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I study type II critical collapse in the spherically symmetric gravitating magnetic monopole system.
This is an Einstein-Yang-Mills-Higgs system with two matter fields: a field parametrizing the scalar field
gauged under SUð2Þ and a field parametrizing the gauge field. This system offers interesting differences
compared to what is commonly found for type II collapse in other systems. For example, instead of the
critical solution sitting between collapse and complete dispersal of the matter fields, on the nonblack hole
side of the critical solution, the matter fields settle down to a static and stable configuration. More
interesting, however, is that I find strong evidence for the existence of two critical solutions, each with their
own set of scaling and echoing exponents, which I determine numerically.
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I. INTRODUCTION

Critical gravitational phenomena was first discovered by
Choptuik [1] in the form known as type II. In type II,
a spacetime evolves such that it eventually leads to the
formation of a black hole or does not. For example,
consider regular initial data, parametrized by a single
parameter, p, such that for p > p� the spacetime dynami-
cally evolves from the initial data to a spacetime containing
a black hole, while for p < p� a black hole does not form
and the matter fields disperse to infinity. The spacetime
with p ¼ p� is called the critical solution and the remark-
able behavior at or near p� is what is meant by type II
critical phenomena.
What is remarkable is that near-critical spacetimes, i.e.,

spacetimes for which p is near p�, exhibit self-similarity. In
the case of discrete self-similarity, a scale invariant func-
tion, Z, obeys

Zðτ þ Δ; ln rþ ΔÞ ¼ Zðτ; ln rÞ; ð1Þ

where the echoing exponent, Δ, is universal, in that it is
independent of initial data. In the above equation
τ ¼ lnðT� − TÞ, where T is the central proper time (i.e.,
the proper time at the origin) and T� is a constant called the
accumulation time. Also remarkable is that the mass of the
black hole at collapse obeys the scaling relation

mBH ∼ jp − p�jγ; ð2Þ

where the scaling exponent, γ, like the echoing exponent, is
universal. This scaling relation indicates that in type II
collapse a black hole can form with arbitrarily small mass.
Gundlach [2] and Hod and Piran [3] showed that the scaling

relation (2) is not a strict proportionality, but on top of the
linear relationship is a periodic wiggle with period Δ=ð2γÞ.
The scaling relation (2) applies only to supercritical

evolutions, i.e., evolutions during which a black hole
forms. Scaling relations for subcritical evolutions, i.e.,
evolutions during which a black hole does not form, are
known and offer additional means for determining γ.
Garfinkle and Duncan [4] showed that the maximum value
over the total evolution of the central value of the Ricci
scalar can obey

R1 ≡max
t
Rμ

μðt; 0Þ ∼ jp − p�j−2γ; ð3Þ

where Rμν is the Ricci tensor and Rμ
μ is the Ricci scalar. In

some systems the above formula is not useful. For example,
in the Einstein-Yang-Mills system with SUð2Þ the Ricci
scalar vanishes. Garfinkle and Duncan suggested other
possibilities [4], the simplest of which is

R2 ≡max
t
jRμνðt; 0ÞRμνðt; 0Þj1=2 ∼ jp − p�j−2γ: ð4Þ

They further argued that the scaling relations (3) and (4),
like the black hole mass scaling (2), should have a periodic
wiggle on top of the linear relationship, again with
period Δ=ð2γÞ.
In addition to type II, there is type I and type III critical

phenomena. In type I, originally discovered by Choptuik,
Chmaj, and Bizoń in their study of gravitational SUð2Þ [5],
one again considers single-parameter initial data that
evolves either to a spacetime containing a black hole or
to one that does not. In this case, however, the black hole
must form with finite mass. Further, the critical solution is a
static gravitational solution with a single decay mode. For
example, for the SUð2Þ system studied in [5], the critical
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solution is the n ¼ 1 Bartnik-McKinnon solution [6].
The closer the evolution is to the critical solution, i.e.,
the closer p is to p�, the longer the evolution spends near
the static critical solution before evolving away to one of
its two possible end states.
Type III critical phenomena was discovered by

Choptuik, Hirschmann, and Marsa [7], again in a study
of gravitational SUð2Þ. In this case, both end states of
the evolution contain a black hole, but the final system is
distinctly different depending on whether p > p� or
p < p�. Type III shares similarities with type I in that
the critical solution is a static gravitational solution with a
single decay mode (but in this case the static solution
contains a black hole) and the closer the evolution is to the
critical solution, the longer the evolution spends near the
static solution before evolving away to one of its two
possible end states. For SUð2Þ [7,8], the critical solutions
are the colored black hole static solutions [9–11]. For
reviews of gravitational critical phenomena see those by
Gundlach et al. [12,13] and for studies of the critical
behavior of gravitational SUð2Þ see [5,7,8,14–19].
In this paper I study the gravitating ’t Hooft-Polyakov

magnetic monopole system: spherically symmetric SUð2Þ
with a scalar field in the adjoint representation coupled to
gravity [20–22]. I previously studied this Einstein-Yang-
Mills-Higgs system in [18] with respect to type III critical
behavior. The well-known solutions for static gravitating
monopoles [23–26] include both stable and unstable black
hole monopole solutions and the Reissner-Nordström
solution. I showed in [18] that the unstable static black
hole monopole solutions are type III critical solutions with
the stable static black hole monopole solutions and the
static Reissner-Nordström solution as the two possible end
states.
There exist regular solutions for excited static gravitating

monopoles [25] which are expected to be unstable. Further,
if the vacuum value of the scalar field is sufficiently large, a
branch of unstable fundamental regular static solutions
appear [27]. Both of these are good candidates for a type I
critical solution and it would be interesting to study type I
critical phenomena in this system.
My focus in this work is on type II critical behavior of

gravitating monopoles. This system offers interesting
differences compared to type II collapse found in other
systems. For example, instead of the critical solution sitting
between a black hole and complete dispersal of the matter
fields, the matter fields on the nonblack hole side do not
completely disperse, but instead settle down to a stable and
static gravitating monopole [18,27].
More interesting is that the monopole system appears to

contain two type II critical solutions, each with their own
set of scaling and echoing exponents. I note, however, that
one solution is more exact than the other. For the solution I
present first, near-critical evolutions exhibit precise self-
similarity and, within the scope of initial data that leads to

the critical solution, universal scaling and echoing expo-
nents. The second solution has all the standard signs for
a type II critical solution, but the scaling and echoing
exponents have a small spread in values over different
initial data and the self-similarity of near-critical evolutions
is not as precise. For this second solution, then, it might be
that exact self-similarity and universality are lost, a pos-
sibility that has also been seen recently in pure SUð2Þ by
Maliborski and Rinne [17].
In the next section I present equations, boundary con-

ditions, and aspects of the code I use to study type II
collapse. In Sec. III I present the first critical solution and in
Sec. IV I present the second critical solution. I conclude
in Sec. V.

II. EQUATIONS, BOUNDARY CONDITIONS,
AND NUMERICS

I gave the full set of equations for the spherically
symmetric gravitating monopole in [18]. I quickly list
the equations here and I refer the reader to [18] for
additional information. All results will be presented in
radial-polar gauge. This gauge has been used in many
studies of type II critical phenomena, including the original
study [1] and the first study of pure SUð2Þ [5]. In this
gauge, the spherically symmetric metric takes a particularly
simple form:

ds2 ¼ −α2dt2 þ a2dr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð5Þ

(here and throughout I set c ¼ 1), where the metric is
parametrized in terms of the lapse αðt; rÞ and the metric
function aðt; rÞ.
The matter sector contains two fields: a real scalar field,

φ, which parametrizes the real triplet scalar field gauged
under SUð2Þ, and what is effectively a real scalar field, w,
which parametrizes the gauge field. That there is only one
field parametrizing the gauge field is because the monopole
system is within what is called the magnetic ansatz (see, for
example, [7,18] for details). For simplicity I shall refer to φ
as the scalar field and w as the gauge field. From these
follow the auxiliary fields:

Φðt; rÞ ¼ ∂rφ; Πðt; rÞ ¼ a
α
∂tφ;

Qðt; rÞ ¼ ∂rw; Pðt; rÞ ¼ a
α
∂tw: ð6Þ

From the Einstein field equations, the metric functions
obey the constraint equations

∂ra
a

¼ 4πGra2ρ −
a2 − 1

2r
;

∂rα

α
¼ 4πGra2Srr þ

a2 − 1

2r
; ð7Þ
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where G is the gravitational constant and

ρ ¼ Φ2 þ Π2

2a2
þ w2φ2

r2
þ V þ ð1 − w2Þ2

2g2r4
þQ2 þ P2

g2a2r2
;

Srr ¼
Φ2 þ Π2

2a2
−
w2φ2

r2
− V −

ð1 − w2Þ2
2g2r4

þQ2 þ P2

g2a2r2
ð8Þ

follow from the energy-momentum tensor. V is the scalar
potential, which I give below, and g is the gauge coupling
constant. The equations of motion for the matter fields are

∂tφ ¼ α

a
Π;

∂tΦ ¼ ∂r

�
α

a
Π
�
;

∂tΠ ¼ 1

r2
∂r

�
αr2

a
Φ
�
− αa

∂V
∂φ −

2αa
r2

w2φ;

∂tw ¼ α

a
P;

∂tQ ¼ ∂r

�
α

a
P

�
;

∂tP ¼ ∂r

�
α

a
Q

�
þ αa

r2
wð1 − w2Þ − g2αawφ2: ð9Þ

For the matter fields, the inner boundary conditions are

φ ¼ OðrÞ; Φ ¼ Oð1Þ; Π ¼ OðrÞ;
w ¼ 1þOðr2Þ; Q ¼ OðrÞ; P ¼ Oðr2Þ; ð10Þ

and the outer boundary conditions are φðt;∞Þ ¼ �v, with
the rest of the matter fields vanishing at infinity, where v is
the vacuum value of the scalar field. The inner boundary
condition for a is a ¼ 1þOðr2Þ. The inner boundary
condition for α is gauge dependent and I shall fix α ¼ 1 at
the origin, which is a standard gauge choice in studies of
type II critical phenomena.
To determine the scaling exponent from the black hole

mass scaling law (2), which I will label as γm, I need to
know the black hole mass at the moment of collapse. The
total mass inside a radius r is given by

mðt; rÞ ¼ r
2G

�
1 −

1

a2ðt; rÞ
�
; ð11Þ

which I can use to determine the black hole mass at collapse
if I know the horizon radius at collapse. Since coordinates
in radial-polar gauge do not penetrate apparent horizons,
I cannot use an apparent horizon finder to find the radius.
As is standard, I take a spike in the metric function a to
indicate collapse and its position to be the horizon radius.
The Ricci scalar scaling law (3) is not entirely useful for

determining the scaling exponent, which when determined
from (3) I will label as γR1. I mentioned that the Ricci scalar

vanishes in pure SUð2Þ. Not surprisingly, something
similar happens in the gravitating monopole system.
Starting with the Einstein field equations, it is not hard
to show that Rμ

μ ¼ −8πGTμ
μ, where Tμν is the energy-

momentum tensor (its components are given in [18]). In the
gravitating monopole system it can be shown that

Tμ
μ ¼

Π2 −Φ2

a2
−
2w2φ2

r2
¼ −3Φ2 þOðr2Þ; ð12Þ

where I ignored the scalar potential and where the second
equality is only valid near the origin. We find that the
central value of Tμ

μ, and hence also the central value of the
Ricci scalar, only probes directly the scalar field and not
the gauge field. Below I shall report the value of γR1, but we
should not be surprised if it does not equal γm.
The value of the scaling exponent that follows from the

R2 scaling law (4), which I will label as γR2, is much better
adapted for the gravitating monopole system, just as it is for
pure SUð2Þ [17]. Starting again from the Einstein field
equations, one can show that RμνRμν ¼ ð8πGÞ2TμνTμν and
further that TμνTμν depends explicitly on both φ and w near
the origin. The formula for TμνTμν is complicated and I do
not present it here, but the point is that we should expect
γR2 to agree with γm (at least, for typical type II behavior).
The code I use is the same code used in [18], but with

three changes. First, I use radial-polar gauge (instead of
radial-maximal gauge) and second, I include Kreiss-Oliger
dissipation [28] to help with stability. The third and most
important change has to do with the computational grid.
Finding a type II critical solution requires code that can
probe very close to the origin. The usual best method for
doing this is an adaptive mesh [1,5], but this can be
challenging to implement. A simpler alternative is to use
a fixed but nonuniform computational grid (for examples,
see [17,29]). I use the nonuniform grid used by Akbarian
and Choptuik in [29]:

r ¼ ex − exmin þ xmax

xmax − x
−

xmax

xmax − xmin
; ð13Þ

which maps the uniform computational domain x ¼
ðxmin; xmaxÞ to the nonuniform radial domain r ¼ ð0;∞Þ.
The results in this paper are for xmin ¼ −12 and xmax ¼ 4,
which shrinks the innermost grid point by 2 orders of
magnitude compared to the uniform grid, and 2011 grid
points.
To test the universality of the scaling and echoing

exponents, I use various families of initial data. Some of
the initial data I have used is

φð0; rÞ ¼ v tanhðr=sÞ þ c
r
r0
½e−ðr−r0Þ2=d2 þ e−ðrþr0Þ2=d2 �;

ð14aÞ
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φð0; rÞ ¼ v
ðr=sÞ3 − r=s
ðr=sÞ3 þ c

; ð14bÞ

φð0; rÞ ¼ v
2

�
1 −

�
1þ a

�
1þ br

s

�
e−2ðr=sÞ

�

× tanh

�
r0 − r
s

��
ð14cÞ

and

wð0; rÞ ¼ 1 − tanh2 ðr=sÞ þ c

�
r
r0

�
2

e−ðr−r0Þ2=d2 ; ð15aÞ

wð0; rÞ ¼ c − ðr=sÞ2
cþ ðr=sÞ4 ; ð15bÞ

wð0; rÞ ¼ 1

2

�
1þ

�
1þ a

�
1þ br

s

�
e−2ðr=sÞ2

�

× tanh

�
r0 − r
s

��
; ð15cÞ

along with ∂tφð0; rÞ ¼ ∂twð0; rÞ ¼ 0. In the above equa-
tions s, r0, c, and d are constants and a and b are chosen
such that the inner boundary conditions are satisfied and
are given by a ¼ cothðr0=sÞ − 1 and b ¼ cothðr0=sÞ þ 1.
Initial data (14a) and (15a) take simple functions that
satisfy the boundary conditions and add to them Gaussians.
Initial data (14c) and (15c) are adaptations to the monopole
system of initial data used in [5,7].
The scalar potential for the monopole system is

V ¼ λ

4
ðφ2 − v2Þ2; ð16Þ

where λ is the scalar field self-coupling and v is the scalar
field vacuum value. The constants λ, v, and g parametrize
the gravitating monopole system. It is possible to absorb g
into a redefinition of the fields and parameters so that λ=g2

and v determine the model and I see no reason not to expect
the scaling and echoing exponents to be functions of them.
To reduce this parameter space I consider only λ ¼ 0, which
is not uncommon, and v̄≡ ffiffiffiffiffiffiffiffiffi

4πG
p

v ¼ 0.2. I have looked at
type II collapse with other values of v̄ and found very small
variation in the scaling and echoing exponents, but it would
be interesting to look more closely at the dependence.
An important check on the code is whether it can

reproduce the accepted values for the scaling and echoing
exponents for pure SUð2Þ [5,14]. Setting λ ¼ v ¼ 0 and
using initial data with φ ¼ ∂tφ ¼ 0 forces fields related to
the scalar field (φ,Φ,Π) to be permanently zero throughout
an evolution, reducing the evolution equations in (9) to
those for pure SUð2Þ [5,7]. This alone is not sufficient
because the outer boundary condition in the monopole
system is wðt;∞Þ ¼ 0, while for pure SUð2Þ it is

wðt;∞Þ ¼ �1, and so slightly different initial data for w
is needed. Using pure SUð2Þ initial data

wð0; rÞ ¼ 1þ pe−½ðr−r0Þ=s�2 ; ð17Þ

with ðg= ffiffiffiffiffiffiffiffiffi
4πG

p Þr0 ¼ 3
ffiffiffi
2

p
and ðg= ffiffiffiffiffiffiffiffiffi

4πG
p Þs ¼ ffiffiffi

2
p

=4, along
with ∂twð0; rÞ ¼ 0, I find γm ¼ 0.1939� 0.0007, γR2 ¼
0.1959� 0.0003,Δlnr ¼ 0.736�0.001, andΔτ ¼ 0.7354�
0.0002. These are consistent with the originally computed
values γ ¼ 0.20 and Δ ¼ 0.74 [5] as well as the more
refined values γ ¼ 0.1964� 0.0007 and Δ ¼ 0.73784�
0.00002, obtained by directly perturbing the critical
solution [14].
From this point forward, all quantities will be their

dimensionless versions, defined by r → ðg= ffiffiffiffiffiffiffiffiffi
4πG

p Þr,
t → ðg= ffiffiffiffiffiffiffiffiffi

4πG
p Þt, φ →

ffiffiffiffiffiffiffiffiffi
4πG

p
φ, mBH → ðg ffiffiffiffiffiffiffiffiffiffiffi

G=4π
p ÞmBH,

R1 → ð ffiffiffiffiffiffiffiffiffi
4πG

p
=gÞ2R1, and R2 → ð ffiffiffiffiffiffiffiffiffi

4πG
p

=gÞ2R2. I note
that w is already dimensionless.

III. CRITICAL SOLUTION

To find a critical solution I start with initial data, such as
that in (14) and (15), with one of the parameters taken to be
p. I then tune p toward its critical value, p�, through a
bisectional search. All initial data I have tried such that p is
a parameter in the initial data for φ (and not w), such as p
being one of the parameters in (14) [and not in (15)], has
lead to (nearly) identical scaling and echoing exponents and
hence the same critical solution. Within a limited sector of
initial data, then, the scaling and echoing exponents are
universal.
Figure 1 is a diagram for the scaling exponent. It displays

results using three different single-parameter families of
initial data, which I label as 1-i (black), 1-ii (blue), and 1-iii
(purple), the “1” indicating that this is initial data for the
first critical solution presented. Plot (a) shows results for
the mass scaling relation (2), (b) for theR2 scaling relation
(4), and (c) for theR1 scaling relation (3). The best-fit lines
are determined using a least-squares fit. Also in Fig. 1 is a
table that gives the values for the scaling exponents γm, γR2,
and γR1, as determined from the best-fit lines. From the
table we can see that the different methods for computing
the scaling exponent agree with another. We can also see
the universality of the scaling exponent. Interestingly, γR1

is in agreement with the scaling exponents found using the
other methods. As I explained above, this is not necessarily
expected. It seems to imply that the scalar field dominates
over the gauge field in determining the geometry of
spacetime at the origin for this critical solution.
Even from visual inspection of Fig. 1, one can see that all

curves have a periodic wiggle around their best-fit line and
that the period is roughly equal to 2. In Fig. 2 I show a plot
of the residuals for one of the curves in Fig. 1(a). A period
of right around 2 is easily seen. (The Fourier transform of
the residuals has a peak at 2, but unfortunately there is not
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enough data for the Fourier transform to give a more
accurate answer.) In looking at residuals I have found that
all scaling data has a period of about 2. Such a period is
consistent with Δ=ð2γÞ ¼ 1.93, where I used the average
values of γ and Δ from the tables in Figs. 1 and 4.
Figure 3 displays a near-critical evolution, with ln jp −

p�j ≈ −32 (or jp − p�j ≈ 10−14), using initial data 1-i, and
is plotted at moments in time when the spacetime is on the
verge of collapse. The top three figures, (a)–(c), plot fields
associated with the scalar field and the echoing is readily
seen to be typical of a type II critical solution. The bottom
two figures, (d) and (e), plot fields associated with the
gauge field, but the echoing has a somewhat different
appearance.
In Fig. 4 I show diagrams whose purpose is to exhibit the

discrete self-similarity of the solutions, if it exists. I shall

(a)

(b)

(c)

FIG. 1. Scaling exponent results for three different single-
parameter families of initial data: Initial data 1-i (black points) is
(14a) with p ¼ c, r0 ¼ 5, s ¼ 10, and d ¼ 0.5 and (15a) with
c ¼ 0 and s ¼ 5; initial data 1-ii (blue points) is (14b) with p ¼ c
and s ¼ 1 and (15b) with c ¼ 2 and s ¼ 5; and initial data 1-iii
(purple points) is (14c) with p ¼ s and r0 ¼ 3 and (15c) with
r0 ¼ 7 and s ¼ 10. (a) Results for the mass scaling relation (2),
(b) results for the R2 scaling relation (4), and (c) results for the
R1 scaling relation (3). The table gives the values of the scaling
exponents extracted from the best-fit lines. The scaling exponents
appear to agree and be universal.

FIG. 2. Residuals for initial data 1-ii in Fig. 1(a). Each point is
found by subtracting from the point in Fig. 1(a) the corresponding
value of the best-fit line. The periodicity is clearly seen, with a
period right around 2. This is consistent with Δ=ð2γÞ ¼ 1.93, as
computed using the average values of γ and Δ from the tables in
Fig. 1 and Fig. 4 below. (Note that the lines connecting the points
are simple straight lines and are not from any sort of fit.)

(a)

(b)

(c)

(d)

(e)

ln

FIG. 3. Values of five fields for a near-critical evolution at
moments in time when the spacetime is on the verge of collapse is
shown for initial data 1-i. (a)–(c) Fields associated with the scalar
field, in which we see echoing typical of a type II critical solution.
(d),(e) Fields associated with the gauge field, in which we see
echoes, but they have a somewhat different appearance.
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refer to these diagrams, and the analogous ones below in
Fig. 8, as self-similarity diagrams. In such diagrams I plot a
near-critical scale invariant function, Z, at some central
proper time, T, which, in terms of coordinate time t, is
given by

TðtÞ ¼
Z

t

0

αðt0; 0Þdt0: ð18Þ

I then search for values of Δln r and Δτ such that Zðτ þ
nΔτ; ln rþ nΔln rÞ and Zðτ; ln rÞ overlap, where n is a
positive integer, τ ¼ lnðT� − TÞ, and T� is a constant called
the accumulation time. The expectation in type II collapse
is that Δln r ¼ Δτ.
Figure 4(a) displays the discrete self-similarity of the field

rΠ. Though not shown, the other fields associated with the
scalar field (φ and rΦ) also exhibit self-similarity analo-
gously to Fig. 4(a). The table in Fig. 4 gives the echoing
exponents found for rΠ for the three families of initial data
listed in the caption to Fig. 1. The table suggests the echoing
exponents are universal and that Δln r and Δτ agree.
Figure 4(b) shows a self-similarity diagram for P, a field

associated with the gauge field. The curves in Fig. 4(b) are

for the same times and the same Δln r used in Fig. 4(a). It is
clear that the field P is not exhibiting self-similarity.
Though not shown, neither does Q. In general, for the
critical solution of this section, there does not exist values
for Δln r and Δτ such that the fields associated with the
gauge field (Q and P) exhibit self-similarity.

IV. SECOND CRITICAL SOLUTION

Almost all initial data I have tried such that p is a
parameter in the initial data for w (and not φ) has lead to, by
all appearances, a second critical solution, with scaling and
echoing exponents different from those in the previous
section. However, the scaling and echoing exponents are
not as universal and the self-similarity is not as precise as
in the previous section.
Figure 5 is a diagram for the scaling exponent. It displays

results using three different single-parameter families of

(a)

(b)

FIG. 4. (a),(b) Self-similarity diagrams for the same evolution
shown in Fig. 3, which uses initial data 1-i. rΠ is a field
associated with the scalar field and in (a) we see that it exhibits
self-similarity typical of type II behavior, with n ¼ 0 (solid
green), n ¼ 1 (dashed blue), and n ¼ 2 (dotted black). Though
not shown, the other fields associated with the scalar field (φ and
rΦ) also exhibit self-similarity. P is a field associated with the
gauge field and in (b) we see that it does not exhibit self-similarity
(nor does the other field associated with the gauge field,Q, which
is not shown). The table gives the echoing exponents found for
rΠ for the three families of initial data listed in the caption to
Fig. 1. The echoing exponents appear to agree and be universal.

(a)

(b)

(c)

FIG. 5. Scaling exponent results for three different single-
parameter families of initial data: Initial data 2-i (black points) is
(14a) with c ¼ 0 and s ¼ 5 and (15a) with p ¼ c, s ¼ 10, and
r0 ¼ 5, and d ¼ 0.5; initial data 2-ii (blue points) is (14b) with
c ¼ 3 and s ¼ 1 and (15b) with p ¼ c and s ¼ 4; and initial data
2-iii (purple points) is (14c) with r0 ¼ 7 and s ¼ 10 and (15c)
with s ¼ p and r0 ¼ 3. (a) Results for the mass scaling relation
(2), (b) results for the R2 scaling relation (4), and (c) results for
the R1 scaling relation (3). The table gives the values of the
scaling exponents extracted from the best-fit lines. Comparing
this to Fig. 1, we see that the scaling exponent for the critical
solution of this section is not as universal as the scaling exponent
for the critical solution of the previous section. I note that γR1
does not equal γ as found from the other methods, which, as
explained in the main text, is not unexpected.
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initial data (which are different than those used in the
previous section), which I label as 2-i (black), 2-ii (blue),
and 2-iii (purple), the “2” indicating that this is initial data
for the second critical solution presented. Plot (a) shows
results for the mass scaling relation (2), (b) for the R2

scaling relation (4), and (c) for the R1 scaling relation (3).
The best-fit lines are determined using a least-squares fit.
Also in Fig. 5 is a table that gives the values for the scaling
exponents γm, γR2, and γR1, as determined from the best fit
lines. From the table we can see that the scaling exponent is
not as universal for the critical solution of this section as the
scaling exponent is for the critical solution of the previous
section.
For the critical solution of this Sec. I find that γR1 does

not agree with the scaling exponent found using the other
methods. As I explained above, this is not unexpected. This
implies that the gauge field is playing a much more
important role in the critical solution of this section,
something that is also not unexpected. Interestingly, how-
ever, the value of γR1, though not in agreement with γm and
γR2, is as universal in its value as they are in their values.
A periodic wiggle, though small, can be seen in Fig. 5. In

Fig. 6 I show a plot of the residuals for one of the curves in
Fig. 1(b) and a period of right around 2 is easily seen. (The
Fourier transform of the residuals has a peak at 2, but
unfortunately there is not enough data for the Fourier
transform to give a more accurate answer.) In looking at
residuals I have found that all scaling data has a period of
about 2. Such a period is consistent with Δ=ð2γÞ ¼ 1.89,
where I used the average values of γ and Δ from the tables
in Figs. 5 and 8.
Figure 7 displays a near-critical evolution, with ln jp −

p�j ≈ −32 (or jp − p�j ≈ 10−14), using initial data 2-iii,

and is plotted at moments in time when the spacetime is on
the verge of collapse. The top three figures, (a)–(c), plot
fields associated with the scalar field and the bottom two
figures, (d) and (e), plot fields associated with the gauge
field. Comparing with Fig. 3, we see that for the critical
solution of this section, it is instead the fields associated
with the gauge field that exhibit echoing typical of a type II
critical solution and it is the fields associated with the scalar
field that have the somewhat different appearance.
Figure 8 displays discrete self-similarity diagrams for rΠ

and P, and may be compared with Fig. 4. We find now that
it is the field associated with the gauge field, P in Fig. 8(b),

FIG. 6. Residuals for initial data 2-i in Fig. 5(b). Each point is
found by subtracting from the point in Fig. 5(b) the correspond-
ing value of the best-fit line. The periodicity is clearly seen, with a
period right around 2. This is consistent with Δ=ð2γÞ ¼ 1.89, as
computed using the average values of γ and Δ from the tables in
Fig. 5 and Fig. 8 below. (Note that the lines connecting the points
are simple straight lines and are not from any sort of fit.)

(a)

(b)

(c)

(d)

(e)

FIG. 7. Values of five fields for a near-critical evolution at
moments in time when the spacetime is on the verge of collapse is
shown for initial data 2-iii. Comparing with Fig. 3, we see that for
the critical solution of this section, it is instead the fields
associated with the gauge field in (d) and (e) that exhibit echoing
typical of a type II critical solution and it are the fields associated
with the scalar field in (a)–(c) that have a somewhat different
appearance.
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which exhibits self-similarity (though not shown, Q exhib-
its it as well), and it is the field associated with the scalar
field, rΠ in Fig. 8(a), which does not (though not shown,
neither does φ nor rΦ). There does not exist values for Δln r
and Δτ such that the fields associated with the scalar field
(φ, rΦ, and rΠ) exhibit self-similarity. The table in Fig. 8
gives echoing exponents for the three families of initial
data listed in the caption of Fig. 5. Just as with the scaling
exponent, the table shows us that the echoing exponent, Δ,
is not as universal for the critical solution of this section as
it is for the critical solution of the previous section. Further,
close inspection of Fig. 8(b) and analogous diagrams made
with different initial data shows that self-similarity is not as
exact for the critical solution of this section as it is for the
critical solution of the previous section.
It would be elegant if all initial data such that p is a

parameter in the initial data forw led to the critical solution of
this section. Though this is the case for nearly all initial data
have tried, I have found exceptions. For example, initial data
(14b) with c ¼ 2 and s ¼ 5 and (15b) with c ¼ p and s ¼ 1
leads to the critical solution of the previous section.

It is unclear why self-similarity is less exact and the
scaling and echoing exponents are less universal for the
critical solution of this section compared to the critical
solution of the previous section. It is impossible to
completely rule out this being a numerical artifact, but I
have found no evidence for this. It may very well be that for
the critical solution of this section, exact self-similarity and
universality are lost. Intriguingly, something similar was
seen recently byMaliborski and Rinne in their study of type
II critical behavior in pure SUð2Þ [17]. It may be useful to
touch on the similarities of their system and the system
studied here. Most numerical studies of gravitational
SUð2Þ, including the original studies [5,7], work within
the magnetic ansatz (the present work is also within the
magnetic ansatz), which reduces the four fields parame-
trizing the spherically symmetric SUð2Þ gauge field down
to a single field. Maliborski and Rinne [17] are the first to
study critical behavior in SUð2Þ without making the
magnetic ansatz. The particular SUð2Þ gauge they work
in reduces the four gauge fields down to effectively two
fields (there is a third field, but it obeys a constraint
equation instead of an equation of motion). Beyond the fact
that both the system studied in [17] and the present system
are part of SUð2Þ, an obvious similarity is that both systems
have multiple matter fields. It would be interesting to know
what role, if any, this plays in the possible loss of
universality and self-similarity.

V. CONCLUSION

In this work I studied type II critical behavior in the
gravitating magnetic monopole system. This system is
characterized by two matter fields: a real scalar field,
which parametrizes the scalar field gauged under SUð2Þ,
and what is effectively a real scalar field, which para-
metrizes the gauge field. This system offers some
differences compared to other systems. For example, on
the nonblack hole side of the critical solution, the matter
fields do not completely disperse, but instead settle down to
a stable and static configuration. More interesting, however,
is that the gravitating monopole system appears to have two
critical solutions.
All initial data I tried in which the scalar field is tuned

toward a critical value led to the critical solution I presented
first in Sec. III. This critical solution exhibits precise self-
similarity and universal scaling and echoing exponents. In
Sec. IV I presented a second critical solution, which most of
the initial data I tried in which the gauge field is tuned
toward a critical value led to, but I did find exceptions.
Though this second critical solution has different scaling
and echoing exponents than the first critical solution, the
self-similarity is less exact and the scaling and echoing
exponents are less universal. Indeed, exact self-similarity
and universality of the scaling and echoing exponents may
be lost, a possibility that was recently seen elsewhere [17].

(a)

(b)

initial data

FIG. 8. (a),(b) Self-similarity diagrams for the same evolution
shown in Fig. 7, which uses initial data 2-iii. P is a field
associated with the gauge field and in (b) we see that it exhibits
self-similarity typical of type II behavior with n ¼ 0 (solid
green), n ¼ 1 (dashed blue), and n ¼ 2 (dotted black). Though
not shown, the other field associated with the gauge field (Q) also
exhibits self-similarity. rΠ is a field associated with the scalar
field and in (a) we see that it does not exhibit self-similarity (nor
do the other fields associated with the scalar field, φ and rΦ,
which are not shown). The table gives the echoing exponents for
P for the three families of initial data listed in the caption of
Fig. 5. From the table we see that the echoing exponent is not as
universal for the critical solution of this section as it is for the
critical solution of the previous section.
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It is interesting that, in the first critical solution of
Sec. III, which is obtained by tuning the scalar field toward
a critical value, the fields associated with the scalar field
exhibit self-similarity, while the fields associated with the
gauge field do not. And on the other hand, in the second

critical solution of Sec. IV, which is usually obtained by
tuning the gauge field toward a critical value, it flips, with
the fields associated with the gauge field exhibiting self-
similarity, while the fields associated with the scalar field
do not.
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