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Advanced methods for computing perturbative, quantum-gravitational scattering amplitudes show great
promise for improving our knowledge of classical gravitational dynamics. This is especially true in the
weak-field and arbitrary-speed (post-Minkowskian, PM) regime, where the conservative dynamics at 3PM
order has been recently determined for the first time, via an amplitude calculation. Such PM results are most
relevantly applicable to relativistic scattering (unbound orbits), while bound/inspiraling binary systems, the
most frequent sources of gravitational waves for the LIGO and Virgo detectors, are most suitably modeled
by the weak-field and slow-motion (post-Newtonian, PN) approximation. Nonetheless, it has been
suggested that PM results can independently lead to improved modeling of bound binary dynamics,
especially when taken as inputs for effective-one-body (EOB) models of inspiraling binaries. Here, we
initiate a quantitative study of this possibility, by comparing PM, EOB and PN predictions for the binding
energy of a two-body system on a quasicircular inspiraling orbit against results of numerical relativity (NR)
simulations. The binding energy is one of the two central ingredients (the other being the gravitational-
wave energy flux) that enters the computation of gravitational waveforms employed by LIGO and Virgo
detectors, and for (quasi)circular orbits it provides an accurate diagnostic of the conservative sector of a
model. We find that, whereas 3PM results do improve the agreement with NR with respect to 2PM
(especially when used in the EOB framework), it is crucial to push PM calculations at higher orders if one
wants to achieve better performances than current waveform models used for LIGO/Virgo data analysis.
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I. INTRODUCTION

Gravitational waves (GWs) from binary black holes
(BHs) and neutron stars (NSs) [1–4] encode information
about the structure of compact objects and their interaction
via (strong, dynamical) gravitational fields. The continu-
ously improving network of GW detectors [5–8] offers
unprecedented insights into astrophysics and fundamental
physics. Likewise, a continuous improvement in the accu-
racy of existing GW predictions, using both numerical and
analytical methods, is necessary in order to continue the
successful story of GW astronomy.
Regarding GW predictions for compact binary coales-

cence, numerical and analytical methods complement each
otherwell, since the analytic post-Newtonian (PN,weak-field
and slow-motion) approximation (e.g., see Refs. [9–14])
relies on the separation between the orbit’s and the body’s
scales being large, while current numerical-relativity (NR)
simulations (e.g., see Refs. [15–17]) become inefficient in
this regime. Since the orbital separation shrinks over time due
to energy and angular momentum loss via GW emission, a
synergistic approach between both methods is needed to
predict the complete inspiral-merger-ringdown (IMR)
sequence for the compact binaries now routinely detected
by ground-based GW observatories [4].

The effective-one-body (EOB) formalism [18,19]
improves the accuracy of the (perturbative) PN two-body
dynamics (see, e.g., Refs. [20–24]) by resumming PN
results in such a way as to include the exact test-particle
limit. EOB waveforms [25–28] are an important class of
IMR waveform models employed in LIGO/Virgo searches
and inference studies [1–4,29–32]. Because of the more
accurate description of the dynamics toward merger (with
respect to PN), EOB waveforms are also employed to build
another class of IMR waveforms, the phenomenological
waveform models (e.g., see Ref. [33]). In order to improve
EOB waveform models in the entire binary’s parameter
space (i.e., large-mass ratios and large spins), better under-
stand the uniqueness and robustness of the EOB resum-
mation, and gain confidence in its range of applicability,
it is important to extend the EOB formalism to highly
relativistic bound and unbound orbits. The large mass-ratio
case, which is relevant for space-based and third-generation
ground-based detectors and requires a very accurate
modeling of fast-motion effects, is one important example
[34–38], which we will follow-up elsewhere [39]. Here,
we focus on the post-Minkowskian (PM) approximation
(i.e., weak field and fast motion) [9,12,40–50] applicable to
scattering binaries (see also Refs. [51–65] for recent
applications).
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A crucial ingredient of the EOB formalism is the energy
map [18] between the two-body and the effective one-body
description. While the energy map was established as a
natural choice up to 4PN order [18,66,67], its properties
become more apparent and unique (at least at 1PM) when
extending the conservative EOB Hamiltonian to 1PM and
2PM orders [53,56]. One can also gain insight into EOB
spin maps at 1PM and 2PM orders [55,57,68]. These
results, together with the prospect of creating a waveform
model for scattering binaries, certainly provide a good
motivation to push the PM knowledge to higher orders.
Quite interestingly, profiting from recent advances in the
area of scattering amplitudes [69–80], the conservative
Hamiltonian for a two-body system has been recently
derived at 2PM order [56,64] and 3PM order [81].
However, the most frequent sources of GWs for LIGO/

Virgo experiments are bound/inspiraling binaries, instead
of unbound/scattering ones. It is not clear a priori
whether the source modeling of coalescing binaries for
GW detectors will take real advantage of PM results, thus
motivating to push PM calculations at even higher orders
and extend them to the dissipative sector. It is also unclear
whether insights on (and explicit resummations for) the
EOB Hamiltonian from PM results are already useful to
improve the accuracy of quasicircular, inspiral waveforms
for LIGO/Virgo analyses. Here, we start to shed light
on these important inquiries by comparing PM, EOB and
PN predictions for the binding energy of a two-body
system on a quasicircular inspiraling orbit against results
of NR simulations. Indeed, the binding energy is one of
the two central ingredients (the other being the GW
energy flux) that enters the computation of gravitational
waveforms (e.g., see Refs. [82]). Thus, assessing the
accuracy of PM predictions against the (“exact”) NR
results, and quantifying the differences with respect to the
EOB/PN results currently used in building waveform
models for LIGO/Virgo analyses, is very relevant and
timely, given also the strong interest that PM calculations
have recently generated in the theoretical high-energy
physics community.
This paper is organized as follows. In Sec. II we take full

advantage of the most recent PM results [64,81] and extend
to 3PM order the PM EOB Hamiltonian originally derived
by Damour [56] at 2PM order. In Sec. III we compare
various binding-energy curves obtained from PM, EOB and
mixed PM-PN against each other and NR, and discuss the
implications of PM calculations for LIGO/Virgo source
modeling. Section IV contains our final remarks and
discusses future work. In the Appendix A, we first briefly
discuss the special role of the nonlocal-in-time (tail) part of
the two-body Hamiltonian at 4PN order. Then, we derive an
extension of the 3PM EOB Hamiltonian computed in this
paper to 4PN order, including such tail terms, using the
4PN EOB Hamiltonian in Ref. [67]. In Appendix B, we
start to explore how to improve the use of PM results in the

EOB framework by presenting an alternative EOB
Hamiltonian at 3PM order for circular orbits.
Henceforth, we work in units in which the speed of

light c ¼ 1.

II. AN EFFECTIVE-ONE-BODY HAMILTONIAN
AT THIRD POST-MINKOWSKIAN ORDER

Damour [56] and Cheung et al. (henceforth, CRS) [64]
have each given results for the Hamiltonian governing the
conservative dynamics of a two-body system at 2PM order.
Damour’s EOB Hamiltonian was deduced by matching an
ansatz to the gauge-invariant scattering angle function,
first derived at 2PM order by Westpfahl [48], noting that
the complete local-in-time, gauge-invariant information
content of the (conservative) Hamiltonian is encoded in
the scattering angle computed from the Hamiltonian.
Westpfahl’s 2PM result for the scattering angle has since
been rederived by Bjerrum-Bohr et al. [61] by applying the
eikonal approximation to scattering amplitudes for massive
scalars exchanging gravitons at one-loop order. The CRS
2PM Hamiltonian was deduced by directly matching
between those same amplitudes and amplitudes computed
from an effective (classical) field theory. As was noted later
in Ref. [81], and as we show in this section, the CRS 2PM
Hamiltonian also leads to (and is determined by)
Westpfahl’s 2PM scattering angle.
Recently, Bern et al. [81] (henceforth, BCRSSZ) have

extended the computation of the classical-limit amplitudes
to two-loop order, accomplished the matching to a 3PM
Hamiltonian, and given the 3PM scattering angle. Here we
provide an independent derivation of the 3PM scattering
angle from the 3PM Hamiltonian of Ref. [81], and we use
the scattering angle to extend the EOB Hamiltonian of
Ref. [56] to 3PM order.
We consider a two-body system composed of nonspin-

ning black holes with rest masses m1 and m2, total mass
M ¼ m1 þm2, reduced mass μ ¼ m1m2=M, and symmet-
ric mass ratio ν ¼ μ=M. The 3PM Hamiltonian of
Ref. [81], given in the binary’s center-of-mass frame and
in an isotropic gauge, reads

Hðr; pÞ ¼ H0ðp2Þ þ
X3
n¼1

Gn

rn
cnðp2Þ þOðG4Þ; ð2:1Þ

H0ðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
q

; ð2:2Þ

where r and p are the radial separation and its conjugate
momentum, respectively. The functions c1, c2 and c3 are
explicitly given in Eqs. (10) of BCRSSZ. These functions
determine (and are determined by) the coefficients in the
3PM scattering-angle function, as follows. (Henceforth, we
refer to the Hamiltonian above as H3PM.)
Since we neglect black holes’ spins, the binary’s orbital

plane is fixed. We introduce polar coordinates ðr;ϕÞ in the

ANDREA ANTONELLI et al. PHYS. REV. D 99, 104004 (2019)

104004-2



orbital plane, with conjugate momenta ðpr; pϕ ≡ LÞ
satisfying the standard relation,

p2 ¼ p2
r þ

L2

r2
: ð2:3Þ

Note that L ¼ pϕ is a constant of motion due to axial
symmetry. We denote with E ¼ Hðr; pÞ ¼ Hðr; pr; LÞ the
total conserved energy of the binary system. Using the
Hamilton-Jacobi formalism, it can be shown (e.g., see
Ref. [56]) that the total change in the angle coordinate ϕ for
a scattering orbit is given by

Δϕ ¼ π þ χðE;LÞ ¼ −2
Z

∞

rmin

dr
∂
∂Lprðr; E; LÞ; ð2:4Þ

where χ is generally called the scattering angle and
vanishes for free motions. The radial momentum
prðr; E; LÞ is obtained by solving Hðr; pr; LÞ ¼ E for
pr [taking the branch pr > 0 in Eq. (2.4)], while rmin is
the appropriate root of pr ¼ 0.
The solution for pr resulting from the 3PM Hamiltonian

(2.1) can be obtained from Eq. (2.3) after we solve for p2,
working perturbatively in G. To conveniently express the
dependence on the energy E, we define the quantities,1

γ ¼E2 −m2
1−m2

2

2m1m2

; Γ≡ E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ− 1Þ

p
: ð2:5Þ

From a straightforward calculation, using the results for
fcnðp2Þg3n¼1 from Eqs. (10) of BCRSSZ, we find

p2ðr; EÞ ¼ p2
0ðEÞ þ

X3
n¼1

Gn

rn
fnðEÞ þOðG4Þ; ð2:6Þ

with

p2
0 ¼ μ2

γ2 − 1

Γ2
; ð2:7aÞ

f1 ¼ 2μ2M
2γ2 − 1

Γ
; ð2:7bÞ

f2 ¼
3

2
μ2M2

5γ2 − 1

Γ
; ð2:7cÞ

f3 ¼ μ2M3

�
Γ
18γ2 − 1

2

− 4νγ
14γ2 þ 25

3Γ
þ 3

2

Γ − 1

γ2 − 1
ð2γ2 − 1Þð5γ2 − 1Þ

− 8ν
4γ4 − 12γ2 − 3

Γ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p sinh−1
ffiffiffiffiffiffiffiffiffiffi
γ − 1

2

r �
: ð2:7dÞ

Combining Eqs. (2.3), (2.4), and (2.6) and evaluating the
integral, we find

χ

2
¼ −

Z
∞

rmin

dr
∂
∂L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −

L2

r2
þ
X
n

Gn

rn
fn

s
−
π

2

¼ G
L

f1
2p0

þG2

L2

πf2
4

þ G3

L3

�
p0f3 þ

f1f2
2p0

−
f31

24p3
0

�
þOðG4Þ: ð2:8Þ

Thus, the 3PM (half) scattering angle is given by

1

2
χðE; LÞ ¼

X3
n¼1

�
GMμ

L

�
n
χnðEÞ þOðG4Þ; ð2:9Þ

with coefficients

χ1 ¼
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð2:10aÞ

χ2 ¼
3π

8

5γ2 − 1

Γ
; ð2:10bÞ

χ3 ¼
64γ6 − 120γ4 þ 60γ2 − 5

3ðγ2 − 1Þ3=2

−
4

3

ν

Γ2
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
ð14γ2 þ 25Þ

− 8
ν

Γ2
ð4γ4 − 12γ2 − 3Þ sinh−1

ffiffiffiffiffiffiffiffiffiffi
γ − 1

2

r
; ð2:10cÞ

which agrees with Eq. (12) of BCRSSZ. When we take the
limit ν → 0 at fixed γ, implying Γ → 1, the scattering angle
reduces to the one for a test particle with energy-per-mass γ
and angular-momentum-per-mass L=μ, following a geo-
desic in a Schwarzschild spacetime with massM. Note that
χ1 is the same as the Schwarzschild value; χ2 is the
Schwarzschild value over Γ. The first line of χ3 coincides
with its Schwarzschild value.
Damour has shown in Ref. [56] that an EOB

Hamiltonian valid at 3PM order (for the conservative
dynamics) can be obtained directly from the scattering-
angle coefficients. The real EOB HamiltonianHEOBðr; pÞ is
given in terms of the effective Hamiltonian Heffðr; pÞ via
the EOB energy map [18],

1We notice that the true relative velocity at infinity for a
scattering orbit is the v in γ ¼ ð1 − v2Þ−1=2, with γ given in terms
of the energy and masses by Eq. (2.5). The same quantity is called
Êeff in Ref. [53]; at zeroth order (or, at infinity, to all orders), it is
the quantity called σ in BCRSSZ. The Γ in the right-hand side of
Eq. (2.5) is called h in Ref. [56]; at infinity, it is the variable γ in
BCRSSZ.
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HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
; ð2:11Þ

and Heff reduces to the Hamiltonian for Schwarzschild
geodesics HS as ν → 0. The Schwarzschild-geodesic
Hamiltonian (for a test particle of mass μ) is given in
Schwarzschild coordinates in the equatorial plane, with
HSðr; pÞ≡HSðr; pr; LÞ, by

H2
S ¼

�
1 −

2GM
r

��
μ2 þ L2

r2
þ
�
1 −

2GM
r

�
p2
r

�
: ð2:12Þ

Defining the reduced (dimensionless) quantities

Ĥeff ¼ Heff

μ
; ĤS ¼ HS

μ
; u ¼ GM

r
; ð2:13Þ

p̂r ¼
pr

μ
; l≡ p̂ϕ ¼ L

GMμ
; ð2:14Þ

the effective Hamiltonian of Ref. [56]—which we will refer
to as the post-Schwarzschild (PS) effective Hamiltonian—
is given through 3PM order by Eq. (5.13) of Ref. [56] as

ðĤeff;PSÞ2 ¼ Ĥ2
S þ ð1 − 2uÞ½u2q2PM þ u3q3PM þOðG4Þ�;

ð2:15Þ

Ĥ2
S ¼ ð1 − 2uÞ½1þ l2u2 þ ð1 − 2uÞp̂2

r �; ð2:16Þ

where the functions q2PMðĤS; νÞ and q3PMðĤS; νÞ
are determined by the scattering-angle coefficients via
Eqs. (5.6) and (5.8) of Ref. [56]. [Notice the absence of
a q1PMðĤS; νÞ term, which vanishes identically in the EOB
formulation. Indeed, the energy map (2.11) applied to the
unmodified Schwarzschild-geodesic Hamiltonian (2.12)
precisely reproduces the two-body dynamics at 1PM order
[53,56].]
Inserting our coefficients (2.10) into those equations

yields

q2PM ¼ 3

2
ð5Ĥ2

S − 1Þ
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤS − 1Þ

q �
; ð2:17aÞ

q3PM ¼ −
2Ĥ2

S − 1

Ĥ2
S − 1

q2PM þ 4

3
νĤS

14Ĥ2
S þ 25

1þ 2νðĤS − 1Þ

þ 8νffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ2

S − 1

q 4Ĥ4
S − 12Ĥ2

S − 3

1þ 2νðĤS − 1Þ sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĤS − 1

2

s
:

ð2:17bÞ

The resultant 3PM EOB Hamiltonian, HEOB
3PM, for the two-

body description, is obtained by plugging (2.15) into
Eq. (2.11). The HEOB

3PM and BCRSSZ Hamiltonians are

equivalent in the sense that they lead to the same scattering
angle when expanded at 3PM order. In the PN expansion,
they are both complete up to 2PN order. We discuss in
Appendix A how to augment the above 3PM EOB
Hamiltonian with additional PN information at 3PN and
4PN orders.

III. ENERGETICS OF BINARY SYSTEMS WITH
POST-MINKOWSKIAN HAMILTONIANS

Gravitational waveforms emitted by inspiraling binaries
are constructed from the binary’s binding energy and GW
energy flux (e.g., see Refs. [82]). To assess the relevance for
LIGO/Virgo analysis of the recently derived conservative
two-body dynamics in PM theory, we compute one of these
building blocks, the binding energy, for a variety of PM, PN
and EOB approximants. We then compare these with
results from NR simulations.
We recall that the total energy E, linear momentum P,

and angular momentum L of a gravitating two-body
system in an asymptotically flat spacetime are nearly2

gauge-invariant quantities. It is convenient to introduce
the dimensionless binding energy e≡ ðE −MÞ=μ and
angular momentum l≡ jLj=ðGMμÞ. For an inspiraling
binary of nonspinning black holes, the energy and angular
momentum monotonically decrease over time and trace
out a curve eðlÞ for each set of binary parameters. This
eðlÞ-curve is a gauge-invariant relation that can be
used to compare analytic predictions in PN, PM and
EOB frameworks against numerical-relativity (NR) results
[21,22,24,83]. In absence of radiation reaction and for
circular orbits, the relation eðlÞ encodes the conservative
dynamics. For quasicircular inspirals, the eðlÞ-relation still
depends most sensitively on the conservative dynamics.
Hence, it is a good indicator for the accuracy of the binding
energy derived from the PN, PM and EOB Hamiltonians
for circular orbits.
Now, E and L are not directly extracted from NR

simulations as a function of time, but instead it is the
gravitational radiation leaving the binary system (more
precisely, the “news function”) that is extracted [21,24].
The radiated energy and angular momentum fluxes as
functions of time can then be integrated to yield the energy
E and angular momentum L of the binary at a given
(retarded) time, which can then be combined into the
relation eðlÞ [21,24]. The integration constants can be
adjusted to match E and L at the initial time of the
simulation [21,83], which has the disadvantage that one
has to accurately track the fluxes during the initial junk-
radiation phase. A better approach is to fix the integration
constants to match the energy and angular momentum of
the final (merged) black hole; but even in this case, a further
tuning of the integration constants is needed to achieve

2The quantities E, P, and L are only invariant up to the fixing
of a frame at infinity.
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agreement with analytical models of the early inspiral (e.g.,
see Ref. [24]). In the following, we use the binding energy
from NR simulations as extracted and tuned in Ref. [24].
Similarly, the relation eðlÞ can be obtained by solving the

Hamilton equations with radiation-reaction effects for a
given PN, PM and EOB Hamiltonian (e.g., as done in
Refs. [21,22]). However, for most of the analysis in this
section, we neglect radiation-reaction effects (which have
been shown to make EOB Hamiltonians accurate past the
last-stable orbit and all the way down to merger [84]) and
construct the eðlÞ curves using an adiabatic sequence of
circular orbits instead. For this reason, we should not
expect exact agreement with the NR results, which do
include radiation-reaction effects. Our motivation for this
choice is that eðlÞ only depends on the Hamiltonian model
(and not the radiation-reaction model), so it is easier to
interpret our results and put them into context for future
improvements of the Hamiltonian (e.g., when higher-order
PN and PM results become available). More importantly,
previous investigations [21,22] have shown that at least
until the innermost-stable circular orbit (ISCO, where we
terminate the comparison with NR results), the difference
between the binding energy computed from a sequence of
circular orbits and from a quasicircular inspiral is not very
large (typically no more than 5%–10%, as we discuss
below and in Fig. 6).
In the absence of radiation reaction, the Hamilton

equations for a generic Hamiltonian Hðr; pr; LÞ describing
a two-body system of nonspinning black holes read

_r ¼ ∂H
∂pr

; _L ¼ −
∂H
∂ϕ ¼ 0; ð3:1aÞ

Ω≡ _ϕ ¼ ∂H
∂L ; _pr ¼ −

∂H
∂r : ð3:1bÞ

Note that L≡ GMμl ¼ const. For circular orbits,
pr ¼ 0, r ¼ rcirc ¼ const. Furthermore, _pr ¼ 0, and con-
sequently it follows from the Hamilton equations that
ð∂H=∂rÞr¼rcirc ¼ 0, which determines rcircðlÞ and hence
the circular-orbit relation eðlÞ≡ ½HðrcircðlÞ; 0; lÞ −M�=μ.
The relation ΩðlÞ≡ ð∂H=∂LÞr¼rcirc ¼ e0ðlÞ determines a
second gauge-invariant relation. Inverting this relation
gives lðΩÞ, which can be combined with eðlÞ to give eðΩÞ.
Given a Hamiltonian there are different ways to deter-

mine the eðlÞ and eðΩÞ relationships. For example, we can
solve for them order-by-order in a systematic PN expansion
yielding e and l as a power series in ðGMΩÞ2=3 [e.g., see
Eq. (232) in Ref. [9] ]. However, we note that if we were
just expanding the binding energy computed from the PM
Hamiltonian in powers of ðGMΩÞ2=3 and then truncating it,
all extra information obtained through the PM approxima-
tion would be lost. Nevertheless, performing such PN
expansion of the binding energy provides an important
consistency check between different Hamiltonians—for
example one readily verifies that starting from the 3PM
Hamiltonian of Ref. [81] one obtains the well-known PN
circular orbit relations eðΩÞ and lðΩÞ to order ðGMΩÞ2. To
gauge the additional information present in the PM

0.4

0.2

0.0

0.2

0.4

0.10

0.05

0.00

0.05

0.10

FIG. 1. NR simulations. In this paper the energetics of various approximants are compared against two NR simulations of nonspinning
binary black holes produced by the Simulating eXtreme Spacetimes (SXS) Collaboration [15,16]. The top (bottom) panel shows the
waveform [more specifically the real part of the l ¼ m ¼ 2 mode of the strain, Rðh22Þ] of the simulation with mass-ratio q ¼ 1
(q ¼ 10), identified in the SXS catalog as SXS ID: 0180 (SXS ID: 0303). In both panels, the red shading shows the segment of the
simulation used for the binding-energy’s comparisons in all figures of this paper.
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Hamiltonians we opt for a different approach, where we
treat the various PN, EOB and PM approximants as exact
Hamiltonians and determine the relations eðlÞ and eðΩÞ
numerically (i.e., without any further expansions). We
discuss in Fig. 7 below, differences in the PN binding
energy when we build it from the exact (unexpanded) PN
Hamiltonian and the systematically PN expanded one.
We consider only stable (and marginally stable)

circular orbits, for which the Hamiltonian is minimal,
0 ≤ ð∂2H=∂r2Þr¼rcirc

. Here equality corresponds to a saddle
point of the Hamiltonian, which indeed exists for most—
but not all—of the Hamiltonians under investigation. This

is the well-known ISCO and corresponds to an angular
momentum l ¼ lISCO.
For simplicity, we restrict the discussion to NR simu-

lations of nonspinning binary black holes with mass ratios
q ¼ 1 and 10 [24]. In Fig. 1 we display the NR waveforms.
Those simulations span about 56 and 36 GW cycles
(corresponding to ∼28 and ∼18 orbital cycles), for
q ¼ 1 and q ¼ 10, respectively, before merger. We high-
light in Fig. 1 the portion of the waveform that we use to
compare with the binding-energy approximants. As can be
seen, the comparisons with NR extend up to about 1.4 and
1.8 GW cycles, for q ¼ 1 and q ¼ 10, respectively, before

TABLE I. Two-body Hamiltonians. A summary of the Hamiltonians used in this paper to compute the binding
energy and compare it with NR predictions.

HmPM PM Hamiltonian [64,81]
HEOB;PS

mPM
PM EOB Hamiltonian [56] and this paper

HEOB;PS
mPMþnPN

PM EOB Hamiltonian with PN information when n ≥ m [56] and this paper

HEOB
nPN PN EOB Hamiltonian used in LIGO/Virgo data-analysis [18,66,67]

HEOB;ePS
3PM

alternative 3PM EOB Hamiltonian this paper

HnPN PN Hamiltonian [85]
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FIG. 2. Energetics of PM Hamiltonians.We compare to NR the binding energy as a function of orbital frequencyGMΩ from both PM
and PM-EOB Hamiltonians for a nonspinning binary black hole with mass ratio q ¼ 1 (left panel) and q ¼ 10 (right panel). The dots at
the end of the curves mark the ISCOs, when present in the corresponding two-body dynamics. The NR binding energy and its error are
in cyan. The top x-axis shows the number of orbits until merger. In the lower panel we show the fractional difference between the
approximants and the NR result.
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FIG. 3. Energetics of PM Hamiltonians. Same as in Fig. 2 but versus the dimensionless angular momentum l ¼ L=ðGμMÞ. The cusps
signal the presence of the ISCO, where the branches of stable and unstable circular-orbit solutions meet. Note that the orbital-frequency
range in the plots ends about 1.4 and 1.8 GW cycles, for q ¼ 1 and q ¼ 10, respectively, before the two black holes merge.
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FIG. 4. Energetics of PM Hamiltonians augmented by PN information. Same as in Fig. 2 but now we compare to NR the binding
energy of PM EOB Hamiltonians augmented by PN information. Notice that adding 3PM information at 3PN or above does not lead to a
visible difference from plain PN EOB Hamiltonians (the 3PM-3PN and 3PN curves, as well as the 3PM-4PN and 4PN ones,

are essentially on top of each other). Also included is a curve for an alternative 3PM EOB Hamiltonian,HEOB;ePS
3PM , derived in Appendix B.
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the two black holes merge. Thus, our comparisons of
analytic models to NR predictions extend to the late inspiral
of a binary evolution, a stage characterized by high velocity
and strong gravity.
We compare NR predictions against analytic results

obtained with PM, EOB and PN Hamiltonians, summarized
in Table I. Notably, we compute results with theHamiltonian
atmPMorders withm ¼ 1, 2, 3 [64,81] (labeledHmPM), and
with the EOB Hamiltonian of Refs. [53,56] and this paper at
mPM orders with m ¼ 1, 2, 3 (labeled HEOB;PS

mPM ). We also
compare results with the PM EOB Hamiltonian augmented
with PN results up to 4PN order (labeled HEOB;PS

mPMþnPN), as
derived in Appendix A. Furthermore, the (original) EOB
Hamiltonian employed in LIGO/Virgo data analysis [25,27]
is built from the EOBHamiltonian of Refs. [18,66,67], and it
resums perturbative PN results differently from the PMEOB
Hamiltonian. To understand the impact of the different
resummation, and also highlight the accuracy that PM results
would need to achieve in order to motivate their use in
waveformmodeling, we also show results with such an EOB
Hamiltonian (labeledHEOB

nPN ). Finally, we also employ the PN
Hamiltonian from Ref. [85] (labeled HnPN), and an alter-
native 3PMEOBHamiltonian presented for circular orbits in

Appendix B (labeled HEOB;ePS
3PM ).

In Figs. 2 and 3 we compare the binding energy
computed in NR with the ones from PM and PM EOB
Hamiltonians versus either the binary’s orbital frequency
(Fig. 2) or angular momentum (Fig. 3), for mass ratios
q ¼ 1 and q ¼ 10. We clearly see the improvement of the
PM binding energy from 1PM to 3PM, especially at low
frequency. The PM-EOB binding energies generally show
better agreement with NR, but they have a much smaller
range of variation from 1PM to 3PM. The 3PM result does
slightly better than 1PM, while 2PM is worse than the other
two. Overall those results demonstrate the value and
relevance of pushing PM calculations at higher order,
and of further exploring how to use PM results to improve
EOB models.
To understand the impact of PM calculations for

LIGO/Virgo analyses, it is important to compare the PM
binding energy with current approximants used to build
waveform models. Let us emphasize again that perturba-
tive PM calculations (weak-field/fast-motion), suitable for
unbound/scattering orbits, are not necessarily expected to
improve, when available at low PM orders, the predictions
obtained in perturbative PN calculations (weak-field/slow-
motion), suitable for bound/inspiraling orbits, which are the
LIGO/Virgo GW sources. It is instructive to understand
how the PM binding energy compares with the PN binding
energy, which at nPN order we expect to be more accurate
than the one at nPM order. For this study we restrict to the
3PM EOB Hamiltonian and augment it with 3PN and 4PN
information, as derived explicitly in Appendix A. We
display results in Fig. 4. Interestingly, the figure shows

that the mixed PM-PN Hamiltonian does not improve much
over a PN Hamiltonian. This means that currently the
known PM Hamiltonian does not improve in accuracy
compared to PN ones (as usual, regarding NR as the “true”
result). However, it is important to note that so far the PM
information has been incorporated into the EOB
Hamiltonian in one particular way, as proposed in
Ref. [56], in the HEOB;PS

mPM curves. We note in Fig. 4 that
one alternatively resummed EOB-3PM Hamiltonian,

HEOB;ePS
3PM , defined in Appendix B, shows better agreement

with NR. In the PM expansion, this Hamiltonian is
perturbatively equivalent to HEOB;PS

3PM up to 3PM order;
i.e., they differ only by 4PM-order terms. The variation
between those two curves thus gives some indication of the
variability expected from 4PM order, and motivates cal-
culations at higher PM order.
In Fig. 5, for mass ratio q ¼ 1, we show how the

HEOB;PS
mPM Hamiltonian compares with the (original) HEOB

nPN
Hamiltonian, currently employed (after further improve-
ments from NR simulations) in LIGO/Virgo searches and
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FIG. 5. Energetics of PM EOB Hamiltonian and the EOB
Hamiltonian used in LIGO/Virgo data-analysis. Same as in Fig. 2
and Fig. 4, but now we show how the HEOB;PS

mPM Hamiltonian
compares with the (original) HEOB

nPN Hamiltonian currently em-
ployed at 4PN order to build waveform models for LIGO/Virgo
data-analysis. We observe that HEOB

nPN Hamiltonians still produce
eðΩÞ-curves substantially closer to NR result than the 3PM
approximant.
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data analysis.3 We find thatHEOB
nPN always leads to a binding

energy that is closer to the NR one. Thus, we find that
insights on (and explicit resummations for) the EOB
Hamiltonian from current PM results are not yet sufficient
to improve the accuracy of quasicircular inspiral wave-
forms for LIGO/Virgo data analysis. This is not entirely
surprising, because the currently known 3PM level only
covers completely the 2PN level of the PN approximation;
there is much room (hope) for improvement coming from
4PM. The conclusion is that it will be very useful to extend
the knowledge of PM calculations to higher orders—for
example at least 4PM, but even 5PM order.

Before ending this section we remark that the compari-
son results that we have illustrated depend on several
choices. First of all, we have decided to compare the
binding energy extracted from NR simulations to results
obtained from an adiabatic sequence of circular orbits,
instead of the ones from the Hamilton equations with
radiation-reaction force. To illustrate the impact of this
choice we compare in Fig. 6 the binding energies of HEOB

3PN

and HEOB;PS
nPN obtained by evolving the Hamilton equations

with a suitable radiation-reaction force (labeled “inspiral”)
and using an adiabatic sequence of circular orbits (labeled
“circular”). The difference is small early in the evolution
and grows as the inspiral approaches the ISCO, where we
observe a typical difference in the binding energy of 5% to
10% (for q ¼ 1).
Lastly, Fig. 7 demonstrates the difference of calculating

eðΩÞ numerically, treating the various approximants of the
Hamiltonian as exact, and analytically as an expansion in
ðGMΩÞ. The plots show the results of calculating eðΩÞ
numerically from mPM and nPN Hamiltonians treated as
“exact”, and also the curves from the analytically computed
binding-energy EnPNðΩÞ truncated at 2PN [i.e., ðGMΩÞ6=3
with respect to leading term] and 3PN [i.e., ðGMΩÞ8=3]
order [see Eq. (232) in Ref. [9] ] (labeled EnPN). As already
noticed in Ref. [87], the differences can be quite
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FIG. 7. Energetics of PM and PN approximants versus analytic
PN calculations. As in previous figures, the dotted and dashed
curves show the binding energy obtained numerically from the
HEOB

mPM and HEOB
nPN Hamiltonians. The solid curves labeled “nPN”

show the binding energy computed order-by-order in GMΩ [9].
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FIG. 6. Energetics of circular versus inspiral PN approxim-
ants. We show the binding energy obtained from the HEOB

3PN and
HEOB;PS

nPN either through an adiabatic sequence of circular orbits or
numerically evolving the Hamilton equations with a suitable
radiation-reaction force for a quasicircular inspiral. The bottom
panel shows the relative difference between circular and inspiral
curves. This gives an indication of the magnitude of the impact
which should be kept in mind when interpreting the other figures.
By comparison the size of the NR error—indicated in gray— is
very small.

3We note that the upper right panel of Fig. 4 in Ref. [24] also
shows a comparison between the binding energy from the EOB
Hamiltonian and NR predictions. However, the agreement to NR
differs from ours in Fig. 5, because Ref. [24] employs the EOB
Hamiltonian where the potential for circular orbits has been
resummed as suggested in Ref. [86], and it computes the binding
energy through a quasicircular inspiral.
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substantial. However, it is worth reemphasizing that if one
calculates eðΩÞ analytically starting from either H3PM or
H2PN one recovers the 2PN result exactly.

IV. CONCLUSIONS

The study of the energetics conducted in this work, using
currently available PM Hamiltonians up to third order,
highlights two main points. Firstly, the binding energy for
circular orbits computed with the 3PM Hamiltonian of
Ref. [81] and the 3PM EOB Hamiltonian of Sec. II are
closer to NR predictions than the ones computed at lower
PM orders, especially for small frequencies (or high
angular momenta) (see Figs. 2 and 3). This suggests that
similar improvements can be made by pushing PM calcu-
lations to higher orders, leading to a more accurate
modeling of the inspiral phase.
Secondly, we find that higher-order PM calculations of

the conservative two-body dynamics would be needed to
improve the agreement to NR and compete with (the
conservative part of) currently available waveform models
used in LIGO/Virgo data analysis (see Figs. 4 and 5). This
is not surprising, since the 3PM order contains complete
PN information only up to 2PN order, but also not obvious
a priori, since the 3PM approximation contains informa-
tion not available in any of the PN expansions.
Furthermore, we have found that the PM EOB

Hamiltonian of Sec. II (originally derived at 2PM order
in Ref. [56]) gives good agreement against NR (and better
agreement than the 3PM Hamiltonian of Ref. [81]), albeit
not at the level of the PN EOBHamiltonian [18,66,67] used
to build waveform models for LIGO/Virgo data analysis
(see Figs. 4 and 5). Relatedly, in Fig. 4 we have also
shown the binding energy computed with a 3PM EOB
Hamiltonian that we have derived in Appendix B and that
differs from the one of Sec. II at 4PM order. Interestingly,
we have found that such an alternative EOB Hamiltonian
has much better agreement with NR than the one of Sec. II
(e.g., confront the lower panels of Figs. 4 and 5), reaching
agreement similar to the EOB Hamiltonian employed to
construct waveform models for LIGO/Virgo detectors (the
latter would still do much better in the low frequency early
inspiral not covered by the NR simulation). This rather
encouraging result motivates a more comprehensive study
of EOB resummations of PM results.
We recall that there are several caveats that underlie our

investigation. To begin with, we have chosen to work in the
circular-orbit approximation, rather than incorporating
radiation-reaction effects and evolving the two-body sys-
tem along an inspiraling orbit. This choice was dictated by
the desire of clearly singling out the contribution coming
from the conservative dynamics in the PM, PN and EOB
descriptions. We have also decided to treat perturbative PM
and PN Hamiltonians as exact when computing the binding
energy. The effect of each of these choices has been
illustrated in Figs. 6 and 7.

It is relevant to extend the above comparisons to
quasicircular inspiraling orbits (i.e., including radiation-
reaction effects), and we plan to do so in the near future. It
would also be very interesting to perform the comparisons
for scattering/unbound orbits, i.e., a setting closer to the
natural domain of the PM approximation. It would be
desirable, for instance, to compare observables like the
scattering angle against NR simulations, as initiated in
Ref. [88]. Here, in a regime of high impact velocity and
large impact parameter, the PM Hamiltonians are expected
to behave better than pure PN ones.
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APPENDIX A: EFFECTIVE-ONE-BODY
HAMILTONIAN AT 3PM ORDER AUGMENTED

BY 3PN AND 4PN INFORMATION

The 3PM EOB Hamiltonian given in Sec. II, like the
BCRSSZ Hamiltonian from which it was derived, encodes
the complete conservative dynamics for generic orbits up to
2PN order, as well as partial information at higher PN orders.
Herewe discuss how further information from 3PN and 4PN
calculations can be added to the 3PM EOB Hamiltonian,
focusing on the case of bound (near-circular) orbits.
We recall that the 4PN Hamiltonian as applicable

to generic orbits [89–91] is not a usual local-in-time
Hamiltonian, i.e., not a function of instantaneous position
and momentum; rather, it contains a contribution which is a
nonlocal-in-time functional of the phase-space trajectory—
the so-called “tail” term. In Ref. [67], an EOB transcription
of the generic nonlocal-in-time 4PN Hamiltonian is evalu-
ated as a usual local-in-time Hamiltonian by implementing
an expansion about the circular-orbit limit, i.e., an expan-
sion in small eccentricity or equivalently in small p̂r. The
result for the 4PN (reduced) effective Hamiltonian takes the
form,

ðĤeff
4PNÞ2 ¼ Að1þ l2u2 þ AD̄p̂2

r þ Q̂Þ; ðA1Þ

where we recall that

l ¼ L
GMμ

; p̂r ¼
pr

μ
; u ¼ GM

r
; ðA2Þ

with the potentials Aðu; νÞ, D̄ðu; νÞ, and Q̂ðu; pr; νÞ at 4PN
order given by
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A ¼ 1 − 2uþ 2νu3 þ a4u4 þ ða5;c þ a5;ln ln uÞu5;
D̄ ¼ 1þ 6νu2 þ d̄3u3 þ ðd̄4;c þ d̄4;ln ln uÞu4;
Q̂ ¼ q42p̂4

ru2 þ ðq43;c þ q43;ln ln uÞp̂4
ru3 þ ðq62;c þ q62;ln ln uÞp̂6

ru2 þOðνp̂8
ruÞ: ðA3Þ

The coefficients up to 2PN order have been written
explicitly here, while the 3PN coefficients (a4, d̄3, q42)
and 4PN coefficients are functions only of ν and are given
in Eqs. (8.1) of Ref. [67]. The A and D̄ potentials are
complete up to 4PN order, while the Q̂ potential is given at
4PN order as an expansion in p̂r (small-eccentricity
expansion) up to Oðp̂6

rÞ, and thus is valid only in the
near-circular-orbit regime.
One way to add the 3PN and 4PN information to the

3PM EOB Hamiltonian derived in Sec. II is to find a
canonical transformation which brings the above 4PN
Hamiltonian [67] into a form matching (the PN expansion
of) the following 3PMþ 4PN ansatz. As a natural
generalization of the 2PMþ 3PN ansatz in Ref. [56],
we consider a post-Schwarzschild (reduced) effective
Hamiltonian of the form,

½Ĥeff;PSðu; p̂r; lÞ�2 ¼ Ĥ2
S þ ð1 − 2uÞQ̂PSðu; ĤS; νÞ; ðA4Þ

where ĤS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2u2 þ ð1 − 2uÞp̂2

r

p
is the

reduced Schwarzschild Hamiltonian. Imposing this form,
with a dependence on p̂r and l only through ĤS, is seen to
fix a unique phase-space gauge choice. The resultant
potential Q̂PS can be written at 3PMþ 4PN order as

Q̂PS ¼ u2q2PMðĤS;νÞþu3q3PMðĤS;νÞ
þΔ3PNðu;ĤS;νÞþΔ4PNðu;ĤS;νÞþOð5PNÞ: ðA5Þ

This differs from Eq. (2.15) by the addition of the Δ terms,
which are given as expansions in the two PN small
parameters u and Ĥ2

S − 1 [each Oð1=c2Þ], at the orders
needed to find a unique match to the 4PN EOB
Hamiltonian of Ref. [67]. At 3PN order, for generic orbits,
we need only a single 4PM term [given by Eq. (6.3) in
Ref. [56] ], at zeroth order in Ĥ2

S − 1,

Δ3PN ¼
�
175

3
ν −

41π2

32
ν −

7

2
ν2
�
u4: ðA6Þ

At 4PN order, to match the near-circular-orbit expansion of
the potential Q̂ in Eq. (A3) up to Oðp̂6

rÞ, we must have

Δ4PN ¼
X5
n¼2

α4nunðĤ2
S − 1Þ5−n

þ ðα44;lnu4ðĤ2
S − 1Þ þ α45;lnu5Þ ln u; ðA7Þ

where the α’s are functions only of ν. (The n ¼ 2, 3 terms
here arise solely from the nonlocal tail integral, while the
n ¼ 4, 5 and ln terms include local and tail contributions.)
Implementing the canonical transformation from the 4PN
EOB Hamiltonian of Ref. [67], we find the coefficients

α42 ¼
�
−
1027

12
−
147432

5
ln 2þ 1399437

160
ln 3þ 1953125

288
ln 5

�
ν; ðA8Þ

α43 ¼
�
−
78917

300
−
14099512

225
ln 2þ 14336271

800
ln 3þ 4296875

288
ln 5

�
ν; ðA9Þ

α44 ¼
�
−
43807

225
þ 296γE

15
−
33601π2

6144
−
9771016

225
ln 2þ 1182681

100
ln 3þ 390625

36
ln 5

�
νþ

�
−
405

4
þ 123

54
π2
�
ν2 þ 13

2
ν3;

ðA10Þ

α45 ¼
�
−
34499

1800
þ 136

3
γE −

29917

6144
π2 −

254936

25
ln 2þ 1061181

400
ln 3þ 390625

144
ln 5

�
νþ

�
−
2387

24
þ 205

64
π2
�
ν2 þ 9

4
ν3;

ðA11Þ

and

α44;ln ¼
148

15
ν; α45;ln ¼

68

3
ν: ðA12Þ
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It is important to note, again, that the form of the effective
Hamiltonian in Eqs. (A4) and (A5) [notably the 4PN term
Δ4PN in Eq. (A5)] is only valid for bound orbits in the small-
eccentricity expansion (around the circular-orbit case).4

The two-body Hamiltonian in the EOB framework is
then obtained by inserting the effective Hamiltonian (A4) in
Eq. (2.11), thus obtaining HEOB;PS

3PMþ4PN, or H
EOB;PS
3PMþ3PN, if we

include Δ3PM, but drop Δ4PN. The Hamiltonian HEOB;PS
4PN is

obtained by expanding q2PM to OðĤ2
S − 1Þ3 and q3PM to

OðĤ2
S − 1Þ2, while for HEOB;PS

3PN we keep one less order of
Ĥ2

S − 1 for each q and drop Δ4PN.

APPENDIX B: ALTERNATIVE EFFECTIVE-
ONE-BODY HAMILTONIAN AT 3PM
ORDER FOR CIRCULAR ORBITS

One straightforward alternative form for a 3PM EOB
Hamiltonian can be obtained simply by fully expanding the

right-hand side of Eq. (A4) in G, to OðG3Þ. Here we
explicitly state the result of this expansion evaluated at
pr ¼ 0, which determines the circular-orbit binding-energy
approximants,

ðĤeff;ePS
3PM Þ2jpr¼0 ¼ ð1 − 2uÞð1þ l2u2Þ

þ u2q̃2PMðγ0; νÞ
þ u3q̃3PMðγ0; νÞ þOðG4Þ; ðB1Þ

where γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2u2

p
is the (circular) effective

Hamiltonian at zeroth order in G, with

q̃2PMðγ0; νÞ ¼ q2PMðγ0; νÞ; ðB2aÞ

q̃3PMðγ0; νÞ ¼ q3PMðγ0; νÞ

−
3νγ0ð5γ20 − 1Þ

2Γ3
0

− 3ð10γ20 − 1Þ
�
1 −

1

Γ0

�
;

ðB2bÞ

where the functions q2PMðĤS; νÞ and q3PMðĤS; νÞ are given
by Eqs. (2.17), and Γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ0 − 1Þp

.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tion), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tion), Phys. Rev. X 6, 041015 (2016); 8, 039903(E) (2018).

[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tion), Phys. Rev. Lett. 119, 161101 (2017).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tion), arXiv:1811.12907.

[5] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 115012 (2015).

[6] F. Acernese et al. (Virgo Collaboration), Classical Quantum
Gravity 32, 024001 (2015).

[7] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA
Collaboration), Phys. Rev. D 88, 043007 (2013).

[8] B. Iyer et al. (LIGO Collaboration), LIGO-India, proposal
of the consortium for Indian initiative in gravitational-wave
observations, LIGO Document M1100296-v2, 2011.

[9] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[10] G. Schäfer and P. Jaranowski, Living Rev. Relativity 21, 7

(2018).
[11] T. Futamase and Y. Itoh, Living Rev. Relativity 10, 2 (2007).
[12] E. Poisson andC.Will,Gravity: Newtonian, Post-Newtonian,

Relativistic (Cambridge University Press, Cambridge,
England, 2014).

[13] W. D. Goldberger, in Les Houches Summer School—Session
86: Particle Physics and Cosmology: The Fabric of Space-
time (2007), pp. 351–353.

[14] I. Z. Rothstein, Gen. Relativ. Gravit. 46, 1726 (2014).
[15] A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013).
[16] T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A.

Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi,
Classical Quantum Gravity 33, 165001 (2016).

[17] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J.
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