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We analyze the structure of a recent nonlocal generalization of Einstein’s theory of gravitation by
Mashhoon et al. By means of a covariant technique, we derive an expanded version of the nonlocality
tensor which constitutes the theory. At the lowest orders of approximation, this leads to a simplification
which sheds light on the fundamental structure of the theory and may prove useful in the search for exact
solutions of nonlocal gravity.
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I. INTRODUCTION

In a series of works [1–29], eventually culminating in
the book [30], Mashhoon and collaborators proposed a
nonlocal extension to Einstein’s gravity termed nonlocal
gravity (NLcG).
In NLcG gravity is assumed to be history dependent, i.e.,

the gravitational interaction has an additional feature of
nonlocality in the sense of an influence (“memory”) from
the past that endures. The theory is built upon an ansatz for
the so-called nonlocality tensor Nijk, leading to a set of
integro-differential field equations. The complexity of these
equations surpasses the complexity of the ones encountered
in Einstein’s theory of gravity by a great deal. This makes
the search for exact or even approximate solutions of NLcG
a daunting task, even if additional symmetry assumptions
are made. It is this complexity at a fundamental level, which
makes nonlocal gravity a theory for which no exact
solutions are known beyond the flat case, in other words,
no exact solution encompassing a gravitational field is
known. At the same time much work was put into the
linearized version of the theory [23], and in this context
some very promising properties of NLcG—for example
addressing the dark matter problem [13,16,19,22,29]—
have been worked out.
However, the fact that no exact solutions exist should of

course be remedied, for the theory is supposed to be the
successor of general relativity (GR), for which several

solutions are known, which in turn play a key role in the
conceptual understanding of the theory. In the present work
we show, that the initial choice for the nonlocality is not the
“simplest expression” for Nijk, contrary to what is stated in
[[30] (6.107)]. We hope that our simplification will pave the
way towards a more manageable version of the theory, yet
retaining its compelling overall structure.
The structure of the paper is as follows: In Sec. II

we summarize the main features of NLcG. This is followed
by a brief review of a covariant expansion technique in
Sec. III. This technique is then applied in Sec. IV to derive
an expanded and thereby simplified version of the non-
locality tensor. We conclude our paper in Sec. V with a
discussion and outlook. An overview of our notation can be
found in Table I in the Appendix.

II. NONLOCAL GRAVITY AS A TELEPARALLEL
GRAVITY THEORY

Originally Mashhoon tried to implement the generali-
zation of the locality principle directly for the field
equations of GR. This did not appear to be feasible, and
a successful starting point turned out to be a rather
particular translational gauge theory of gravity (TG),
namely the so-called teleparallel equivalent GRjj of
Einstein’s GR, see [31–33].
For a TG, the translational gauge field potential is

represented by the coframe eiα, the translational gauge field
strength by its covariant “curl,” the torsion of spacetime:

Tij
α ≔ 2ð∂ ½iej�α þ Γ½ijβαejj�βÞ: ð1Þ
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Here coordinate indices are denoted by i; j; k;… ¼ 0, 1, 2, 3,
and frame indices by α; β; γ;… ¼ 0, 1, 2, 3, and Γiα

β is the
Lorentz connection of spacetime, see [34]. The curvature
tensor of the spacetime vanishes,

Rijα
βðΓÞ ¼ 2∂ ½iΓj�αβ þ 2Γ½ijγβΓj�αγ ¼ 0; ð2Þ

that is, we have a teleparallelism, and we can pick a global
gauge—which is denoted by a star over the equality sign—
such that at each point in spacetime the Lorentz connection
Γi

αβ ¼ −Γi
βα vanishes.

The inhomogeneous and the homogeneous gravitational
field equations of NLcG have a Maxwellian structure, see
[[30] (5.70) and (6.117)], and are given by

∂jȞ
ij
α − Eα

i¼� T α
i; ð3Þ

∂ ½iTjk�α¼� 0: ð4Þ
The gravitational excitation Ȟij

α, in a Lagrange-Hamilton
picture, is the “momentum” conjugate to the “coordinate”
eiα, and the “velocity” Tij

α: Ȟij
α ≔ −2∂Lg=∂Tij

α, where
Lg is the gravitational Lagrangian density.
The nonlinear correction terms in (3) represent the

energy-momentum tensor density of the gravitational
gauge field,

Eα
i ≔ −

1

4
eiαðTjk

βȞjk
βÞ þ Tαk

βȞik
β: ð5Þ

As source, we have on the right-hand side of the inhomo-
geneous field equation (3) the energy-momentum tensor
density of matter T α

i. It has to be assumed symmetric,
T ½αβ� ¼ 0, cf. [32, page 52, 1st paragraph, Eqs. (4.42),
(4.43) and (4.36)].
In a local and linear TG one assumes, as usual in a gauge

theory, that the gravitational Lagrangian is quadratic in the
field strength—here in the form of the torsion. Thus, the
constitutive law between excitation and field strength is
local and linear:

Ȟij
α ¼

1

2
χijα

kl
βTkl

β: ð6Þ

General relativity is recovered, see [35], via

GRjjχijm
kl
nðgÞ ¼

ffiffiffiffiffiffi−gp
ϰ

ð−gk½igj�lgmn

−4δ½imgb�½kδl�n þ 2δ½ingj�½kδ
l�
mÞ; ð7Þ

where gij denotes the metric of spacetime, with signature
ðþ1;−1;−1;−1Þ, and ϰ is Einstein’s gravitational
constant.
A nonlocal generalization of a gravity theory is deter-

mined by an ansatz, which no longer necessarily can be
derived from a Lagrangian,

Ȟy1y2
υ3 ¼

1

2
½χy1y2υ3y4y5υ5Ty4y5

υ5

−
Z

σy1x1σ
y2
x2συ3

ξ3Kðx;yÞXx1x2
ξ3
x4x5

ξ6Tx4x5
ξ6d4x�;

ð8Þ

where the integration is performed over a 4-dimensional
volume; see [[30], (6.114)]. Here we use a condensed
notation (common to the theory of bitensors) in which the
point to which the index of a bitensor belongs can be
directly read from the index itself; e.g., yn denotes indices
at the spacetime point y. Moreover, in order to distinguish
the local frame indices, we use ξ1, ξ2, … and υ1, υ2, … to
designate objects with frame indices at the point x or y, in
complete analogy to the labels x1, x2,… and y1, y2,… used
in the holonomic case.
In the early works [13,14] it was suggested to use

χijα
kl
β ≡ Xij

α
kl
β ≡ GRjjχijα

kl
β ð9Þ

as an ansatz for the nonlocal theory. However, it was later
on [23] generalized to

χijα
kl
β ≡ GRjjχijα

kl
β; ð10Þ

Xij
α
kl
β ≡ GRjjχijα

kl
β þ oddχijα

kl
β; ð11Þ

so that

oddχijα
kl
βTkl

β ∼ p̌ðŤiejα − ŤjeiαÞ; ð12Þ
with a new parity-odd coupling parameter p̌, see also [[30]
(6.109)], that controls the contribution of the axial torsion
which is defined as

Ťi ≔
1

3
ηijklTjkl: ð13Þ

Another possibility—which, however, was not followed
up—would be the additional term oddχijα

kl
β on the right-

hand side of Eq. (10).
Recently, a thorough analysis of the most general linear

local constitutive relations in the teleparallel gravity has
been performed in [36], focusing mainly on its irreducible
decomposition. One can prove that a general metric-
dependent parity-odd part of the constitutive tensor reads

oddχijα
kl
βðgÞ ¼

ffiffiffiffiffiffi−gp
ϰ

½β4ηijklgαβ þ β5η
ij½k½αel�β�

þβ6ðe½iðαηj�klβÞ − e½kðαηl�ijβÞÞ�: ð14Þ
Accordingly, Mashhoon’s constitutive tensor (11)–(12)
encompasses all 6 irreducible parts (principal, skewon
and axion, both even and odd parities), and the correspond-
ing coupling constants of this irreducible decomposition
read: β1 ¼ −1, β2 ¼ −4, β3 ¼ 2, β4 ¼ −p̌=6, β5 ¼
−2p̌=3, β6 ¼ p̌=3. For the complete notational and com-
putational details see [36]; note though that there is a

PUETZFELD, OBUKHOV, and HEHL PHYS. REV. D 99, 104013 (2019)

104013-2



conventional overall factor between our and Mashhoon’s
coupling constants, and a difference in the definition of the
torsion. It is particularly noteworthy that the constitutive
relation in general contains a nontrivial skewon part which
means that such a constitutive law is not reversible and
therefore cannot be derived from a variational principle.
For a general introduction to the underlying premetric
framework of electrodynamics and gravity see [37–39].
Defining the tensors

Xij
k ≔

1

2
Xij

k
pq

rTpq
r; ð15Þ

χijk ≔
1

2
χijk

pq
rTpq

r; ð16Þ

and by switching to holonomic coordinates, we can recast
(8) into

Ȟy1y2
y3 ¼ χy1y2y3 þ Ny1y2

y3 : ð17Þ

Here we introduced

Ny1y2
y3 ≔ −

Z
σy1x1σy2x2σy3x3Kðx; yÞXx1x2

x3d4x ð18Þ

for the nonlocal part of (8), see also [[30], Eq. (6.107)]. In
the rest of this work we are going to focus on this
nonlocality tensor Ny1y2

y3.

III. COVARIANT EXPANSIONS

In the following we make use of a covariant expansion
technique based on a generalization of Synge’s “world
function” σðx; yÞ [40–42]. Since NLcG is a theory which is
based on a non-Riemannian spacetime, we first need to
introduce the properties of a world function based on
autoparallels in a Riemann-Cartan background. In contrast
to a Riemannian spacetime, a Riemann-Cartan spacetime is
endowed with an asymmetric connection Γab

c, and there
will be differences when it comes to the basic properties of
a world function σ based on autoparallels.
The curvature and the torsion are defined with respect to

the general connection Γab
c as follows:

Rabc
d ≔ 2∂ ½aΓb�cd þ 2Γ½ajndΓb�cn; ð19Þ

Tab
c ≔ 2Γ½ab�c: ð20Þ

The symmetric Levi-Civita connection Γ̄kj
i, as well as all

other Riemannian quantities, are denoted by an additional
overline. For a general tensor A of rank ðn; lÞ the commu-
tator of the covariant derivative thus takes the form:

ð∇a∇b −∇b∇aÞAc1…cn
d1…dl ¼ −Tab

e∇eAc1…ck
d1…dl

þ
Xk
i¼1

Rabe
ciAc1…e…ck

d1…dl

−
Xl

j¼1

Rabdj
eAc1…ck

d1…e…dl :

ð21Þ

In addition to the torsion, we define the contortion Kkj
i

with the following properties

Kkj
i ≔ Γ̄kj

i − Γkj
i; ð22Þ

Kkji ¼ −
1

2
ðTkji þ Tikj þ TijkÞ; ð23Þ

Tkj
i ¼ −2K½kj�i: ð24Þ

For a world function σ based on autoparallels, we have
the following basic relations in the case of spacetimes with
asymmetric connections:

σxσx ¼ σyσy ¼ 2σ; ð25Þ

σx2σx2
x1 ¼ σx1 ; ð26Þ

σx1x2 − σx2x1 ¼ Tx1x2
x3∂x3σ: ð27Þ

We denote higher-order covariant derivatives of the world
function by σyx1…y2… ≔ ∇x1…∇y2…ðσyÞ.
For the covariant expansions we need the limiting

behavior of a bitensor B…ðx; yÞ when x approaches the
reference point y. This so-called coincidence limit of a
bitensor B…ðx; yÞ is a tensor

½B…� ¼ lim
x→y

B…ðx; yÞ; ð28Þ

at y and will be denoted by square brackets. In particular,
for a bitensor B with arbitrary indices at different points
(here just denoted by dots), we have the rule [41]

½B…�;y ¼ ½B…;y� þ ½B…;x�: ð29Þ

We collect the following useful identities for the world
function σ:

½σ� ¼ ½σx� ¼ ½σy� ¼ 0; ð30Þ

½σx1x2 � ¼ ½σy1y2 � ¼ gy1y2 ; ð31Þ

½σx1y2 � ¼ ½σy1x2 � ¼ −gy1y2 ; ð32Þ

½σx3x1x2 � þ ½σx2x1x3 � ¼ 0: ð33Þ
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Note that up to the second covariant derivative the
coincidence limits of the world function match those in
spacetimes with symmetric connections. However, at the
next (third) order the presence of the torsion leads to

½σx1x2x3 � ¼
1

2
ðTy1y3y2 þ Ty2y3y1 þ Ty1y2y3Þ ¼ Ky2y1y3 ; ð34Þ

where in the last equality we made use of the contortion K.
With the help of (29), we can obtain the other combinations
with three indices:

½σy1x2x3 � ¼ −½σy1y2x3 � ¼ ½σy1y2y3 � ¼ Ky2y1y3 : ð35Þ
At the fourth order we have

Ky1
y
y2
Ky3yy4 þ Ky1

y
y3
Ky2yy4 þ Ky1

y
y4
Ky2yy4

þ ½σx4x1x2x3 � þ ½σx3x1x2x4 � þ ½σx2x1x3x4 � ¼ 0; ð36Þ
and in particular

½σx1y2y3y4 � ¼ −
1

3
∇y1ðKy3y4y2 þ Ky2y4y3Þ

þ 1

3
∇y3Ky1y4y2 þ

1

3
∇y2Ky1y4y3

þ∇y4Ky3y1y2 − πy1y4y3y2 ; ð37Þ

πy1y2y3y4 ≔
1

3
½Ky1y2

yðKy3y4y þ Ky4y3yÞ
− Ky1y3

yðKy4y2y þ Kyy2y4Þ
− Ky1y4

yðKy3y2y þ Kyy2y3Þ
− 3Ky2y1

yKy3y4y þ Ky3y1
yKyy2y4

þ Ky4y1
yKyy2y3 þ Ry1y3y2y4

þ Ry1y4y2y3 �: ð38Þ
Explicit results for the other index combinations can be
found in [[43], Eqs. (19)–(23)].
Finally, let us collect the basic properties of the so-called

parallel propagator gyx ≔ eyαexα, defined in terms of a
parallely propagated tetrad eyα, which in turn allows
for the transport of objects, i.e., Vy ¼ gyxVx, Vy1y2 ¼
gy1x1g

y2
x2V

x1x2 , etc., along an autoparallel:

gy1xgxy2 ¼ δy1y2 ; gx1ygyx2 ¼ δx1x2 ; ð39Þ
σx∇xgx1y1 ¼ σy∇ygx1y1 ¼ 0;

σx∇xgy1x1 ¼ σy∇ygy1x1 ¼ 0; ð40Þ
σx ¼ −gyxσy; σy ¼ −gxyσx: ð41Þ

Note, in particular, the coincidence limits of its derivatives

½gx0y1 � ¼ δy0y1 ; ð42Þ
½gx0y1;x2 � ¼ ½gx0y1;y2 � ¼ 0; ð43Þ

½gx0y1;x2x3 � ¼ −½gx0y1;x2y3 � ¼ ½gx0y1;x2x3 �

¼ −½gx0y1;y2y3 � ¼
1

2
Ry0

y1y2y3 : ð44Þ

In the next section we will derive an expanded approxi-
mate version of the nonlocality tensor. We make use of the
covariant expansion technique [41,44] on the basis of the
autoparallel world function. For a general bitensor B… with
a given index structure, we have the following general
expansion, up to the third order (in powers of σy):

By1…yn ¼ Ay1…yn þ Ay1…ynþ1
σynþ1

þ 1

2
Ay1…ynþ1ynþ2

σynþ1σynþ2 þOðσ3Þ; ð45Þ

Ay1…yn ≔ ½By1…yn �; ð46Þ

Ay1…ynþ1
≔ ½By1…yn;ynþ1

� − Ay1…yn;ynþ1
; ð47Þ

Ay1…ynþ2
≔ ½By1…yn;ynþ1ynþ2

� − Ay1…yny0 ½σy0ynþ1ynþ2
�

− Ay1…yn;ynþ1ynþ2
− 2Ay1…ynðynþ1;ynþ2Þ: ð48Þ

With the help of (45) we are able to iteratively expand any
bitensor to any order, provided the coincidence limits
entering the expansion coefficients can be calculated. We
note in passing, that this expansion technique has also been
applied extensively in the context of the equations of
motion of extended test bodies [45–51] and in the gravi-
tational self-force problem [44,52]. The expansion for
bitensors with mixed index structure can be obtained from
transporting the indices in (45) by means of the parallel
propagator.

IV. CONSTITUTIVE LAW

As was demonstrated in Sec. II, nonlocal gravity is based
on an ansatz for the so-called nonlocality tensor Ny1y2y3,
which involves a scalar kernel Kðx; yÞ and a tensor Xx1x2x3.
Albeit the form of Ny1y2y3 given in (18), was declared the
“simplest expression” for the nonlocality tensor in [30], we
observe here that a further simplification can be achieved
by performing a covariant expansion of the derivatives of
the world function entering (18).
Utilizing the general expansion technique from (45)–(48)

we have for the derivative of the world function around an
arbitrary reference world line Y.

σy1x2 ¼ −gy1x2 þ gx2
y½σy1xy3 �σy3 þ

1

2
ðgx2y½σy1xy3y4 �

− gx2
y2gy1y½gy2x;y3y4 � − 2gx2

y½σy1xðy3 �;y4Þ
− gx2

y½σy1xy5 �½σy5y3y4 �Þσy3σy4 þOðσ3Þ: ð49Þ

With the results for the coincidence limits worked out in the
previous Sec. III, we end up with the following explicit
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expansion of the world function derivative up to the second
order:

σy1x2 ¼−gy1x2 þ gx2
yKy3yy1σ

y3

þ 1

2
σy3σy4gx2

y
h1
3
∇ðy3Kjyjy4Þy1 −

1

3
∇yKðy3y4Þy1

−∇ðy4Ky3Þyy1 þKy5yy1Kðy4y3Þ
y5 − πyðy4y3Þy1 � þOðσ3Þ;

ð50Þ

with

πyðy4y3Þy1 ¼
1

3
½Kyðy4

y0Ky3Þy1y0 − Kyðy3
y0Kjy0jy4Þy1

− Kyy1
y0Kðy3y4Þy0 − 3Kðy4jyj

y0Ky3Þy1y0

þ Kðy3jy
y0Ky0jy4Þy1 þ Ryðy3y4Þy1 �: ð51Þ

Inserting (51) into (50) we end up with

σy1x2 ¼−gy1x2 þgx2
yKy3yy1σ

y3

−
1

6
σy3σy4gx2

y½Ryðy3y4Þy1 þ κyðy3y4Þy1 �þOðσ3Þ; ð52Þ

where we collected all contortion terms in the auxiliary
variable

κyðy4y3Þy1 ≔ Kyðy4
y0Ky3Þy1y0 − Kyðy3

y0Kjy0jy4Þy1
− Kyy1

y0Kðy3y4Þy0 þ Kðy3jy
y0Ky0jy4Þy1

− 3Kðy4jyj
y0Ky3Þy1y0 − 3Kðy4y3Þ

y0Ky0yy1

þ∇yKðy3y4Þy1 −∇ðy3Kjyjy4Þy1
þ 3∇ðy3Ky4Þyy1 : ð53Þ

A. Riemann-Cartan spacetime

Plugging in the expansion from (52) into the ansatz for
the nonlocality (18) we end up with:

Ny1y2y3 ¼
Z �

gy1x1gy2x2gy3x3 − σy
0 ½gy1x1gy2x2gx3yKy0yy3 þ gy2x2gy3x3gx1

yKy0yy1 þ gy1x1gy3x3gx2
yKy0yy2 �

þ 1

6
σy5σy6 ½gx1ygy2x2gy3x3ðRyðy5y6Þy1 þ κyðy5y6Þy1Þ þ gx2

ygy1x1gy3x3ðRyðy5y6Þy2 þ κyðy5y6Þy2Þ
þ gx3

ygy1x1gy2x2ðRyðy5y6Þy3 þ κyðy5y6Þy3Þ þ 6gy1x1gx2
y0gx3

y00Kðy5jy0y2jKy6Þy00y3 þ 6gy2x2gx1
y0gx3

y00Kðy5jy0y1jKy6Þy00y3

þ 6gy3x3gx1
y0gx2

y00Kðy5jy0y1jKy6Þy00y2 � þOðσ3Þ
�
Kðx; yÞXx1x2x3d4x: ð54Þ

Different orders in this version of the nonlocality (18)
correspond to different orders of the approximation in powers
of theworld function. The expansion (54) clearly exhibits the
complicated geometrical structure of the original ansatz (18).
The torsion of spacetime, here in the form of the contortion,
already enters the picture at the first order. This in turn leads to
very complicated field equations of NLcG.

B. Riemannian spacetime

Albeit the latest version of nonlocal gravity described in
[30] uses a Riemann-Cartan spacetime as the geometrical
setting, our general method also allows for a direct
specialization of (18) to a Riemannian background, i.e.,

Ny1y2y3 ¼
Z �

gy1x1gy2x2gy3x3 þ
1

6
ðgy1x1gy2x2gx3yR̄y3ðy0y00Þy

þ gy2x2gy3x3gx1
yR̄y1ðy0y00Þy

þ gy1x1gy3x3gx2
yR̄y2ðy0y00ÞyÞσy

0
σy

00 þOðσ4Þ
�

×Kðx; yÞXx1x2x3d4x: ð55Þ

Here R̄ denotes the Riemannian curvature tensor built from
the Levi-Civita connection Γ̄. In contrast to the Riemann-
Cartan case—in which the torsion entered at the first
order—the expansion (55) shows that the specialization
to a Riemannian background leads to a mild simplification,
in the sense that the geometric terms (i.e., the Riemannian
curvature) now enter the nonlocality ansatz only at the
second order.

V. DISCUSSION AND CONCLUSIONS

We have worked out an approximate version of the
nonlocality ansatz of NLcG by means of a covariant
expansion technique. Our results in the Riemann-
Cartan (54), as well as in the Riemannian context
(55), pave the way for a refined version of the theory
postulated in [30]. A natural improvement can be
achieved by using just the lowest order in the expansion
(54) as a new basic ansatz for the nonlocality tensor
Ny1y2y3 . Namely, we propose that the original ansatz (18)
should be replaced by
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Ny1y2y3 ¼
Z

gy1x1gy2x2gy3x3Kðx; yÞXx1x2x3d4x: ð56Þ

This choice provides an essential development of the
NLcG theory since it avoids some of the overwhelming
geometrical complexity of the original ansatz. At the
same time, it is perfectly consistent with all the previous
results of NLcG, in particular, it is important that the new
ansatz (56) is totally compatible with the linearized
solutions which have been found so far in the context
of NLcG.
Furthermore, it is worthwhile to note that the new

nonlocal constitutive law (56) appears to be much more
natural from the viewpoint of relativistic multipolar
schemes [49,51] as compared to the original ansatz (18),
since it avoids the emergence of derivatives of the
world function, which do not have a straightforward
interpretation—in contrast to the appearance of the parallel
propagator in the new ansatz (56).
With an account of these advantageous properties,

one can expect that our new constitutive law would
eventually lead to an exact solution of NLcG, although
even with the simplified ansatz for the nonlocality, the
solution of the full NLcG field equations still appears to be
a daunting task.
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APPENDIX NOTATIONS AND CONVENTIONS

Table I contains a brief overview of the symbols used
throughout the work.
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