and rþ,
respectively.

(a) The quasilocal energy of the black hole solution (12) (b) The quasilocal energy of the black hole solution (16)

FIG. 4. Schematic plot of the quasilocal energy of the black holes (12) and (16) vs the dimensional parameter α and rþ, respectively.
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S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕR − VðϕÞ�; ð32Þ

where ϕ is a scalar field coupled to the Ricci scalar R and
VðϕÞ is the potential (see Ref. [1] for details). Here, we will
discuss the behavior of the perturbations about a static
spherically symmetric vacuum background, the metric of
which is written as above, that is,

ds2 ¼ g0μνdxμdxν

¼ BðrÞdt2 − dr2

BðrÞ − r2ðdθ2 þ sin2θdϕ2Þ; ð33Þ

where g0μν is the background metric. Considering the above
black hole solutions, we want to investigate whether these
backgrounds are stable or not against linear perturbations
and what we can learn in terms of speed of propagation for
the scalar gravitational modes. For such a theory, the
background equations of motion read

V ¼ −
4Bϕ0

r
−
2ϕB0

r
− ϕ0B0 þ 2ϕ

r2
−
2Bϕ
r2

;

ϕ00 ¼ 0; R ¼ dV
dϕ

; ð34Þ

where 0 stands for differentiation with respect to r.

A. Outline of the Regge-Wheeler-Zerilli formalism

Before studying the metric perturbation of static spheri-
cally symmetric spacetime of fðRÞ gravity, let us give a
brief summary of the formalism developed by Regge and
Wheeler [113] and Zerilli [114] to decompose the metric

perturbations according to their transformation pro-
perties under two-dimensional rotations. Although
Regge, Wheeler, and Zerilli considered the perturbations
of the Schwarzschild spacetime in GR, the formalism
depends on the properties of spherical symmetry and then
can be applied to fðRÞ gravity as well.
Let us denote the metric slightly perturbed from a static

spherically symmetric spacetime by gμν ¼ g0μν þ hμν, where
hμν represents infinitesimal quantities. In the lowest, linear
approximation, the perturbations are supposed to be very
small with respect to the background, that is, g0μν ≫ hμν.
Then, under two-dimensional rotations on a sphere, htt, htr,
and hrr transform as scalars; hta and hra transform as
vectors; and hab transforms as a tensor (a, b are either θ or
ϕ). Any scalar quantity Φ can be expressed in terms of the
spherical harmonics Ylmðθ;ϕÞ:

Φðt; r; θ;ϕÞ ¼
X
l;m

Φlmðt; rÞYlmðθ;φÞ: ð35Þ

In the spherically symmetric spacetimes, the solution will
be independent of the index m; therefore, this subscript can
be omitted, and we take into account only the index l,
which represents the multipole number, which arises from
the separation of angular variables by the expansion into
spherical harmonics,

Δθ;ϕYlðθ;ϕÞ ¼ −lðlþ 1ÞYlðθ;ϕÞ; ð36Þ

exactly in the same way as it happens for the hydrogen
atom problem in quantummechanics when dealing with the
Schrödinger equation. Any vector Va can be decomposed
into a divergence part and a divergence-free part as

(a) The free energy of the black hole solution (12) (b) The free energy of the black hole solution (16)

FIG. 5. Schematic plot of the free energy of the black holes (12) and (16) vs the dimensional parameter α and rþ, respectively.
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Vaðt; r; θ;ϕÞ ¼ ∇aΦ1 þ Eb
a∇bΦ2; ð37Þ

where Φ1 and Φ2 are two scalars and Eab ≡ ffiffiffiffiffiffiffiffiffi
det γ

p
ϵab,

with γab being the two-dimensional metric on the sphere
and ϵab being the totally antisymmetric symbol with
ϵθφ ¼ 1. Here, ∇a represents the covariant derivative with
respect to the metric γab. Since Va is a two-component
vector, it is completely specified by the quantities Φ1 and
Φ2. Then, we can apply the scalar decomposition (35) toΦ1

and Φ2 to decompose the vector quantity Va into spherical
harmonics.
Finally, any symmetric tensor Tab can be decomposed as

Tabðt; r; θ;ϕÞ ¼ ∇a∇bΨ1 þ γabΨ2

þ 1

2
ðEa

c∇c∇bΨ3 þ Eb
c∇c∇aΨ3Þ; ð38Þ

where Ψ1, Ψ2, and Ψ3 are scalars. Since Tab has three
independent components, Ψ1, Ψ2, and Ψ3 completely
specify Tab. Then, we can again apply the scalar decom-
position (35) to Ψ1, Ψ2, and Ψ3 to decompose the tensor
quantity Tab into spherical harmonics. We refer to the
variables accompanied by Eab by odd-type variables and
the others by even-type variables. What makes these
decompositions useful is that, in the linearized equations
of motion (or equivalently, in the second-order action) for
hμν, odd-type and even-type perturbations are completely
decoupled. This fact reflects the invariance of the back-
ground spacetime under parity transformations. Therefore,
one can study odd-type perturbations and even-type ones
separately, as we will do in the following.

B. Perturbations in f ðRÞ gravity
1. Odd modes

It is well known that there are two classes of vector
spherical harmonics (polar and axial), which are built out of
combinations of the Levi-Civita volume form and the
gradient operator acting on the scalar spherical harmonics.
The difference between the two families is their parity.
Under the parity transformation, the operator π a spherical
harmonic with index l transforms as ð−1Þl, the polar class
of perturbations transform under parity in the same way, as
ð−1Þl and the axial perturbations as ð−1Þlþ1.
Using the Regge-Wheeler formalism, the odd-type

metric perturbations can be written as

htt ¼ 0; htr ¼ 0; hrr ¼ 0; ð39Þ

hta ¼
X
l;m

h0;lmðt; rÞEab∂bYlmðθ;φÞ; ð40Þ

hra ¼
X
l;m

h1;lmðt; rÞEab∂bYlmðθ;φÞ; ð41Þ

hab ¼
1

2

X
l;m

h2;lmðt; rÞ½Ea
c∇c∇bYlmðθ;φÞ

þ Eb
c∇c∇aYlmðθ;φÞ�: ð42Þ

Using the gauge transformation xμ → xμ þ ξμ, where ξμ are
infinitesimal, we can show that not all the metric perturba-
tions are physical and some of them can be set to vanish.
For the odd-type perturbation, we can consider the gauge
transformation

ξt ¼ ξr ¼ 0; ξa ¼
X
lm

Λlmðt; rÞEa
b∇bYlm; ð43Þ

where Λlm can always set h2;lm to vanish (Regge-Wheeler
gauge). By this procedure, Λlm is completely fixed, and
there are no remaining gauge degrees of freedom. Then,
after substituting the metric into the action (32) and
performing integrations by parts, we find that the action
for the odd modes becomes

Sodd ¼
1

2κ

X
l;m

Z
dt drLodd

¼ 1

4κ

X
l;m

Z
dt drj2

�
ϕð _h1 − h00Þ2 þ

4h0 _h1ϕ
r

þ h20
r2

�
2rϕ0 þ 2ϕþ ðj2 − 2Þϕ

B

�
−
ðj2 − 2ÞBϕh21

r2

�
;

ð44Þ

where we neglect the suffix l for the fields and
j2 ¼ lðlþ 1Þ. Variation of (44) with respect to h0 yields

½ϕðh00 − _h1Þ�0 ¼
1

r2

�
rϕ0 þ j2ϕþ ðj2 − 2Þϕ

2B

�
h0

þ 2ϕ _h1
r

; ð45Þ

which cannot be solved for h0. Let us now rewrite the above
action as

Lodd ¼
j2ϕ
2

�
_h1 − h00 þ

2h0
r

�
2

−
j2ðϕþ rϕ0Þh02

r2

þ 2j2h20
r2

�
rϕ0 þ ϕþ ðj2 − 2Þϕ

2B

�
−
j2ðj2 − 2ÞBϕh21

2r2

ð46Þ

so that all the terms containing _h1 are inside the first
squared term. Using a Lagrange multiplier Q, we can
rewrite Eq. (46) as follows:
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Lodd ¼
j2ϕ
2

�
2Q

�
_h1 − h00 þ

2h0
r

�
−Q2

�
−
j2ðϕþ rϕ0Þh02

r2

þ 2j2h20
r2

�
rϕ0 þ ϕþ ðj2 − 2Þϕ

2B

�
−
j2ðj2 − 2ÞBϕh21

2r2
:

ð47Þ

Equation (47) shows that both fields h0 and h1 can be
integrated out by using their own equations of motion,
which can be written as

h1 ¼ −
r2 _Q

ðj2 − 2ÞB ; ð48Þ

h0 ¼
r

ϕðj2 − 2Þ ½ðϕþ rϕ0ÞQþ rϕQ0�: ð49Þ

These relations link the physical modes h0 and h1 to the
auxiliary fieldQ. OnceQ is known, then also h0 and h1 are.
After substituting these expressions into the Lagrangian
and performing an integration by parts for the term
proportional to Q0Q, one finds the Lagrangian in the
canonical form

Lodd ¼
j2r2ϕ

2ðj2 − 2ÞB
_Q2 −

j2Bϕr2

2ðj2 − 2ÞQ
02 − μ1

2Q2; ð50Þ

where

μ1
2 ¼ j2½j2ϕ2 − Br2ϕϕ″ þ 2Bϕ2 − r2ϕϕ0B0 þ r2Bϕ02 − 2ϕ2 − 2rϕ2B0�

2ϕðj2 − 2Þ : ð51Þ

From Eq. (50), we can derive the no-ghost conditions

j2 ≥ 2; and B ≥ 0:

For solutions proportional to eiðωt−krÞ with large k and ω,
we have the radial dispersion relation

ω2 ¼ B2k2;

where we made use of the background equations of motion.
Finally, the expression for the radial speed reads

c2odd ¼
�
dr�
dτ

�
2

¼ 1;

where we used the radial tortoise coordinate (dr2� ¼ dr2=B)
and the proper time (dτ2 ¼ Bdt2).

C. Black hole stability: Geodesic

The trajectories of a test particle in a gravitational field
are described by the geodesic equations

d2xσ

dλ2
þ
n σ

μν

o dxμ

dλ
dxν

dλ
¼ 0; ð52Þ

where λ is an affine parameter along the geodesic. The
geodesic deviation takes the form [115]

d2ξσ

dλ2
þ 2

n σ

μν

o dxμ

dλ
dξν

ds
þ
n σ

μν

o
;ρ

dxμ

dλ
dxν

dλ
ξρ ¼ 0; ð53Þ

with ξρ being the deviation 4-vector. Applying (52) and
(53) into (8), we get for the geodesic equations

d2t
dλ2

¼ 0;
1

2
B0ðrÞ

�
dt
dλ

�
2

− r

�
dϕ
dλ

�
2

¼ 0;

d2θ
dλ2

¼ 0;
d2ϕ
dλ2

¼ 0; ð54Þ

and for the geodesic deviation,

d2ξ1

dλ2
þ BðrÞB0ðrÞ dt

dλ
dξ0

dλ
− 2rBðrÞ dϕ

dλ
dξ3

dλ

þ
�
1

2
ðB02ðrÞ þ BðrÞB00ðrÞÞ

�
dt
dλ

�
2

− ðBðrÞ þ rB0ðrÞÞ
�
dϕ
dλ

�
2
�
ξ1 ¼ 0;

d2ξ0

dλ2
þ B0ðrÞ

BðrÞ
dt
dλ

dζ1

dλ
¼ 0;

d2ξ2

dλ2
þ
�
dϕ
dλ

�
2

ξ2 ¼ 0;

d2ξ3

dλ2
þ 2

r
dϕ
dλ

dξ1

dλ
¼ 0; ð55Þ

where BðrÞ is defined by the metric (19) or (20),

B0ðrÞ ¼ dBðrÞ
dr . Using the circular orbit

θ ¼ π

2
;

dθ
dλ

¼ 0;
dr
dλ

¼ 0; ð56Þ

we get

�
dϕ
dλ

�
2

¼ B0ðrÞ
rð2BðrÞ − rB0ðrÞÞ ;�

dt
dλ

�
2

¼ 2

2BðrÞ − rB0ðrÞ : ð57Þ
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Equations (55) can be rewritten as

d2ξ1

dϕ2
þBðrÞB0ðrÞ dt

dϕ
dξ0

dϕ
−2rBðrÞdξ

3

dϕ

þ
�
1

2
ðη02ðrÞþηðrÞη00ðrÞÞ

�
dt
dϕ

�
2

−ðηðrÞþrη0ðrÞÞ
�
ζ1¼0;

d2ξ2

dϕ2
þξ2¼0;

d2ξ0

dϕ2
þB0ðrÞ
BðrÞ

dt
dϕ

dξ1

dϕ
¼0;

d2ξ3

dϕ2
þ2

r
dξ1

dϕ
¼0: ð58Þ

The second equation of (58) shows that it is a simple
harmonic motion, which means that the motion in the plan
θ ¼ π=2 is stable. Now, the solutions of the remaining
equations of (58) are given by

ξ0 ¼ ζ1eiσϕ; ξ1 ¼ ζ2eiσϕ; and ξ3 ¼ ζ3eiσϕ; ð59Þ
where ζ1, ζ2, and ζ3 are constants, and the variable ϕ has to
be determined. Substituting (59) in (58), we get

3BB0 − ω2B0 − 2rB02 þ rBB00

B0 > 0; ð60Þ

which is the stability condition for any charged static
spherically symmetric spacetime. The condition (60) for
the black holes (19) and (20) can be rewritten as

rþ 2q2

5M
> 0; rþ 12M> 0; and 1þ 4r3Λ

31M
> 0; ð61Þ

which are the stability conditions according to the values of
the parameters Λ, M, and q.

VIII. DISCUSSION AND CONCLUSIONS

Spherically symmetric spacetimes constitute an essential
part of black hole physics because all the fundamental
properties of the black holes can be explained and can
further be used to recognize and hence generalize in any
eligible more general scenario [116]. In this paper, we have
discussed two main issues. In the first part, we focused on a
spherically symmetric spacetime in the framework of fðRÞ
gravitational theories. We derived new black hole charged
solutions for the specific forms fðRÞ ¼ R − 2α

ffiffiffiffi
R

p
and

fðRÞ ¼ R − 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 8Λ

p
. The main merits of these black

holes are the facts that they depend on the dimensional
parameter α and have dynamical Ricci scalar; i.e.,R ¼ 1

r2 for

the first model of fðRÞ and R ¼ 8r2Λþ1
r2 for the second one.

These solutions are new and cannot reduce to the standard
solutions of GR due to the fact that the parameter α is not
allowed to have a zero value. We calculated the scalar
invariance of those black holes and found that the
Kretschmann and Ricci tensor square invariants depend
on the dimensional parameter α. All of the invariants show
true singularity at r ¼ 0. In the second part, we studied the

thermodynamical properties of these black holes to extract
more physical information from them. The first important
thing in fðRÞ gravity is the fact that entropy is not always
proportional to the area of the horizon [117–119]. We
showed that, for some constraint on the parameter
0 < α < 0.5, we have a positive value of the entropy.
However, for the black hole solution (16), there is a region
in which the entropy has a negative value [117–120]. This is
not the first time that a black hole with negative entropy has
been found. Several black holes with negative entropy have
been found as well in charged Gauss-Bonnet (A)dS gravity
[117–119]. As our calculations show, negative entropy may
be interpreted as a region where the parameter α has
transitions into forbidden regions related to some phase
transition. The complete understanding of gravitational
entropy of a nontrivial solution in the framework of fðRÞ
gravitational theories remains the subject of future research.
We also calculated the thermodynamical quasilocal

energy and showed that it has a positive value when
0 < α < 0.5. Moreover, we calculated the Hawking tem-
perature and have shown that it also depends on the
parameter α. Also, we showed that the Hawking temper-
ature always has a positive value when 0.5 > α > 0 for the
black holes (12) and (16). In fact, this is the case presented
in Fig. 3(a) for the α > 0 regime. As for the black hole (16),
the Hawking temprature always shows a positive value as
Fig. 3(b). Finally, we calculated the Gibb’s free energy and
showed that our black hole (12) is globally stable when
0 < α < 0.5. However, the black hole (16) is not globally
stable when r < 2.73 and becomes stable when r > 2.73.
The main reason that makes this black is unstable comes
from the contribution of entropy, which has a negative
value in the region r < 2.73, as Fig. 2(b) shows. The results
obtained here, together with other results in the literature,
seem to indicate that the thermodynamical origin of fðRÞ
gravitational theories, when horizons are present, has a
broad of validation. To confirm this statement, we need to
know more about the novel black holes derived in this
paper. This will be done in future studies.
Finally, we have studied the linear perturbations around

the static spherically symmetric charged spacetime derived
in fðRÞ gravity. Because fðRÞ gravity is a fourth-order
theory, we have rewritten its Lagrangian as a Ricci scalar
coupled with a scalar field to make the study of perturbation
more easy to deal with. We have derived the gradient
instability condition for our black holes using the odd-type
modes. Furthermore, we have calculated the radial propa-
gation speed and showed that it is equal 1. To make the
picture more complete, we have derived the stability
conditions using also the geodesic deviation for the black
holes. These conditions are different with respect to the
charged black hole of GR, the Reissner-Nordström space-
time. This difference is due to the fact that the charged
black hole derived in this study is a solution in the context
of fðRÞ only and cannot be reduced to GR.
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