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In this paper we present a new approach to the inverse problem for relativistic stars using quasinormal
modes and the piecewise polytropic parametrization of the equation of state. The algorithm is a piecewise
polytropic meshing and refinement method that reconstructs the neutron star equation of state from
experimental data of the mass and the wI-quasinormal modes. We present an algorithm able to numerically
calculate axial quasinormal modes of neutron stars in an efficient way. We use an initial mesh of 27440
equations of state in a 4-volume of piecewise polytropic parameters that contains most of the candidate
equations of state used today. The refinement process drives us to the reconstruction of the equation of state
with a certain precision. Using the reconstructed equation of state, we calculate predictions for tidal
deformability and slow rotation parameters (moment of inertia and quadrupole moment, for example). In
order to check the method with an explicit example, we use as input data a few (five) configurations of a
given equation of state. We reconstruct the equation of state in a quite good approximation, and then we
compare the curves of physical parameters from the original equation of state and the reconstructed one. We
obtain a relative difference for all of the parameters smaller than 2.5% except for the tidal deformability, for
which we obtain a relative difference smaller than 6.5%. We also study constraints from GW170817 event
for the reconstructed equation of state.
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I. INTRODUCTION

The detection of gravitational waves by the LIGO-
VIRGO collaboration (GW150914-[1], GW170814-[2],
GW170817-[3]) opens a new era in relativistic astrophys-
ics. In particular, the GW170817 event, which seems to be
the consequence of the merging and colliding of a pair of
neutron stars, can be used to study the properties of these
relativistic stars. The remnant of such a process after the
merging will oscillate in the ringdown phase radiating
gravitational waves. These gravitational waves could be
detected in future enhancements in the sensitivity of the
LIGO-VIRGO detectors. The ringdown phase can be
described by quasinormal modes (QNMs). In the case that
the remnant was a relativistic star, the data of those expected
detections could be used to obtain information about the
behavior of matter in the inner part of the star, i.e., to obtain
information about the equation of state (EOS).
The problem of obtaining the EOS for neutron stars

from macroscopic data of these stars has been treated by
Lindblom using the mass-radio curve in [4], recent mod-
ifications can be found in ([5,6,7]). Other authors have

studied the same problem using different techniques ([8,9]).
This problem receives generally the name of inverse stellar
structure problem. In this paper we develop a method to
reconstruct the EOS of neutron stars from experimental
measurements of the mass and the frequency of the
fundamental wI mode (wI-QNM) of different neutron
stars, i.e., from the mass-frequency wI-QNM curve.
The study of QNMs of neutron stars has a long tradition

([10,11,12]), and a summary can be found in [13]. Some
recent results can be found in ([14,15]). In these papers, an
efficient method to calculate the QNM spectra was pre-
sented. This method was also applied to study QNMs in
alternative theories ([16,17,18,19,20]). Here we will
present an enhancement of the method that will allow us
to calculate the w-QNM spectra of thousands of EOSs in a
reasonable time.
In Sec. II we briefly summarize the necessary theoretical

background of the QNM approximation, starting with static
and spherically symmetric stars in order to introduce axial
perturbations. In Sec. III we explain the method developed
to calculate quasinormal modes. In Sec. IV we check the
numerical codes we developed by calculating macroscopic
parameters for some different realistic EOSs. In Sec. V we
briefly introduce the piecewise polytropic parametrization
of the EOS in order to develop our approach to the inverse
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problem in Sec.VI. In Secs. VII andVIII we show the results
of this inversemethod. Finally, in Sec. IXwe finish the paper
with a summary of the main results. In the Appendices A
and B we summarize the slow rotation approximation and
the calculation of the tidal Love parameter, respectively.

II. OVERVIEW OF THE FORMALISM

We will here obtain the necessary differential equations
to calculate the QNMs of nonrotating neutron stars. We will
start with static and spherically symmetric relativistic stars
and then we will introduce axial perturbations.

A. Static and spherically symmetric relativistic stars

Coordinates can be chosen so that the line element has
the form

ds2 ¼ −eνðrÞðcdtÞ2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð1Þ

We will consider the matter in the interior of the star as an
effective perfect fluid with a barotropic equation of state.
uμ is the fluid’s 4-velocity, p is the pressure and ϵ is
the energy density=c2.
It is widely known that the equations describing static

and spherically symmetric relativistic stars are given by

dm
dr

¼ 4πr2ϵ; ð2aÞ

dν
dr

¼ 2G
c2r2

mþ 4π
c2 r

3p

1 − 2Gm
c2r

; ð2bÞ

dp
dr

¼ −
�
ϵþ p

c2

�
G
r2
mþ 4π

c2 r
3p

1 − 2Gm
c2r

; ð2cÞ

where

m ¼ c2r
2G

ð1 − e−λÞ: ð3Þ

Provided an equation of state, p ¼ pðϵÞ, the system of
ordinary differential equations (2) can be solved numerically.

1. Exterior solution for nonrotating stars

The exterior spacetime is given by the Schwarzschild
solution,

ν ¼ −λ ¼ log

�
1 −

2GM
c2r

�
; ð4Þ

where M is the mass of the star.
From the junction conditions between the interior and

the exterior solutions it follows that pðRÞ ¼ 0, with R the
radius of the star.

B. Quasinormal modes of nonrotating stars

Pulsating stars are very important sources of information
for astrophysics. Almost every star pulsates during its
evolution from the early stages to the very late ones, when
the catastrophic creation of a compact object (white dwarf,
neutron star or black hole) occurs. Nonradial pulsations of
compact objects are accompanied with gravitational wave
emission [13].
Gravitational waves are oscillations of spacetime, typi-

cally produced by matter oscillations, which propagate
throughout empty spacetime. This is a result of general
relativity, since spacetime has its own dynamics and it is
coupled to matter via the Einstein field equations. The
possible sources of gravitational waves are interacting black
holes, coalescing compact binary systems, stellar collapses
and pulsars. Thus, neutron stars are good candidates as
sources of detectable gravitational radiation. In fact, the
gravitational waves emitted by a neutron star inspiral were
first observed in August of 2017 (GW170817-[3]).
It is well known that neutron star’s characteristic oscil-

lations present a frequency and a decay time (damping
time). The spectrum of resonances of these gravitational
waves can give us information about the structure and
composition of neutron stars, i.e., information about the
EOS of neutron stars.
The appropriate mathematical tool to study these

damped oscillations is the quasinormal mode (QNM)
expansion. Mathematically, QNM expansion is imple-
mented via perturbations over static and spherically sym-
metric spacetime. If we assume that the pulsation of the star
is small, we can use perturbation theory to describe the
oscillation,

gμν ¼ gð0Þμν þ hμν þOðχ2Þ; ð5Þ

where gð0Þμν is given by Eq. (1) and hμν ¼ OðχÞ. The QNM
expansion parameter has been denoted as χ. We will keep
terms up to first order in the perturbation. Matter is also
perturbed, as well as the fluid’s 4-velocity,

ϵ → ϵþ δϵþOðχ2Þ; ð6aÞ

p → pþ δpþOðχ2Þ; ð6bÞ

u → uþ ∂ξ
∂t þOðχ2Þ; ð6cÞ

where ξ is the displacement of a fluid element.
In general, for nonradial oscillations, the perturbation

functions are dependent of radial and angular coordinates,
and time. The usual procedure is to expand the angular
dependence of the functions in spherical harmonics. Under
a parity transformation, x⃗ → −x⃗ (θ → θ þ π in spherical
coordinates), the components of the metric and stress-
energy tensor will transform like scalars, vectors or higher
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type tensors. Perturbations are, then, indexed with integer
numbers (l, m), but axial symmetry will remove the
dependency on the m number.
There are three type of perturbations: radial, axial and

polar perturbations. Since we are considering solutions of
general relativity, the radial perturbations are not interesting
for gravitational wave search, so they will not be studied
here. Under a parity transformation, axial perturbations
transform like ð−1Þlþ1, while polar ones transform like

ð−1Þl. Hence, axial perturbations do not couple to polar
ones, so we can consider them separately. In this work, we
will only consider axial perturbations.

1. Axial perturbations

Here we will obtain the so-called Regge-Wheeler equa-
tion [10]. In the Regge-Wheeler gauge, axial perturbations
are described by the metric perturbation

hðaxialÞμν ¼
X
l;m

2
6666666666664

0 0 −hl;m0
1

sin θ
∂Ylm

∂φ hl;m0 sin θ
∂Ylm

∂θ
0 0 −hl;m1

1

sin θ
∂Ylm

∂φ hl;m1 sin θ
∂Ylm

∂θ
−hl;m0

1

sin θ
∂Ylm

∂φ −hl;m1
1

sin θ
∂Ylm

∂φ 0 0

hl;m0 sin θ
∂Ylm

∂θ hl;m1 sin θ
∂Ylm

∂θ 0 0

3
7777777777775

; ð7Þ

where h0 and h1 are functions of t and r, and first order in χ.
It is possible to choose the gauge such that the perturbation
of the 4-velocity is trivial,

δuðaxialÞμ ¼ 0: ð8Þ

As we already mentioned, axial symmetry simplifies these
expressions. It is well known that

Ylmðθ;φÞ ∝ Pm
l ðcos θÞeimφ;

and so we can write hðaxialÞμν in terms of the associated
Legendre polynomials, Pm

l ðcos θÞ. Because of axial sym-
metry, we can set m ¼ 0. The associated Legendre poly-
nomials are related to the nonassociated ones by
P0
l ðcos θÞ ¼ Plðcos θÞ. Hence,

hðaxialÞμν ¼
X
l

2
66664

0 0 0 hl0
0 0 0 hl1
0 0 0 0

hl0 hl1 0 0

3
77775 sin θ

∂Plðcos θÞ
∂θ : ð9Þ

Different values of l give rise to different equations
decoupled one from each other. From now on, only l ¼ 2
perturbations will be considered.
Instead of h1, it is easier to write the Einstein field

equations for a metric function Z defined as

Z ¼ e
ν−λ
2
h1
r
: ð10Þ

The resulting equation of motion for Z is

∂2Z
c2∂t2 ¼ eν−λ

∂2Z
∂r2

þeν−λ
�
−
�
1

r
ð1−eλÞþ4πG

c2
reλ

�
ϵ−

p
c2

��∂Z
∂r

−
�
3

r2
ð1þeλÞþ4πG

c2
eλ
�
ϵ−

p
c2

��
Z

�
: ð11Þ

A change of variable to the so-called tortoise coordinate
[13], dr� ¼ e

λ−ν
2 dr, turns the previous expression into a

wave equation with a potential barrier,

∂2Z
c2∂t2 −

∂2Z
∂r2� þ eν

�
6

r2

�
1 −

Gm
c2r

�
þ 4πG

c2

�
ϵ −

p
c2

��
Z ¼ 0:

ð12Þ

This equation is commonly known as the Regge-Wheeler
equation.

2. The quasinormal modes of a star

The quasinormal modes are solutions to the axial (and
polar) equations that satisfy the following boundary
conditions:
(1) All perturbed functions (in our case, Z) have a

regular behavior at r ¼ 0.
(2) They behave as a pure outgoing wave at infinity.
(3) The interior solution matches with the exterior one at

the surface of the star.
The QNM spectrum of a star in general relativity has a

very rich structure. We have already seen that the equations
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governing the axial perturbations can be reduced to a
single wave equation with a potential barrier for the metric
function Z, Eq. (11). The role of the fluid is that of
determining the shape of the potential barrier, as it depends
on m, ϵ and p [21]. Hence, the axial QNMs are pure
gravitational modes and do not have a Newtonian counter-
part. This is the reason why axial QNMs are known as
spacetime modes (or w modes).
On the other hand, the polar modes (which will not be

numerically calculated here) are essentially fluid pulsa-
tions, and are known as fluid modes. The classification of
polar modes can be found in Ref. [13].
As we have already mentioned, w modes are spacetime

modes, and hence they do not have a Newtonian counter-
part. These modes exist for both axial and polar oscilla-
tions. In Sec. III, we will develop a numerical scheme to
obtain these w modes. In particular, we will focus on the
calculation of the fundamental wI mode.

III. NUMERICAL CALCULATION OF
QUASINORMAL MODES

In this section we will explain the algorithm we
developed to calculate QNMs of neutron stars. The
equation to be solved is the Regge-Wheeler equation,
Eq. (11). The time dependence of the metric function Z
will be written as

Zðt; rÞ ¼ e−iωtZðrÞ: ð13Þ

The complex frequency ω will be expressed as

ω ¼ ℜωþ iℑω ¼ 2πνþ i
1

τ
; ð14Þ

where ν is the frequency of the oscillation and τ is the
damping time. In the interior of the star we have the
equation

d2Z
dr2

þ
�
1−

2Gm
c2r

�
−1
�
−
�
−
2Gm
c2r2

þ 4πG
c2

r

�
ϵ−

p
c2

��
dZ
dr

−
�
6

r2

�
1−

Gm
c2r

�
þ 4πG

c2

�
ϵ−

p
c2

��
Zþω2

c2
e−νZ

�
¼ 0:

ð15Þ

On the other hand, in the exterior of the star we have the
equation

d2Z
dr2

þ
�
1 −

2GM
c2r

�
−1
�
2GM
c2r2

dZ
dr

−
6

r2

�
1 −

GM
c2r

�
Z þ ω2

c2

�
1 −

2GM
c2r

�
−1
Z

�
¼ 0: ð16Þ

Instead of Z, we will consider the phase function g,

g ¼ 1

Z
dZ
dr

; ð17Þ

which does not oscillate toward asymptotic infinity [14].
The equation for g is given by

dg
dr

þ g2 þ
�
1 −

2GM
c2r

�
−1
�
2GM
c2r2

g

−
6

r2

�
1 −

GM
c2r

�
þ ω2

c2

�
1 −

2GM
c2r

�
−1
�
¼ 0: ð18Þ

To develop the numerical scheme, we will follow the
three steps we listed in II B 2.

A. Interior solution: Regular behavior at r= 0

The metric function Z has to satisfy the condition of
regular behavior at r ¼ 0. Hence, we have to expand Z in
taylor series and find its coefficients at r ¼ 0. The asymp-
totic behavior of Z when r → 0 can be easily calculated and
is given by

Z¼a3

�
r3þ16πGðϵ0−p0=c2Þ−ω2e−ν0

14c2
r5þOðr7Þ

�
: ð19Þ

B. Exterior solution: Outgoing wave behavior

Now we have to impose the purely outgoing wave
behavior, i.e., g → −i ωc when r → ∞ [14]. A complex-
ification of the radial coordinate is a commonly used
technique to obtain solutions with no ingoing wave
contamination [14] (this technique is known as Exterior
Complex Scaling [22]). The equation for g is now written in
terms of a new variable y related to r by

r ¼ Rþ yeiα; y ∈ ½0;∞Þ: ð20Þ
The parameter α must satisfy

ℜω sin αþ ℑω cos α < 0; ð21Þ
see Ref. [16]. In order to impose the outgoing wave
behavior condition at spatial infinity as accurately as
possible, it is necessary to compactify y. We found useful
to compactify it as

y ¼ 1 − x
x

; x ∈ ½1; 0Þ: ð22Þ

Now we have a compactified complex radial coordinate,

r ¼ Rþ 1 − x
x

eiα; x ∈ ½1; 0Þ: ð23Þ

The asymptotic behavior of gðxÞ when x → 0 (∼r → ∞)
can be easily calculated. It is, for an outgoing wave, given by
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g ¼ −i
ω

c

�
1þ 2GM

c2
e−iαxþOðx2Þ

�
: ð24Þ

C. Matching the interior and exterior solutions

Now we have to impose the third condition: the interior
solution has to match with the exterior one at the surface
of the star. The junction condition between the interior
solution and the exterior one on the boundary of the star is
given by the continuity of the phase function g [14],

gðωÞin ðRÞ ¼ gðωÞoutðRÞ; ð25Þ

where in indicates inside the star and out denotes out of it.
The algorithm implemented to find the quasinormal modes
for a given EOS is a Müller-type method, taken from
Ref. [23]. The function whose roots have to be found to
obtain ω is fðωÞ, which is defined as

fðωÞ≡ gðωÞin ðRÞ − gðωÞoutðRÞ: ð26Þ

We will focus on the numerical calculation of the
fundamental wI mode. In Fig. 1 we show an example of
a fundamental wI mode for SLy EOS.

IV. THE CODE ANALYSIS

We have implemented the numerical method explained
in Sec. III to calculate the quasinormal modes in a PYTHON
code with some parallelization. In order to check the code
we have used well-known equations of state of different
types (EOS with plain nuclear matter, with hyperons, for
hybrids stars and for quark stars). We list below the
different models of EOSs used to check the code.

(i) For plain npeμ nuclear matter we use
APR4 EOS [24], obtained using a variational
method.
SLy EOS [25], obtained using a potential method.

(ii) For mixed hyperon-nuclear mater we use
GNH3 EOS [26], a relativistic mean-field theory
EOS containing hyperons.
BHZBM EOS [27], a nonlinear relativistic mean
field model involving baryon octet coupled to
meson fields.

(iii) For hybrid stars we use ALF4 EOS [28], a hybrid
EOS with mixed APR nuclear matter and color-
flavor-locked quark matter.

(iv) For hybrid stars with hyperons and quark color-
superconductivity we use BS3 EOS [29], obtained
using a combination of phenomenological relativistic
hypernuclear density functional and an effective NJL
model of quantum chromodynamics. The parameters
considered are vector coupling GV=GS ¼ 0.6 and
quark-hadron transition density ρtr=ρ0 ¼ 3.5, where
ρ0 is the density of nuclear saturation.

(v) For quark stars we use WSPHS EOS [30], an
unpaired quark matter EOS with parameters B1=4

eff ¼
123.7 MeV and a4 ¼ 0.53.

The results of applying the code to these models can be
found in Fig. 2. In this figure we present the frequency of
the fundamental wI mode versus the mass (M − ν) for the
different EOSs considered, with 20 configurations for each
EOS. In our computer it takes about 90 seconds to calculate
the 20 quasinormal modes for one EOS. The results are
compatible with those shown in Ref. [14].
For our method to reconstruct the EOS of neutron stars, it

will be necessary to calculate thousands of these M − ν
curves, as will be explained in Sec. VI.
Once the EOS is reconstructed, we will be able to

make predictions of other macroscopic parameters. We will
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FIG. 1. Real and imaginary part of the phase function g vs r
inside and outside the star for a fundamental wI mode with
ν ¼ 8.003 kHz and τ ¼ 29.7892 μs, obtained for SLy EOS with
central energy density ϵ0 ¼ 1018 kg=m3 (M ¼ 1.4169 M⊙).
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FIG. 2. Frequency of the fundamental wI mode vs mass for the
different EOSs considered.
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consider parameters calculated for slowly rotating relativ-
istic stars, together with the tidal deformability (tidal Love
parameter). In the Appendices A and B we present a
summary of the equations and definitions used. We have
also implemented a PYTHON code to calculate the global
parameters obtained in these Appendices (moment of
inertia, quadrupole momment, tidal Love parameter,…).
Using the results it is possible to check the compatibility
of the equations of state with the observations of the
gravitational waves in the GW170817 event. To check the
code that we will use later, we will apply it to the EOSs
considered in this section.
The observation of gravitational waves provides new

information about which models of EOSs are more likely
to be candidate EOSs. GW170817 event was the first
observation of gravitational waves from a binary neutron
star inspiral [3]. In Ref. [3], the probability density
for the distribution of the tidal Love parameters of the
two stellar components, p½λ̄tid1 ; λ̄tid2 �, is obtained using a
post-Newtonian model. Here, we will calculate the relation
λ̄tid2 ðλ̄tid1 Þ for the different candidate EOSs considered in this
paper for a chirp mass M ¼ ð1.188þ0.004

−0.002ÞM⊙ [3], where

M ¼ ðM1M2Þ3=5
ðM1 þM2Þ1=5

: ð27Þ

The results are shown in Fig. 3 (for the low-spin scenario),
together with the contours enclosing 90% and 50% of the
probability density (curves taken from Fig. 5 of Ref. [3]).
BS3 EOS and WSPHS EOS predict λ̄tid values outside the
90% confidence contour.
Our code reproduces previously known results for

the tidal deformability. For instance, the results shown in

Fig. 3 for APR4 and SLy coincide with those presented
in Ref. [3].

V. PIECEWISE POLYTROPIC
EQUATIONS OF STATE

An equation of state is polytropic if

pðρÞ=c2 ¼ KρΓ; ð28Þ

where ρ is the rest mass density and Γ is the polytropic
index, which is defined as

Γ ¼ ρ

p
dp
dρ

: ð29Þ

The energy density=c2, ϵ, is given in terms of ρ and p via
the first law of thermodynamics,

dϵ
dρ

¼ ϵþ p=c2

ρ
: ð30Þ

For the polytropic case, one finds that

ϵðρÞ ¼ ð1þ aÞρþ K
Γ − 1

ρΓ; ð31Þ

where a is a constant [31].
Following Ref. [31], an EOS is said to be piecewise

polytropic for ρ ≥ ρ0 if, for a set of dividing densities
ρ0 < ρ1 < ρ2 < …, the pressure and the energy density are
continuous and given, in the interval ρi−1 ≤ ρ ≤ ρi, by

pðρÞ=c2¼Kiρ
Γi and ϵðρÞ¼ ð1þaiÞρþ

Ki

Γi−1
ρΓi ; ð32Þ

respectively, with

ai ¼
ϵðρi−1Þ
ρi−1

− 1 −
Ki

Γi − 1
ρΓi−1
i−1 : ð33Þ

Continuity of pressure, pðρiÞ=c2 ¼ Kiρ
Γi
i ¼ Kiþ1ρ

Γiþ1

i ,
restricts Kiþ1 to

Kiþ1 ¼
pðρiÞ=c2
ρΓiþ1

i

: ð34Þ

There is general agreement on the low-density EOS for
cold matter. This means that all realistic EOS have practi-
cally the same behavior below nuclear density (the so-
called crust region). Hence, we can choose SLy EOS, for
example, as our low-density EOS. An analytic representa-
tion of pðρÞ for SLy EOS below nuclear density uses four
polytropic pieces [31]. The four regions roughly corre-
spond to a nonrelativistic electron gas, a relativistic electron
gas, neutron drip, and the density range from neutron drip
to nuclear density [31]. The EOS below nuclear density is,
then, fixed (for SLy EOS, the crust corresponds to the
density region below the blue vertical line shown in Fig. 4)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

50%

9
0%

FIG. 3. Predictions for tidal deformability given by the different
realistic EOSs considered, under the assumption that both
components are neutron stars (for the low-spin scenario). Con-
tours enclosing 90% and 50% of the probability density are
shown as dashed lines (both curves taken from Ref. [3]).
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Each choice of a piecewise polytropic EOS above
nuclear density (the so-called core region) is matched
to this low-density EOS. In the core, we consider three
polytropic pieces, specified by the six parameters
fp1;Γ1; ρ1;Γ2; ρ2;Γ3g. A good fit is found for these three
polytropic pieces with fixed divisions: ρ1 ¼ 1017.7 kg=m3

and ρ2 ¼ 1018.0 kg=m3, as shown in Ref. [31]. Hence, we
reduce the number of parameters from six to four, namely
fp1;Γ1;Γ2;Γ3g (for SLy EOS, the core corresponds to the
density region above the blue vertical line shown in Fig. 4).
At intermediate densities, the core’s first polytropic piece

is matched dynamically to the fixed crust, which was
chosen to be a parametrized four-piece polytropic version
of SLy EOS. This defines the core-crust density transition
(for SLy EOS, the core-crust density transition corresponds
to the blue vertical line shown in Fig. 4).
In Fig. 4 we show SLy EOS reconstructed from its

polytropic parameters, taken from Table III of Ref. [31].
Awide variety of candidate and realistic EOSs, including

plain nuclear matter, hyperons, condensates and deconfined
quarks, are well fit by some set of polytropic parameters,
namely fp1;Γ1;Γ2;Γ3g [31]. Because of this, piecewise
polytropic parametrization can be very useful to generate
realistic EOS. This is where the idea of our approach to the
inverse problem arises, as we will explain in Sec. VI.

VI. THE PIECEWISE POLYTROPIC MESHING
AND REFINEMENT METHOD FOR

THE INVERSE PROBLEM

The complete knowledge of the neutron star EOS makes
possible the calculation of macroscopic quantities such as
the mass, the quasinormal modes, the tidal Love parameter,

etc. Viceversa, from the measurement of macroscopic
observables it is possible to invert this map and reconstruct
the EOS: this is the so-called inverse problem [4].
As we mentioned in Sec. V, the piecewise polytropic

parametrization fits a large class of realistic and candidate
EOSs (in fact, the polytropic parametersflog10p1;Γ1;Γ2;Γ3g
for a wide variety of EOSs can be found in Table III
of Ref. [31]). Thus, each EOS is determined simply
by specifying 4 numbers. Here is where the idea of our
inverse stellar method arises: we will create a mesh of
EOSs in a 4-volume of piecewise polytropic parameters
flog10p1;Γ1;Γ2;Γ3g. This 4-volume must include as many
candidate EOSs as possible, for example, from the ones
listed in Table III of Ref. [31]. The initial mesh of polytropic
parameters will be given by

log10p1 ¼ ½34.2; 34.7�10;
Γ1 ¼ ½2; 3.8�14;
Γ2 ¼ ½1.8; 3.8�14;
Γ3 ¼ ½1.8; 3.8�14: ð35Þ

From now on, the subindex in an interval will indicate the
number of equidistant elements taken in that interval. Hence,
we will have a total of 10 × 143 ¼ 27440 EOSs in our initial
4-volume, i.e., 27440 points in a 4-dimensional space of
coordinates flog10p1;Γ1;Γ2;Γ3g.
As shown in the illustration of the inverse problem,

Fig. 5, we will reconstruct the neutron star EOS from
measurements of the frequency of the fundamental wI
mode (ν) and the mass (M) of some different neutron stars.
The input data will be denoted as Mexp and νexp.
Our algorithm will numerically calculate each νiðMiÞ

curve (i ¼ 1;…; 27440) in order to find the most similar
νðMÞ curve to the input data νexpðMexpÞ. That is, it will find
the point in the 4-space of coordinates flog10p1;Γ1;Γ2;Γ3g
that represents the input data with a certain precision.
The algorithm, which will be called the piecewise

polytropic meshing and refinement method for the inverse
problem, proceeds as follows:
(1) calculate the fundamental wI mode (ν, τ) and the

mass (M) for every EOS in the 4-volume of poly-
tropic parameters. We calculate 20 configurations for

1010 1012 1014 1016 1018
0
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1.5
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2.5

3

FIG. 4. Reconstruction of SLy EOS from its polytropic param-
eters. Pink vertical lines represent fixed density values where Γ
changes in the curst region. Green vertical lines represent fixed
density values where Γ changes in the core region. Blue vertical
line represents the core-crust density transition.

FIG. 5. Illustration of the inverse problem for neutron stars. The
EOS is reconstructed from measurements of the frequency of the
fundamental wI mode and the mass of 5 different neutron stars.
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each EOS in the same fixed central pressure range,
namely log10p0 ¼ ½33.9; 36.61�20.

(2) fit with piecewise linear interpolation the curve
νiðMiÞ for all the EOSs in the 4-space of polytropic
parameters. The interpolation is necessary to calcu-
late νiðMexpÞ.

(3) compare each curve νiðMiÞ with the input data
νexpðMexpÞ by calculating

ei ¼ max

�jνiðMexpÞ − νexpðMexpÞj
νexpðMexpÞ

�
: ð36Þ

We only calculate ei for those EOSs that fulfill the
condition maxðMiÞ ≥ maxðMexpÞ. The smaller ei is,
the more similar νiðMiÞ and νexpðMexpÞ are.

(4) sort the EOSs in increasing order of ei and check the
value of miniðeiÞ.

(5) if miniðeiÞ < tol, finish the algorithm. In other case,
define a new 4-volume of polytropic parameters that
contains, for example, the first 3 EOSs with smallest
ei, and repeat from step 1. This new 4-volume of
polytropic parameters is a local refinement of the
initial mesh. A graphical illustration of the local
refinement is shown in Fig. 6.

A scheme of the entire meshing and refinement method
is shown in Fig. 7.
The main difficulty of the meshing and refinement

method is to calculate so many quasinormal modes (20
for each EOS, which means a total of 20 × 27440 ¼
548800 quasinormal modes in the initial mesh). To obtain

an only quasinormal mode for a given EOS, one has to find
a complex frequency ω that verifies the junction condition
(25) when solving the Regge-Wheeler equation inside and
outside the neutron star. This gives rise to many conver-
gence problems, but we got the Müller method working
quite correctly.
Once the algorithm has finished, we will have a

reconstructed EOS. Then, we will be able to calculate
other macroscopic parameters (such as the moment of
inertia, the quadrupole moment, the tidal Love parame-
ter,…) in order to make predictions that can be compared
with other experimental data.
Since today we still do not have the necessary exper-

imental data, in order to test the algorithm we will suppose
that the measured macroscopic parameters correspond to,
for example, the ones calculated for GNH3 EOS
(Mexp ¼ MGNH3 sand νexp ¼ νGNH3). We will consider 5
of the 20 GNH3 configurations shown in Fig. 2. Since
GNH3 is a known EOS, we will be able to directly compare
the reconstructed EOS with the original one and also to
compare them in macroscopic parameters.
In Sec. VII we plot some macroscopic parameters that

we calculated for the 27440 EOSs in the initial mesh of
polytropic parameters. The numerical results of the mesh-
ing and refinement method are described in Sec. VIII.

VII. NUMERICAL RESULTS FOR THE 27440
EQUATIONS OF STATE GENERATED

In this section, we will show relations between some
of the macroscopic parameters of the 27440 EOSs
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FIG. 6. Graphical illustration of the local refinement of the initial mesh from the three EOSs with smallest values of ei. The image
represents a simplified model with 2 polytropic parameters X ¼ ½1; 8�8 and Y ¼ ½1; 9�9.
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generated in the 4-volume of polytropic parameters defined
by eq. (35).
In Fig. 8 we plot the relation between the moment of

inertia and the quadrupole moment for the 27440 EOSs
generated. We observe that each EOS has its own behavior.
However, a universal relation between these two param-

eters is found if they are rescaled as in Eq. (B5). Also
considering the tidal Love parameter leads to the so-called
I-Love-Q relations. In Figs. 9 and 10 we plot the I-Q and
the I-Love relations, respectively.

The two previous relations are EOS independent: the
27440 EOSs fall in the same curve. The fact of having
so many different EOSs falling in the same curve only
increases the universality of the I-Love-Q relations.
As for the quasinormal modes, in Fig. 11 we plot the

relation between the frequency of the fundamental wI mode
and its damping time.
As seen in Fig. 11, the relation between the frequency of

the fundamental wI mode (given by 2πν ¼ ℜω) and its
damping time (given by τ−1 ¼ ℑω) clearly depends on the

FIG. 8. Moment of inertia vs quadrupole moment for the 27440
EOSs generated (colors randomly chosen).

FIG. 9. I-Q relation for the 27440 EOSs generated (colors
randomly chosen).

FIG. 7. Scheme of the piecewise polytropic meshing and refinement method for the inverse problem.
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EOS. However, one may find universal relations between
ℑω and ℜω if ω is properly rescaled.
In Ref. [14] it was shown that rescaling ωwith the square

root of the central pressure,

ω̄ ¼ cffiffiffiffiffiffiffiffiffi
Gp0

p ω; ð37Þ

leads to an approximately-universal relation. This is shown
in Fig. 12.
We can also find universal relations if ω is rescaled with

the mass,

ω� ¼ GM
c3

ω: ð38Þ

This universal relation is shown in Fig. 13.

One may also find other interesting universal relations
between ω̄ (or ω�) and λ̄tid. In Figs. 14 and 15 we plot the
relation between ℑω̄ and λ̄tid, and between ℑω� and λ̄tid,
respectively.
Finally, in Fig. 16 we plot the curves νiðMiÞ,

i ¼ 1;…; 27440. As explained in Sec. VI, these curves
are essential to develop our approach to the inverse
problem.

VIII. TESTING THE MESHING
AND REFINEMENT METHOD

In this section, we will test the piecewise polytropic
meshing and refinement method explained in Sec. VI. We
will consider some GNH3 EOS stellar configurations as our

FIG. 10. I-Love relation for the 27440 EOSs generated (colors
randomly chosen).

FIG. 11. Frequency of the fundamental wI mode vs its damping
time for the 27440 EOSs generated (colors randomly chosen).

FIG. 12. ℑω̄ vs ℜω̄ for the 27440 EOSs generated (colors
randomly chosen). The scaling with the square root of the central
pressure is quite independent of the EOS.

FIG. 13. ℑω� vs ℜω� for the 27440 EOSs generated (colors
randomly chosen). The scaling with the mass is quite independent
of the EOS.
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input data, i.e., Mexp ¼ MGNH3 and νexp ¼ νGNH3. To carry
out the test we will consider a tolerance tol ¼ 0.005.

A. First iteration of the method

We proceed as explained in Sec. VI (steps 1 to 4). The
polytropic parameters of the first 3 EOSs with the smallest
values of ei in the mesh of EOSs given by Eq. (35) are listed
in Table I.
Since miniðeiÞ ≥ 0.005, we proceed with the refinement

of the initial mesh (step 5 of our method). Hence, we define
a local refinement of the initial 4-volume of piecewise
polytropic parameters, which was given by Eq. (35), that
contains the EOSs listed in Table I. This local refinement is
given by

log10p1 ¼ 34.644;

Γ1 ¼ ½2.5538; 2.6923�;
Γ2 ¼ 2.2615;

Γ3 ¼ ½1.9538; 2.1077�: ð39Þ
Note that we have one single element in log10 p1 and Γ2.
In order to avoid this, we will consider the adjacent values
for all the parameters, i.e.,

log10p1 ¼ ½34.589; 34.7�8;
Γ1 ¼ ½2.4154; 2.8308�10;
Γ2 ¼ ½2.1077; 2.4154�10;
Γ3 ¼ ½1.8; 2.2615�10: ð40Þ

A graphical illustration of the local refinement of the initial
mesh was shown in Fig. 6. The new 4-volumewill contain a
total of 8 × 103 ¼ 8000 EOSs.

B. Second iteration of the method (first refinement)

Again, we proceed as explained in the algorithm in
Sec. VI (steps 1 to 4). The polytropic parameters of the first
4 EOSs with the smallest values of ei in the mesh of EOSs
given by Eq. (40) are listed in Table II. We list 4 EOSs
instead of 3 because the first two ones have the same value
of ei.
Since miniðeiÞ ≥ 0.005, we proceed with the refinement

of the initial mesh (step 5 of our method). We now define a
local refinement of the previous 4-volume of polytropic

FIG. 15. ℑω� vs λ̄tid for the 27440 EOSs generated (colors
randomly chosen).

FIG. 16. Frequency of the fundamental wI mode vs mass for the
27440 EOSs generated (colors randomly chosen).

FIG. 14. ℑω̄ vs λ̄tid for the 27440 EOSs generated (colors
randomly chosen).

TABLE I. Polytropic parameters of the first 3 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (35).

ei log10 p1 Γ1 Γ2 Γ3

0.0078506 34.644 2.6923 2.2615 1.9538
0.010446 34.644 2.5538 2.2615 2.1077
0.011615 34.644 2.6923 2.2615 2.1077
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parameters, which was given by Eq. (40), from the EOSs
listed in Table II. This new local refinement is given by

log10p1 ¼ ½34.621; 34.668�8;
Γ1 ¼ ½2.5077; 2.7385�10;
Γ2 ¼ ½2.1419; 2.3128�10;
Γ3 ¼ ½2.0564; 2.3128�10: ð41Þ

In the third iteration we will have a total of 8 × 103 ¼
8000 EOSs.

C. Third iteration of the method (second refinement)

Again, we proceed as explained in the algorithm in
Sec. VI (steps 1 to 4). The polytropic parameters of the first
4 EOSs with the smallest values of ei in the mesh of EOSs
given by Eq. (41) are listed in Table III. As in the second
iteration, we list 4 EOSs instead of 3 because the first two
ones have the same value of ei.
Since miniðeiÞ < tol, we stop the algorithm. From now

on, the first EOS listed in Table III will be denoted as the
reconstructed GNH3 EOS.

D. Comparison between the original and the
reconstructed GNH3 equations of state

Here we will distinguish between three different
GNH3 EOS:

(i) The original GNH3 EOS [26].
(ii) The reconstructed GNH3 EOS. This is the one our

algorithm reconstructed, whose polytropic parame-
ters are listed in the first row of Table III.

(iii) The polytropic GNH3 EOS. This one is the poly-
tropic fit of GNH3 EOS, whose polytropic param-
eters can be found in Table III of Ref. [31].

Figure 17 shows the frequency of the fundamental wI
mode vs the mass for the original GNH3 EOS (blue
diamonds) and for the reconstructed GNH3 EOS (black
circles), together with the relative difference.
Since the input data correspond to 5 GNH3 configura-

tions, we can compare the reconstructed GNH3 EOS with
the original one (this would not be possible if we had used
real experimental data). There are two different ways to
compare them:
(1) Directly comparing the EOSs. The easiest way to do

it is by comparing the polytropic parameters of the
reconstructed EOS with those of the polytropic one.
The polytropic parameters of both EOSs are listed in
Table IV.
The polytropic parameters of the reconstructed

GNH3 EOS are very similar to those of the poly-
tropic one, as expected.

(2) Comparing both EOSs in macroscopic parameters
by numerically solving the equations obtained in
Sec. II and in the Appendices A and B. In Table V
we compare the reconstructed GNH3 EOS with the
original one by calculating 20 stellar configurations
with the same central energy densities for both
EOSs. We also compare the original GNH3 EOS
with the polytropic one, in order to check how good
our reconstruction is.

TABLE II. Polytropic parameters of the first 4 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (40).

ei log10 p1 Γ1 Γ2 Γ3

0.0050477 34.637 2.5539 2.2786 2.1077
0.0050477 34.637 2.5539 2.2786 2.1589
0.0058107 34.652 2.6923 2.1761 2.2615
0.0065108 34.637 2.5539 2.2786 2.2102

TABLE III. Polytropic parameters of the first 4 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (41).

ei log10 p1 Γ1 Γ2 Γ3

0.0035480 34.648 2.6616 2.1989 2.2843
0.0035480 34.648 2.6616 2.1989 2.3128
0.0037085 34.648 2.6359 2.1989 2.2843
0.0037134 34.648 2.6359 2.1989 2.3128
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FIG. 17. Top panel: frequency of the fundamental wI mode vs
mass for the input data (blue diamonds) and the reconstructed
EOS (black circles). Bottom panel: relative difference between
the input data and the reconstructed EOS.

TABLE IV. Comparison between the polytropic parameters of
the reconstructed GNH3 EOS and the polytropic one.

EOS log10 p1 Γ1 Γ2 Γ3

Reconstructed GNH3 34.648 2.6616 2.1989 2.2843
Polytropic GNH3 34.648 2.664 2.194 2.304
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The reconstructed GNH3 EOS is very similar to
the original one in macroscopic parameters. Com-
paring the results of both columns of Table V, we
conclude that our polytropic reconstruction of
GNH3 EOS is almost as good as the polytropic
fit of Ref. [31].

Now that the neutron star EOS has been determined, we
can also calculate the predictions for the tidal deformability
given by the reconstructed EOS, as we did in Fig. 3 for the
realistic EOSs considered in this paper. This analysis would
be more interesting if the input data were real experimental
data and not GNH3 configurations, since then we would
check if the reconstructed EOS would predict λ̄tid values
inside the 90% confidence contour or not. Since the input
data are GNH3 configurations, we expect the results to be
very similar to the ones obtained for GNH3 EOS. The
resulting curve is shown in Fig. 18.
We conclude that our reconstruction of GNH3 EOS with

the meshing and refinement method is almost as good as
the piecewise polytropic fit. This means that, starting from
only 5 input (M, ν) points, we have been able to reconstruct
the neutron star EOS in a very good approximation.
We also applied the meshing and refinement method for

several EOSs (APR4, SLy, ALF4, …), and we found that
GNH3 EOS is, in fact, one of the most conflictive EOS, i.e.,
the number of iterations needed for any of these EOSs is
smaller the ones needed for GNH3.

E. Testing the meshing and refinement
method with experimental error

Consider the same 5 GNH3 configurations we used as
input data for the meshing and refinement method. If the
input data was experimental data, it would have an

associated experimental error. In order to make an estima-
tion of how this experimental error would affect the final
results, now we will randomly modify the input data in a
uncertainty interval, i.e.,

Xi
exp →Xi

expþ rand½−ΔXi
exp;ΔXi

exp�; i¼ 1;…;5; ð42Þ

with

ΔXi
exp ¼ ϵXXi

exp; i ¼ 1;…; 5; ð43Þ

where X is either M or ν, and rand½A; B� represents the
standard uniform distribution in the interval ½A;B�. We will
consider the same error ϵM ¼ ϵν ¼ 0.01 for both the mass
and the frequency of the fundamental wI mode.
The objective of this analysis is to find out how an

experimental error, i.e., ΔMexp and Δνexp, would propagate
to the polytropic parameters of the reconstructed equation
of state.
We will carry out several realizations of the first iteration

of the meshing and refinement method with different
inputs. We here present three typical realizations to show
the characteristics of the results.

1. First realization of the test

The results of the first realization of the test are shown in
Table VI.

2. Second realization of the test

The results of the second realization of the test are shown
in Table VII.
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FIG. 18. Predictions for tidal deformability given by the
reconstructed GNH3 EOS, under the assumption that both
components are neutron stars. Contours enclosing 90% and
50% of the probability density are shown as dashed lines (both
curves taken from Ref. [3]).

TABLE V. (a) Maximum relative difference in macroscopic
parameters between the original GNH3 EOS and the recon-
structed one out of 20 configurations calculated. (b) Maximum
relative difference in macroscopic parameters between the origi-
nal GNH3 EOS and the polytropic one out of 20 configurations
calculated.

Parameter

Maximum relative difference (%)

(a) Original-reconstructed (b) Original-polytropic

p0 2.4249 2.2727
R 0.62698 0.63248
M 0.91586 0.86603
I 1.3854 1.0864
Ī 1.7485 1.6217
Q 1.9447 1.9695
Q̄ 2.1123 1.7168
λ̄tid 6.316 5.8184
ν 0.44696 0.41161
τ 1.2084 1.0827
ℜω̄ 1.2664 1.1411
ℑω̄ 2.3122 2.0984
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3. Third realization of the test

The results of the third realization of the test are shown
in Table VIII.
Comparing the results shown in Tables VI, VII and VIII

with those shown in Table I, we conclude that Γ1 and Γ3

are the most affected polytropic parameters under a small
variation of the original input data.
Note that the results presented here are just an estimation

since we only show the first iteration of the meshing and
refinement method. If several iterations were applied, we
would expect the variations of Γ1 and Γ3 to be smaller.

IX. CONCLUSIONS

The main objective of this paper was the development
of a method to reconstruct the neutron star EOS from
measurements of the mass and the wI-QNM spectra of
different neutron stars. We have named it the piecewise
polytropic meshing and refinement method since it starts
with a wide mesh of polytropic parameters which is locally
refined in the subsequent iterations. We have tested it
considering the input data as 5 GNH3 configurations
(5 values of MGNH3 and νGNH3) and found that the
algorithm reconstructs the EOS up to a given tolerance.
The reconstructed EOS and the original GNH3 are very
similar since the polytropic parameters of both EOS are
similar itself. Moreover, the macroscopic parameters cal-
culated from the reconstructed EOS are very similar to the

ones calculated from the original GNH3 EOS. The meshing
and refinement method has been applied for several EOSs
and it works even better than for GNH3 (for instance, for
APR4, SLy, ALF4). Hence, we are confident that the
method would work efficiently with experimental data.
Also, the algorithm is designed in such a way that it can
reconstruct the EOS even if its polytopic parameters do not
belong to the initial mesh.
As a subproduct of the meshing and refinement method,

we developed some optimized algorithms based in the ones
presented in ([14,15]) to calculate axial QNMs of thou-
sands of EOSs in a reasonable time. To test the new
algorithm, we calculated w-quasinormal modes of some
realistic EOSs (APR4, SLy, GNH3, BHZBM, ALF4, BS3
and WSPHS) and plotted the results.
We also developed an optimized code to calculate slow

rotation parameters together with the tidal deformation of
thousands of EOS. We tested it by calculating the relation
λ̄tid1 ðλ̄tid2 Þ for a binary system with M ¼ 1.188 M⊙ for the
different realistic EOSs considered here (namely APR4,
SLy, GNH3, BHZBM, ALF4, BS3 and WSPHS) and
showed that BS3 and WSPHS predict λ̄tid values outside
the 90% confidence contour derived from the gravitational
wave event GW170817 (for the low-spin scenario).
Let us now address the question of the application of the

method to actual observations. The quasinormal modes of
relativistic stars can be excited in several astrophysical
processes, such as gravitational collapse to a neutron star,
binary coalescence leading to neutron star formation, pulsar
“glitches”, accretion of matter or close encounter with other
compact objects ([13,32]). In principle, in those situations
gravitational waves would be produced and, eventually,
could be detected. Which modes are more important in the
gravitational radiation emitted in each situation depends on
several factors, such as the amount of energy that can be
stored in the mode, the presence of the other dissipative
processes or the value of the frequency of the mode.
Numerical simulations of core collapse and binary

coalescence suggest that the mode which would be most
excited is the fundamental mode of the star (the f mode).
The f mode has a typical frequency between 1.5 and 3 KHz,
i.e., a region of the spectra where the current ground based
detectors do not have sufficient sensitivity. The new
generations of interferometric detectors will have better
sensitivity in the high frequency region and, in principle, it
could be possible to detect the f mode of neutron stars
([33,34,35,36]).
In this paper we use axial w modes, since numerical

calculations for axial w modes are simpler than those for
polar f modes. However, the piecewise polytropic meshing
and refinement method can be applied with f modes and it
is now under development.
The typical frequency of the fundamental axial w mode

of a relativistic star is over 5 KHz, which makes it more
unlikely to be detected by the current ground detectors than

TABLE VI. Polytropic parameters of the first 3 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (35).

ei log10 p1 Γ1 Γ2 Γ3

0.010565 34.644 2.5538 2.2615 2.1077
0.011084 34.644 2.5538 2.2615 2.2615
0.011848 34.644 2.6923 2.2615 1.9538

TABLE VII. Polytropic parameters of the first 3 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (35).

ei log10 p1 Γ1 Γ2 Γ3

0.014579 34.644 2.5538 2.1077 2.8769
0.015078 34.644 2.5538 2.1077 2.7231
0.015809 34.644 2.5538 2.2615 1.9538

TABLE VIII. Polytropic parameters of the first 3 EOSs with the
smallest values of ei in the 4-volume defined by Eq. (35).

ei log10 p1 Γ1 Γ2 Γ3

0.0061922 34.644 2.6923 2.2615 1.9538
0.012781 34.7 2.9692 1.8 3.0308
0.012858 34.7 3.1077 1.8 3.0308
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the f mode. Anyway, let us mention that recently it has
been shown that these modes can be excited in the collapse
of a neutron star to a black hole. The w modes of the
neutron star are excited soon before the black hole
formation and the gravitational radiation of the process
contains w modes of the collapsing star and the born black
hole [37] (note that, in this situation, the EOS would
contain more microphysics information). Others studies
of the excitability of the w modes can be found in
([38,39,40,41,42]).
In conclusion, in order to make gravitational astereo-

seismology we need gravitational wave detectors more
sensitive to high frequencies. We hope that, in the next
generations of the detectors, it will be possible to detect
quasinormal modes of relativistic stars [34]. Also, we
expect that the algorithm developed in this paper (the
piecewise polytropic meshing and refinement method),
which can be applied with different global properties of
the star (wmodes in this paper, f modes,…), will be useful
to study the EOS and the properties of neutron stars.
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APPENDIX A: SLOWLY ROTATING
RELATIVISTIC STARS

We here will summarize the equations for uniformly
slowly rotating relativistic stars, following Ref. [43], in the
International System of Units. Coordinates can be chosen
so that the line element has the form

ds2 ¼ −H2ðr; θÞðcdtÞ2 þQ2ðr; θÞdr2
þ r2K2ðr; θÞfdθ2 þ sin2θ½dφ − Lðr; θÞdt�2g: ðA1Þ

The fluid’s four-velocity will be considered circular,
which means that uμ ∝ δμt þ Ω

c δ
μ
φ, where Ω ¼ constant is

the angular velocity of the fluid. From the normalization
condition uμuμ ¼ −c2 it follows that

uμ ¼
�
−
�
gtt þ 2

Ω
c
gtφ þ

Ω2

c2
gφφ

��−1=2
ðc; 0; 0;ΩÞ: ðA2Þ

The metric functions H2, Q2 and K2 must be even
functions of Ω, and L must be an odd function of Ω [43].
Hence, these functions can be expanded in power series of
ε ∝ Ω as follows

H2ðr; θÞ ¼ eνðrÞ½1þ 2hðr; θÞ þOðε4Þ�; ðA3aÞ

Q2ðr; θÞ ¼ eλðrÞ
�
1þ 2G

c2
eλðrÞ

r
mðr; θÞ þOðε4Þ

�
; ðA3bÞ

K2ðr; θÞ ¼ 1þ 2kðr; θÞ þOðε4Þ; ðA3cÞ
Lðr; θÞ ¼ ωðr; θÞ þOðε3Þ: ðA3dÞ

1. First order slow rotation

From the perturbed Einstein equation δGð1Þ
tφ ¼ 8πG

c4 δTð1Þ
tφ

it follows that ωðr; θÞ ¼ ωðrÞ [43]. The resulting Einstein
equation for ω̄ðrÞ ¼ Ω − ωðrÞ can be written as

1

r4
d
dr

�
r4j

dω̄
dr

�
þ 4r−1

dj
dr

ω̄ ¼ 0; ðA4Þ

where

j ¼ e−
νþλ
2 : ðA5Þ

2. Exterior solution to the O(ε) equation

In the exterior of the star we know that ν ¼ −λ, and
hence the solution to Eq. (A4) is given by

ω̄ðrÞ ¼ Ω −
2GJ
c2r3

; ðA6Þ

where J is the total angular momentum of the star,

J ¼ c2R4

6G
dω̄
dr

				
r¼R

; ðA7Þ

as defined in Ref. [43]. The moment of inertia can be
calculated as

I ¼ J
Ω
: ðA8Þ

3. Second order slow rotation

If an expansion in spherical harmonics of the metric
(A1) is made, following Ref. [10], one finds that it takes
the form

hðr; θÞ ¼ h0ðrÞ þ h2ðrÞP2ðcos θÞ þ…; ðA9aÞ

mðr; θÞ ¼ m0ðrÞ þm2ðrÞP2ðcos θÞ þ…; ðA9bÞ

kðr; θÞ ¼ k2ðrÞP2ðcos θÞ þ…; ðA9cÞ

because H2, Q2 and K2 transform like scalars under
rotations [43]. At this order, the border of the star is
deformed,

r → rþ ξðr; θÞ þOðε4Þ: ðA10Þ

Second order slow rotation also perturbs the pressure and
the energy density,
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p → p − ξðr; θÞ dp
dr

þOðε4Þ;

ϵ → ϵ − ξðr; θÞ dϵ
dr

þOðε4Þ: ðA11Þ

The function ξðr; θÞ is proportional to Ω2 and transforms
like a scalar under rotations [43],

ξðr; θÞ ¼ ξ0ðrÞ þ ξ2ðrÞP2ðcos θÞ þ… : ðA12Þ

It can be shown that all the coefficients with l > 2 in the
expansions of h,m, k and ξmust vanish [43]. The reduction
in the number of values of l from infinity to 2 in the slow
rotation approximation greatly simplifies the calculations.
Following Ref. [43], we define a function p�ðr; θÞ such

that

ξðr; θÞ ¼ −c2
�
ϵþ p

c2

��
dp
dr

�
−1
p�ðr; θÞ: ðA13Þ

From the conservation of the stress-energy tensor,
∇νTθν ¼ 0, one finds that

p�
2 ¼ −h2 −

r2ω̄2e−ν

3c2
: ðA14Þ

The previous relation and

p�
0 ¼ constant − h0 þ

r2ω̄2e−ν

3c2
; ðA15Þ

which is also obtained in Ref. [43], represent two first
integrals of motion.
The equations for different values of l are not coupled

together, and can then be considered separately [43].

a. The l = 0 equations

From the perturbed Einstein equations δGð2Þ
tt ¼ 8πG

c4 δTð2Þ
tt

and δGð2Þ
rr ¼ 8πG

c4 δTð2Þ
rr it follows, respectively, that

dm0

dr
¼ r4j2ω̄02

12G
−
r3ðj2Þ0ω̄2

3G
þ4πc2r2

�
ϵþ p

c2

�
dϵ
dp

p�
0;

ðA16aÞ

dp�
0

dr
¼ d

dr

�
r2ω̄2e−ν

3c2

�
−

1

1 − 2Gm
c2r

�
Gm0

c2r

�
1

r
þ ν0

�

−
1

12c2
j2r3ω̄02 þ 4πG

c2
r


ϵþ p

c2

�
p�
0

�
: ðA16bÞ

b. The l = 2 equations

Combining the (θ, θ) and the (φ, φ) components as

δGð2Þ
φφ − 8πG

c4 δTð2Þ
φφ ¼ sin2θ½δGð2Þ

θθ − 8πG
c4 δTð2Þ

θθ �, one finds a
first integral of motion given by

h2 þ
Gm2

c2rð1 − 2Gm
c2r Þ

¼ r4ω̄02j2

6c2
−
ðj2Þ0r3ω̄2

3c2
: ðA17Þ

Finally, from components (r, r) and (r, θ) one finds the
system of equations

dv
dr

¼ −h2ν0 þ
�
1

r
þ ν0

2

��
r4j2ω̄02

6c2
−
r3ðj2Þ0ω̄2

3c2

�
; ðA18aÞ

dh2
dr

¼
�
−ν0 þ 1

c2ð1 − 2Gm
c2r Þν0

�
8πG

�
ϵþ p

c2

�
−
4Gm
r3

��
h2

−
4v

r2ð1 − 2Gm
c2r Þν0

þ 1

6

�
1

2
ν0r −

1

rð1 − 2Gm
c2r Þν0

�
r3j2ω̄02

c2

−
1

3

�
1

2
ν0rþ 1

rð1 − 2Gm
c2r Þν0

�
r2ðj2Þ0ω̄2

c2
; ðA18bÞ

where v ¼ h2 þ k2.

4. Exterior solution to the O(ε2) equations

a. The l = 0 equations

The solution of the system of equations (A16) (in terms
of h0 instead of p�

0) in the exterior of the star is given by

m0 ¼ δM −
GJ2

c4r3
; ðA19aÞ

h0 ¼
Gð−δM þ GJ2

c4r3Þ
c2rð1 − 2GM

c2r Þ
; ðA19bÞ

where δM is the change in mass of the perturbed configu-
ration from its nonperturbed value.

b. The l = 2 equations

The solution of the system of equations (A18) in the
exterior of the star is given by

v ¼ KQ1
2ðζÞ

2GM
c2r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM

c2r

q −
G2J2

c6r4
; ðA20aÞ

h2 ¼ KQ2
2ðζÞ þ

G2J2

c6r4

�
c2r
GM

þ 1

�
; ðA20bÞ

where ζ ¼ c2r
GM − 1 and Qm

l ðζÞ is the associated Legendre
function of the second kind [43]. The constant K is related
to the mass quadrupole moment of the configuration by the
relation [43]

Q ¼ J2

Mc2
þ 8KG2M3

5c4
: ðA21Þ
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APPENDIX B: TIDALLY DEFORMED
NEUTRON STARS

In this section, we will consider neutron stars in binary
systems. The primary star will be modeled as a nonrotating
star that is tidally deformed by its companion, the secon-
dary star [44]. The deformation due to tidal effects will be
implemented via perturbations over static and spherically
symmetric spacetime, as we did when introducing slow
rotation and the QNM approximation.
As we are interested in a nonrotating tidally deformed

neutron star, we set Ω ¼ 0. It can be shown that the metric
perturbation for the second order tidal deformation is the
same as the l ¼ 2 part of the second order slow rotation
perturbation. Setting ω̄ ¼ 0 in the system of ordinary
differential equations given by Eq. (A18),

dvH

dr
¼ −hH2 ν0; ðB1aÞ

dhH2
dr

¼
�
−ν0 þ 1

c2ð1− 2Gm
rc2 Þν0

�
8πG

�
ϵþ p

c2

�
−
4Gm
r3

��
hH2

−
4vH

r2ð1− 2Gm
rc2 Þν0

: ðB1bÞ

The superscriptH stands for the fact that these equations
are simply the homogeneous part of the full system of
equations (A18). Once we have solved these equations
numerically, we calculate the tidal Love number, ktid2 . The
tidal Love number is related to how easy or difficult it
would be to deform a star. It is given by [45]

ktid2 ¼ 8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� logð1 − 2CÞg−1;

ðB2Þ

where

C ¼ GM
c2R

; y ¼ R

�
1

hH2

dhH2
dr

�				
r¼R

−
4πR3ϵsup

M
: ðB3Þ

C is known as the compactness parameter, and ϵsup is the
energy density=c2 at the surface of the star, if nonzero [46].
We will be interested in calculating the so-called tidal Love
parameter, which is given in terms of the tidal Love number
ktid2 and the compactness parameter C as

λ̄tid ¼ 2ktid2
3C5

: ðB4Þ

1. I-Love-Q universal relations

Neutron stars are not only characterized by their mass
and radius. They are also characterized by how fast they can
spin given a fixed angular momentum, through their
moment of inertia, how much they can be deformed away
from sphericity, through their quadrupole moment, and
how easy or difficult it would be to deform them, through
their tidal Love parameter [44]. All these quantities depend
sensitively on the star’s internal structure, and hence on
unknown nuclear physics.
Following Ref. [44], let us define the adimensional

quantities

Ī ¼ c4I
G2M3

and Q̄ ¼ c2MQ
J2

: ðB5Þ

The I-Love-Q universal relations are relations between the
moment of inertia (Ī), the quadrupole moment (Q̄) and
the tidal Love parameter (λ̄tid) that do not depend on the
internal structure of neutron stars (i.e., do not depend on the
EOS of the star). This can be used in our benefit to obtain
any of these parameters measuring only one of them.
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