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The theory of general relativity has an ultraviolet(UV) problem that can be ameliorated by gravity with
higher derivatives. The four-derivative gravity as an effective gravitational theory at UV scalars has two
Yukawa-like corrections with parameters λ0 and λ2. By the analysis of experiments of HUST-2015,
Newman’s group, lake experiment, and Cassini spacecraft, we obtain the strong-bound regions for these
parameters at submillimeter-to-millimeter, centimeter-to-meter, tens-of-meter, and solar-system scales, in
which the properties of potential are clearly shown. Recently, the ghostfree and singularityfree gravity, a
more potential modified gravity theory, introduces the novel conception of nonlocality. We test the scale of
gravitational nonlocality λm < 2.7 × 10−5 m by the torsion pendulum experiment HUST-2015. The
predicted decaying spatial oscillations are visible meaning possible violation at shorter ranges. Our result
provides useful information for gravitational interaction at microscopic ranges.
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I. INTRODUCTION

Extended theories of gravity are alternative theories of
gravitational interaction based on corrections and enlarge-
ments of the Einstein theory. These theories aim from one
side to extend the positive results of general relativity and,
on the other hand, to cure its shortcomings [1,2]. In order to
address theoretical and experimental problems that have
emerged in cosmology, astrophysics and high energy
physics, these theories have been proposed to explain
deviations at ultraviolet (UV) and infrared (IR) scales
[3–5]. The problems presented at infrared scales are posed
by the unexpected discovery of the accelerated expansion
of the Universe that is measured from Ia supernovae and
the cosmic microwave background (CMB) [6–8]. It is
important to modify gravity at cosmological distances.
Theoretical efforts in this area have recently gained
attention and offered rich spectrum of new ideas that
may be tested by experiments [9]. For problems at ultra-
violet scales, it is unclear what the correct ultraviolet
completion of Einstein theory is. Theoretical works, such
as quantum gravity and the fifth force, predict new
interactions in the short range motivating many groups
around world to perform the high-precision test of gravi-
tational inverse-square law. Experimental results and
on-going searches [10] for a possible violation of the

gravitational ISL in the ranges from micrometer to meter
have been reported by Newman’s group [11,12], Long’s
group [13], Adelberger’s group [14], etc. All experimental
efforts help to understand the gravitational interaction at
ultraviolet scales.
Extended theories of gravity have become a sort of

paradigm in the search of non-Einstein theory, which
consists of searching for the deviations from special and
general relativity. The paradigm consists of adding accept-
able terms, such as higher-order curvature invariants and
minimally or nonminimally coupled scalar fields. On the
deviations at the ultraviolet (UV), four-derivative gravity is
renormalizable by introducing such terms proportional to
R2 and RμνRμν in the gravitational Lagrangian [15–18], but
it inevitably suffers from unphysical ghost states [19,20].
This ghost makes it seem unlikely that four-derivative
gravity has a place in an ultimate theory. However, as is
pointed in Ref. [21], four-derivative model is still reason-
able to represent an effective gravitational theory at UV
scalars. Parametrized four-derivative gravity is relative to
two parameters m0 and m2, whose values may reveal the
microscopic properties of gravity. The experiments of
gravity allow us to obtain bounds on these parameter.
Since the large scale of astronomical tests, they are usually
useless for testing the four-derivative gravity. Comparing
the astronomical tests, laboratory experiments on the
validity of Newtonian inverse square law are more useful
to give better bounds.
String theory (ST) is a popular candidate in formulating

a consistent quantum theory of gravity, whereas it
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approaches problem rather grandly because of its intention
to unify gravity with the fundamental forces of nature.
Loop quantum gravity (LQG), another popular candidate,
aims to quantize the gravitational field. A common thread
running through these theory is the presence of nonlocality
in which gravitational interaction occurs not at a specific
spatial point but over a region of space.
Recently, similar to the novel approach in ST and LQG,

the ghostfree and singularityfree theories also propose the
conception of nonlocality to address the issue of ghost. By
introducing infinite derivatives to modify the gravitation
propagator, ghostfree and singularityfree theories of gravity
can soften the quantum UV divergences on one hand and
make theory ghostfree on the other hand [22–24].
Furthermore, these infinite derivatives can remove the
cosmological big bang singularity in a linearity limit,
and remove the black hole type singularity in the static,
linearity limit [25]. In order to avoid having to introduce
new poles, such infinite derivatives are introduced in the
form of an exponential of an entire function [26,27].
Actually, these infinite derivatives render the gravitational
interactions nonlocal with a new scale in four dimensions
m ≤ mp ∼ 2.4 × 1018 GeV. It may be a novel connection
between general relativity and quantum theory. This non-
locality can be tested by current gravitational experiments
measuring the Newtonian potential. The experiments of
measuring Newtonian potential are promising to expose the
microscopic properties of gravity. So we wish to put a
bound on the scale of nonlocality from the torsion
pendulum experiments at millimeter ranges.

II. FOUR-DERIVATIVE GRAVITY

We will start our discussion with a modified Einstein-
Hilbert action that includes both the action

R ð−gÞ1=2Rd4x
and the higher-order terms in the curvature invariants. The
theories of gravity including higher-order curvature invari-
ant terms R2 and RμνRμν in the gravitational action permit
us to renormalize the divergences in quantum corrections to
the interactions of matter fields. Furthermore, from the
conceptual point of view, there is no a priori reason to
restrict the gravitational Lagrangian to a linear function of
Ricci scalar and the minimal couple with matter. For
example, when superstrings or supergravity take effective
actions into account, higher-order terms in the curvature
invariants or nonminimally coupled terms are present.
Considering the higher-order terms in the curvature invar-
iants, we write gravitational action as the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðχRþ fðA;BÞ þ LmÞ ð1Þ

where χ−1 ¼ 16πG, g is the determinant of metric tensor
gμν, fðA; BÞ is an unspecified function of A ¼ R2 and
B ¼ RμνRμν that describes deviations from the general
relativity, and the Lm is the Lagrangian density for matter.

R and Rμν are the Ricci scalar and Ricci tensor,
respectively. It is worth noting that

R
dx4

ffiffiffiffiffiffi−gp
RμναβRμναβ

is not needed in the action because the Gauss-Bonnet
relation

ffiffiffiffiffiffi−gp ðRμναβRμναβ − 4RμνRμν þ R2Þ ¼ divs is topo-
logically equivalent to flat space [28].
Varying the action with respect to the metric, we obtain

the field equations

χ

�
Rμν −

1

2
gμνR

�
−
1

2
gμνf þ 2f;ARRμν þ 2f;BRσ

μRσν

þ□ðf;BRμνÞ þ gμν∇α∇βðf;BRαβÞ − 2∇α∇β½f;BRα
ðμδ

β
νÞ�

þ 2gμν□ðf;ARÞ − 2∇μ∇νðf;ARÞ ¼
1

2
Tμν; ð2Þ

where □ is the d’Alembert operator, f;A and f;B are given
by ∂f=∂A and ∂f=∂B, respectively. The Einstein field
equation will recover from this equation in the case of
fðA;BÞ ¼ 0 and f;A=B ¼ 0. The trace of the field equa-
tions (2) is

− χRþ ð2f;BRμνRμν þ 2∇μ∇νðf;BRμνÞ þ□ðf;BRÞ

þ 2f;AR2 − 2f þ 6□ðf;ARÞÞ ¼
T
2

ð3Þ

where T ¼ Tμ
μ is the trace of energy-momentum tensor.

A special model can be determined by the special function
fðA;BÞ, such as fðRÞ gravity and four-derivative gravity.
In the case of weak field and slow motion, we consider

the field equations. By introducing the quantities

m2
ab ¼ −

χ

ð6f;A þ 2f;BÞ
;

m2
b ¼

χ

f;B
; ð4Þ

and m2
ab, m

2
b > 0, the gravitational potential of a pointlike

source is given by

VðrÞ ¼ −
GM
r

�
1þ 1

3
e−

ffiffiffiffiffiffi
m2

ab

p
r −

4

3
e−

ffiffiffiffiffi
m2

b

p
r

�
: ð5Þ

If the matter source has a distribution function ρðx0Þ, we
have the gravitational potential

VðxÞ ¼ −
Z

d3x0 Gρðx0Þ
jx − x0j

×

�
1þ 1

3
e−

ffiffiffiffiffiffi
m2

ab

p
jx−x0j −

4

3
e−

ffiffiffiffiffi
m2

b

p
jx−x0j

�
; ð6Þ

the last two terms are the corrections to the Newtonian
gravitational potential. The Yukawa-like correction with
m2

ab implies a stronger attracted force, while the correction
with m2

b results in a repulsive force. In fact, these
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Yukawa-like corrections imply the massive excitations, and
a more massive field implies a shorter action range. When
the m2

ab, m
2
b are large enough, these Yukawa-like correc-

tions would not affect the macroscopical motions. If we
choose the derivatives of fðA;BÞ satisfying the condition
f;A ¼ f;B ¼ 0, then we have m2

ab, m2
b → ∞ and the

gravitational potential recovers the classical form.
A further step is to analyze specified models from the

function fðA; BÞ. In higher-derivative formalism, we con-
sider the simplest case where the function fðA;BÞ is given
by the function fðA; BÞ ¼ −βR2 þ αRμνRμν. Then the
action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðχR − βR2 þ αRμνRμν þ LmÞ; ð7Þ

where α and β are dimensionless parameters, which may be
limited to satisfy the various observables and experiments.
The modified Einstein equations obtained by varying the

action (7) respect to the metric gμν are

χGμν − β

�
2R

�
Rμν −

1

4
gμνR

�
þ 2ðgμν□R −∇μ∇νRÞ

�

þ α

�
2

�
Rσ
μRσν −

1

4
gμνRμνRμν

�
þ□Rμν

þ gμν∇α∇βRαβ − 2∇α∇β½Rα
ðμδ

β
νÞ�
�
¼ 1

2
Tμν: ð8Þ

We consider the weak gravitational field of a point mass
where Tμν ¼ diagðMδðrÞ; 0; 0; 0Þ. The trace of this field
equation is

αð□Rþ 2∇μ∇νRμνÞ − 6β□R − χR ¼ 1

2
T: ð9Þ

The parameters α and β in the field equations (7) may be
limited by gravitational experiments. The field equations
provide the solution in terms of the gravitational potential.
In the weak field limit, the gravitational potential takes the
form

VðrÞ ¼ −
GM
r

�
1þ 1

3
e−r=λ0 −

4

3
e−r=λ2

�
; ð10Þ

with λ0 ¼ 1=m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3β − αÞ32πGp

and λ2 ¼ 1=m2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGα

p
. The additional terms in action result in field

equations containing four derivatives. In addition to the
usual massless excitations of field, there are massive spin-
two m2 and massive scalar m0 excitations for general
amounts of two new terms, which results in the Yukawa-
like potentials in the linearized solutions of the field
equations. Although the linearized field energy of massive
scalar and massless spin-two excitations is positive definite,
the massive spin-two excitation has negative energy.
Classically, the negative energy leads to the breakdown

of causality, which poses the obstacle to physical con-
ceptions. This is a characteristic of higher-derivative gravity
models, and also makes it seem unlikely that higher-
derivative models will find a place in an ultimate theory.
However, if the massive fields are so large that it is only
important on the distance scales near the Planck length
(∼10−33 cm), the breakdown of causality may only occur
on microscopic scales. Therefore, it is not impossible that a
higher-derivative gravity model could represent an effective
gravitational theory at microscopic scalars. Giving the
limitations of these parameters is significant for the devel-
oping of effective gravitational theories.
The limits of the two massive excitations for an extended

source tend to a large but finite value. The corresponding
parameters λ0 and λ2 can be bounded at a little but nonzero
value. As mentioned in Ref. [29], λ2 can be bounded
independently of λ0 using the gravitational wave (GW)
events. With more and more GW events detected by LIGO
and Virgo [30,31], λ2 may be independently bounded in a
higher level. At the same time, space-based GW missions
are developed to detect GW in the low-frequency regime
(10−4 − 1 Hz), such as LISA [32] and TianQin [33], which
would provide more tests for four-derivative gravity.
Generally, the experiments of gravity allow us to derive
bounds on λ0 and λ2. Since the Yukawa-like corrections are
exponential, the tests are sensitive to the scales of gravity
experiments. However, astronomical tests are usually use-
less and laboratory experiments on the validity of
Newtonian inverse square law seem much more promising.
As an example of astronomical tests, considering the
motion of Mercury where the orbital precession is known
to about one part in 109, it can give a low bound on the
masses ∼10−11 cm−1. For ISL experiments, the interesting
measurements of Long report a repulsive interaction
deviation from 1=r2 that require a mass ∼1×10−4 cm−1,
which corresponds to the distances ∼102 m. However, the
result is still along way from the microscopic domain. With
some high-precision Cavendish-type experiments appear
recently, we may improve the bounds of four-derivatives
gravity using the pendulum type experiments.
Then, we consider the time and space components of

metric that may be approximately written as [34]:

g00 ¼ 1 −
2GM
c2r

�
1þ 1

3
e−r=λ0 −

4

3
e−r=λ2

�
; ð11Þ

gij ¼ −δij −
2GM
c2r

�
1 −

1

3
e−r=λ0 −

2

3
e−r=λ2

�
δij: ð12Þ

The time and space components of metric allow us to write
post-Newtonian parameter γ as:

γ ¼ hijjδij
h00

¼ 3 − e−r=λ0 − 2e−r=λ2

3þ e−r=λ0 − 4e−r=λ2
; ð13Þ
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where we adopt the expansions gμν ¼ ημν þ hμν. If the
potential satisfies relation λ0 ¼ λ2, we recover the general
relativity limitation of γ ¼ 1. On the other hand, we also
can obtain the general relativity limitation in the case of λ0,
λ2 → ∞. The infinity case is neglected in our discussion
because it cannot provide any explanation for UV problem.
Although astronomical observables and experiments in
Solar System can provide a effective method to bound
the post-Newtonian parameter γ, they are not very useful
for λ0 and λ2.
In fðRÞ formalism, we also consider the simplest case

where fðA; BÞ ¼ aR2. The action then takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðχRþ aR2 þ LmÞ: ð14Þ

Varying the fðRÞ action (14) with respect to the metric
leads to the field equations

χ

�
Rμν −

1

2
gμνR

�
þ a

�
2R

�
Rμν −

1

4
gμνR

�

þ 2ðgμν□R −∇μ∇νRÞ
�
¼ 1

2
Tμν: ð15Þ

The trace of this field equations is

6a□R − χR ¼ 1

2
T: ð16Þ

The gravitational potential is

VðrÞ ¼ −
GM
r

�
1þ 1

3
e−r=λ

�
; ð17Þ

where parameter is λ ¼ ð96πGaÞ1=2. The potential has
same form with Yukawa potential. Their difference is that
the strength α of any new interaction with a length scale of λ
is a constant in fðRÞ gravity. Theoretically, the small value
of a means very small λ, which leads to visible deviations
from the ISL at UV scales and recover inverse-square form
at IR scales. Thus from time and space components of
metric, we obtain the post-Newtonian parameter

γ ¼ 3 − e−r=λ

3þ e−r=λ
: ð18Þ

When λ → ∞, we obtain a result γ → 1=2 extremely
deviating from general relativity; while λ → 0, we recover
the result γ → 1, which has yielded the value γ − 1 ¼
ð2.1� 2.3Þ × 10−5 by the time delay of radar signals
between the Earth and the Cassini spacecraft [35]. The
result of the fðRÞ model is identical with the result of a
massive Brans-Dicke theories with ω ¼ 0. From the
measurements of γ and β in the solar system, some works
have discussed restrictions for massive Brans-Dicke

theories [36,37], in which results could give corresponding
restrictions for fðRÞ model.

III. GHOSTFREE AND SINGULARITYFREE
GRAVITY

As mentioned before, four-derivative gravity can amelio-
rate the UV behavior and is renormalizable, but it intro-
duces a ghost term in the spin-2 excitations [28]. Higher
derivative gravity theories are generally better behaved in
the UV and make theory avoid singularity [38]. In order to
make theory generally covariant and ghostfree at perturba-
tive level, ghostfree and singularityfree gravity is intro-
duced, which introduces infinite derivatives to soften UV
divergences at the quantum level and cure instabilities of
fourth order gravity [39]. By introducing the infinite
derivatives in the action, the theory becomes nonlocal,
meanwhile it does not introduce any new pole. This
nonlocality would introduce a scale of gravitational non-
locality λm. In this theory, it predict the modified gravita-
tional potential as the form [39,40]

VðrÞ ¼ −
GM
r

fðλm; rÞ ð19Þ

where

fðrÞ ¼ 1

π

Z þ∞

−∞

dk
k
eτðλm;kÞ sinðkrÞ: ð20Þ

A typical form of τ may be taken as

τ ¼ −k2nλ2nm : ð21Þ

As shown in Ref. [40], in the case of large n, fðλm; rÞ can
be well fit by the function

fðλm; rÞ ¼ a1
r
λm

; 0 < r=λm < 1;

fðλm; rÞ ¼ 1þ a2
λm
r
cosðr=λm þ θÞ; r=λm > 1; ð22Þ

where a1 ¼ 0.544, a2 ¼ 0.572, and θ ¼ 0.885π. It is clear
that for r → 0 the effective gravitational potential tends to a
constant. This potential is finite when r ≈ 0. At distances
above scale of gravitational nonlocality λm, it recover the
1=r fall of Newtonian potential. The decaying oscillations
with distances lead to that this oscillation cannot be
measured at large distances. However, the oscillations
are significant in the UV. Torsion pendulum experiments
at submillimeter range or smaller range have a great
potential to search the oscillatory potential. The fitted
functions may be used as an effective potential in micro-
scopical scale. From tests of the inverse square law, the
result of Adelberger et al. obtains the scale of nonlocality
m ≥ 0.004 eV at submillimeter range [14,39]. However,
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we know very little about the gravitational interaction
below the scale of submillimeter ranges. Analyzing more
torsion pendulum experiments is indispensable for the
ghostfree and singularityfree gravity.

IV. THE TEST OF RELATIVITY MODELS WITH
THE DATA OF GRAVITATIONAL

INVERSE-SQUARE LAW EXPERIMENTS

A. The test of four-derivative gravity

Before the discussion about four-derivative gravity, we
consider the Yukawa gravitational potential given by the
form as

VðrÞ ¼ −
GM
r

ð1þ αe−r=λÞ; ð23Þ

where the α is the scale factor and λ the action range.
Clearly, the tests of Yukawa potential are sensitive to the
scales of the experiments. It also is the character of the four-
derivative gravity. The gravitational inverse-square law
experiments may give a better bounds for parameters λ0
and λ2 at ranges from micrometer to meter, such as
Newman’s experiment for mass separations from 2 to
105 cm [12] and HUST-2015 at submillimeter ranges
[41]. However, the astrometric observables and space
missions may bound the parameters at Solar System or
bigger scales.
In a test of Yukawa-type gravitational potential model at

submillimeter ranges, HUST-2015 experiment successes in
limiting the Yukawa model parameters. The basic charac-
teristics for that experiment are dual-modulation (density
modulation and gravitational calibration modulation) and
dual-compensation (test mass and source mass compensa-
tion), and the detail schematic drawing of the experimental
setup information can be found in Fig. 1 of Ref. [41]. The
aim of this null experiment is to measure signal at 8w, and
this aim signal should be zero in theory under experimental
precision. The idiographic method of extracting signal is
shown in Ref. [41], finally, the constraints on parameters
are improved by up to a factor of 2 at the length scale
λ ∼ 160 μm with the precision of 2 × 10−17 Nm at the 2σ
level. Based on this experimental precision, we hope to use
this typical experiment in our lab to give the limit of
parameters for four-derivative gravity.
Comparing to the Yukawa-type gravitational potential

model in Eq. (23), the modified gravitational potential in
Eq. (6) has two action ranges λ0 and λ2, however the
corresponding scale factors are constant 1=3 and −4=3 in
four-derivative theory, respectively. Therefore, we need to
give the limit of this theory coefficients from the relation of
two λ terms. Since the parameter α can be obtained by the
measured signal (torque Δτ) with the variable λ in Yukawa-
type potential model experiment, meanwhile, the torque
Δτðλ0Þ and Δτðλ2Þ of four-derivative theory can also be
obtained by our lab experiment. The corresponding relation

between torque and range action is shown in Fig. 1, in
which the dark line and blue line stand for the violating
torque variations of λ0 and λ2, respectively. The correction
term of λ2 is more sensitive to the variation of distance than
λ0’s. This characteristic implies that experimental test is
able to give a stronger bound for λ2 term. The zonal bounds
for λ2 in Fig. 2 have demonstrated it. Based on the similar
analyses of Yukawa model and the geometry parameter
information of HUST-2015, we try to bound the parameters
for four-derivative gravity.
Figure 2 shows allowed regions for the parameters λ0 and

λ2 at submillimeter and millimeter ranges. The upper
boundary of green-zonal region and lower boundary of
purple-zonal region are obtained from the positive torque
2 × 10−17 Nm. Inversely, the lower boundary of green-

FIG. 1. The variation of torque with range λ. The dark line and
blue line stand for the violating torque variations of λ0 and λ2,
respectively.

FIG. 2. The allowed regions for the parameters λ0 and λ2 at
submillimeter and millimeter ranges. For 0.07 mm ≤ λ0 ≤ 1 mm,
the parameter λ2 has two thin-allowed regions (the purple zonal
region and green zonal region) that give the strong limitation for
λ2. The subsidiary figure represents the blue line λ0 ¼ 0.1 mm.
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zonal region and upper boundary of purple-zonal region
represent the result of the negative torque −2 × 10−17 Nm.
Four boundaries give two thin-zonal regions (purple zones
and green zones) with value range of λ0 from 0.07 mm to
1 mm in which all values of λ2 are allowed. It demonstrates
that for four-derivative gravity the uncolored regions are
excluded at a 95% confidence level. The two thin-allowed
regions give a strong bound for four-derivative gravity in
submillimater range where parameter λ2 is allowed to have
a very small value range. The great constraint at this region
is expected. Since HUST-2015 is a submillimeter-range
experiment, it has a great potential to constrain ðλ0 − λ2Þ
parameter space in the millimeter range and submillimeter
range. The subsidiary figure shows calculated torque of
four-derivative gravity with parameter λ0 ¼ 0.1 mm for
HUST-2015. In the ranges of λ2 ≪ 0.1 mm and
λ2 ≫ 1 mm, the value of torque tends to the constant.
When given the torques �2 × 10−17, the four points of
intersection coincide with the line λ0 ¼ 0.1 mm.
The deviation of four-derivative gravity from inverse-

square law 1=r2 is sensitive to the scales of experiments. It
means that the various inverse-square law experiments have
prospect on giving the tests at corresponding regions. The
Newman group’s experiment testing gravitational inverse-
square law for mass separations from 2 to 105 cm [12]
obtained a value for the parameter ϵ ¼ ð1� 7Þ × 10−5 [ϵ is
defined by r d

dr lnGðrÞ], which may provide a reliable
allowed region for four-derivative-gravity parameters.
The shadow region in Fig. 3 is allowed for the parameters
λ0 and λ2 at centimeter-to-meter range. The gently varia-
tions of λ2 at centimeter and meter ranges mainly come
from the experimental separations design of near mass
(2 cm) and far mass (105 cm), which is consistent with the
characteristic of sensitivities of λ0 and λ2. Then, the steep

variation at range from 20 cm to 80 cm is understandable
because of the absent configuration for mass separations
with several centimeters.
For a longer-scale test, we take a lake experiment into

account [42]. In this experiment, the accuracy of large G is
given by using the gravimeter data at the two water levels
beside the reservoir, in which the effective distances from
the gravimeters is in the ranges 26–94 m. Meanwhile, it is
also proved that there is no evidence for any “fifth force”
deviation from Newtonian gravity. Using the basic infor-
mation of this experiment, an estimate for constraint of
parameters in the four-derivative gravity could be obtained.
Figure 4 shows the lake-experiment constraint for four-
derivative gravity in the tens-of-meter range. The sensitivity
property of four-derivative gravity likewise is clearly

FIG. 3. The allowed regions for the parameters λ0 and λ2 at
meter ranges. Shaded region is allowed for parameters λ0 and λ2
by the Newman-group experiment [12].

FIG. 4. The allowed regions for the parameters λ0 and λ2 at
tens-of-meter ranges. The gray region is allowed region for
parameters λ0 and λ2 by the lake experiment [42].

FIG. 5. The result of Cassini tracking experiment. The region
between blue and orange lines is allowed at solar system scales.
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visible from the curves where λ0 variations from 10 to
100 m correspond to λ2 variations 0.5–1.0 m.
At the solar system scales, we consider the most precise

value for γ obtained from the time delay of radar signals
between Earth and the Cassini spacecraft [35]. The radio
signals passed near the Sun with a minimum impact 1.6
solar radii parameter (about 1.1 × 109 m) giving the result
γ − 1 ¼ ð2.1� 2.3Þ × 10−5. The bound for four-derivative
gravity is shown in Fig. 5 in which the region between blue
and orange lines gives the allowed region at the ranges from
5 × 108 to 1010 m. It demonstrates that λ0 and λ2 almost
have same values at given region, which accords with the
general relativity limitation in the case of λ0 ¼ λ2. Clearly,
several-order improvement of γ almost does not narrow
allowed regions, so the accuracy improvement of γ is not
very efficient to bound the parameter of four-derivative
gravity. At the IR scales, various-scales experiments or
observations are useful for testing this gravity theory that
may give a test of the approximative relationship λ0 ¼ λ2 at
corresponding ranges. The lunar laser ranging and orbit in
galaxy could obtain same result at their scales. This is the
characteristic for testing four-derivative gravity at IR scales.

B. The test of ghostfree and singularityfree gravity

The ghostfree and singularityfree theories behave well at
the quantum level by introducing novel gravitational non-
locality. The modified gravitational potential introduces a
possibility of decaying spatial oscillations on scales close to
the scale of nonlocality. The predicted form is necessary to
test by gravitational experiments. As mentioned before,
torsion pendulum experiments can potentially test the scale
of gravitational nonlocality, which means that we can now
use the experiment of HUST-2015 to put the bound on
gravitational nonlocality λm. Based on the detailed knowl-
edge of parameters of experimental apparatus, we applied
potential of ghostfree and singularityfree gravity (19) to
calculate the torque. For the large n, Eq. (22) is convenient

for calculating the torque τ. Adopting the same method
(see Ref. [41]) of HUST-2015, we finally give torque curve
in the parameter space (τ; λm) in Fig. 6.
Figure 6 shows the calculated torque curves of ghostfree

and singularityfree gravity for HUST-2015 in the λm ranges
of 85 μm to 250 μm and 35 μm to 57 μm in which two
curves have same variation tendency. From this figure, the
torque has an enhanced-oscillation form with the λm
parameter space. If the nonlocality λm is large enough,
torsion pendulum experiments will reveal a measurable
torque deviating from Newtonian results. This is why
torsion pendulum experiments have a great potential to
measure oscillating torque. Moreover, the torque curves
have another two properties: the regions in the vicinity of
(neighborhood of) the curve’s extreme point near zero are
sharper than that away from zero, and the wavelength of
oscillation is smaller in smaller scale. These properties are
understandable since the modified gravitational potential
has the similar correction term of function cos x−1 (x is a
variable). From the result of HUST-2015, constraint on the
Yukawa interaction is set by the in-phase signal of the
295 μm separation experiment as 2.0 × 10−17 Nm. The
ghostfree and singularityfree potential of a particular value
scale of nonlocality leads to a larger divergence from GR
than Yukawa potential of the same value λ, so we can
constrain the scale of nonlocality on a lower bound. The
further calculations, we obtain bound λm < 2.7 × 10−5 m
at a 95% confidence level for the scale of gravitational
nonlocality, which is better than previous constraint
0.004 eV (corresponds to 5 × 10−5 m) [14,39].
In addition, the solar system experiments are feasible for

testing nonlocality λm. Comparing the gravitational ISL
experiments, their limitations for nonlocality are weak in
which the result is much bigger than the scale of meter. Since
the visible-violation prediction of gravitational ISL occurs at
the nearby scale of nonlocality, the short-range ISL experi-
ments have a better possibility to detect deviations signal.
For better determination of gravitational nonlocality, the
gravitational experiments testing ISL at shorter separation
with more precise accuracy are required that would help to
understand the fundamental nature of gravity.

V. CONCLUSION

To summarize, we give an analysis of data from
the gravitational inverse-square-law experiments to test the
higher-derivative gravitational relativistic models. The
ghostfree and singularityfree gravity and four-derivative
gravity not only soften UV behavior of GR, but also
recover the GR results in the IR limit. Their modified
gravitational potentials may be tested by measuring the
Newtonian potential in near-future experiments. As shown
in Figs. 2–5, we give the allowed regions of parameters λ0
and λ2 at different ranges from the experiments of HUST-
2015, Newman’s group, lake experiment, and Cassini
spacecraft. These zonal regions in Fig. 2 establish a strong

FIG. 6. The calculated torque curve of the ghostfree and
singularityfree gravity in the λm regions 85 μm to 250 μm and
35 μm to 57 μm. The properties of torque curve coincide with the
properties of function cosð1=xÞ.
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bound for the four-derivative gravity at millimeter and
submillimeter ranges. The shadow in Fig. 3 shows the
allowed region of two parameters at range from centimeter
to meter. As a test at medium range, Fig. 4 gives the
constraint with λ0 range from 5 to 105 m. All three results
imply the characteristic that Yukawa-like correction of λ2 is
more sensitive to the variation of distance than that of λ0.
The Cassini spacecraft experiment gives the approximative
relationship λ0 ¼ λ2 at solar-system scales according with
general relativity. Considering UV problems, the gravita-
tional inverse-square-law experiments at short ranges have
better potential to search microcosmic behaviors of four-
derivative gravity.
Meanwhile using data of HUST-2015, we test the scale

of gravitational nonlocality λm < 2.7 × 10−5 m for the
ghostfree and singularityfree gravity. The oscillation at
UV scales is clear and visible in Fig. 6, which reveals the

explanation that an enough small nonlocality leads to the
zero results in detecting short-range ISL violation.
Although we know very little about the gravitational
interaction below the scale of 10−5 m, these results provide
useful information for modified gravitational theory. The
future experiments of measuring Newtonian potential have
a great potential to expose the microscopic properties of
gravity.
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