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We use gravitational wave (GW) and electromagnetic (EM) observations of GW170817 to constrain the
extent of pressure anisotropy in it. While it is quite likely that the pressure inside a neutron star is mostly
isotropic, certain physical processes or characteristics, such as phase transitions in nuclear matter or the
presence of strong magnetic fields, can introduce pressure anisotropy. In this work, we show that
anisotropic pressure in neutron stars can reduce their tidal deformability substantially. For the anisotropy-
pressure model of Bowers and Liang and a couple of relativistic EOSs—DDHδ and GM1—we demonstrate
that this reduction in spherical neutron stars with masses in the range of 1 to 2 M⊙ can be 23% to 46%. This
suggests that certain EOSs that are ruled out by GW170817 observations, under assumptions of pressure
isotropy, can become viable if the stars had a significant enough anisotropic pressure component, but do not
violate causality. We also show how the inference of the star radius can be used to rule out certain
EOSs (such as GM1), even for high anisotropic pressure, because their radii are larger than what the
observations find.
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I. INTRODUCTION

The recent detection of gravitational waves (GWs) from
the binary neutron star (BNS) merger event GW170817 [1]
has initiated a new way to probe and constrain the equation
of state of compact stars [2,4]. In the inspiral stage of the
binary coalescence the tidal deformation of the orbiting
stars leaves an imprint on the emitted GW signal [5–8].
This imprint carries information about the composition of
the star. Unfortunately, properties of neutron star matter at
very high density are not fully understood. Therefore,
modeling the star requires one to make certain assumptions
about its interior.
One of the most common assumptions made in studies

of the equilibrium structure of a neutron star is that its
pressure is isotropic. Specifically, in a spherically sym-
metric neutron star, the radial pressure and the transverse
pressure are taken to be equal. Interestingly, it has been
argued in other studies that this equality may not always
hold; in other words, the pressure in a neutron star can
have an anisotropic component. In basic terms, pressure
anisotropy can arise whenever the velocity distribution of
particles in a fluid is anisotropic, which in turn can owe
its origin to the presence of magnetic fields, turbulence,
convection, etc., [9]. There are several studies (see, e.g.,
Refs. [10–12]) that suggest that at very high densities

relativistic interactions between nucleons can make the
pressure anisotropic. In the density range of 0.2 fm−3 to
1 fm−3, superdense nuclear matter makes a phase tran-
sition to almost equal numbers of protons, neutrons and
π− particles [13]. The π− particles condense to a plane
wave state of momentum that can be as large as
≈170 Mev=c. This condensation causes a drastic reduc-
tion in pressure, which softens the equation of state along
the radial direction [14].
Another interesting scenario arises owing to strong

magnetic fields that neutron stars are known to possess.
Indeed, many neutron stars have magnetic fields with
strength 1012–1013 G; and there is evidence for the exist-
ence of supermagnetized neutron stars with magnetic fields
as large as 1014–1015 G [15,16]. Magnetic pressure asso-
ciated with such strong magnetic fields can also induce
pressure anisotropy.
Presence of P type superfluid or solid core can also

introduce pressure anisotropy [10], where interactions
among the P type superfluid nucleons produce the
anisotropy. It has been shown by Herrera et al. [9] that
use of the two-fluid model naturally predicts pressure
anisotropy. An example of the two-fluid model is
Superfluid Helium II, in the context of the Landau
theory [17].
Finally, it is also known that in certain braneworld

models of gravity, with an extra spatial dimension, the
corrections induced in Einstein’s equations on the*bhaskarb@iucaa.in
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four-dimensional brane can be modeled as a stress energy
tensor with anisotropic pressure [18].
For the aforementioned reasons we explore here how

gravitational wave observations of binary neutron stars and,
in the process, measurements of their macroscopic param-
eters, such as their mass, radius and the tidal deformability
parameter [5,6], can be used to test the presence or absence
of pressure anisotropy in these stars. There exists a large
body of work on equilibrium configuration and oscillations
of anisotropic neutron stars [19–41]. These studies suggest
that anisotropy in pressure, if present with a non-negligible
magnitude, can have a significant effect on the mass-radius
relationship and, therefore, the compactness of the star.
That in turn leads one to enquire what effect, if any,
anisotropy may have on the GWs emitted during a binary
coalescence.
Yagi and Yunes [37] came close to addressing this matter

when they compared the tidal deformability of slowly
rotating neutron stars in the presence and absence of
pressure anisotropy. Their work was mainly focused on
how much the anisotropy affects the universal relation
between moment of inertia, tidal Love number and quadru-
pole moment. In this present work we calculate the tidal
deformability [6] of a static anisotropic compact star whose
background is taken to be spherically symmetric. We also
use a different EOS for pressure anisoptropy, namely, the
one pioneered by Bowers and Liang [19]. We show that
there are regions in that EOS parameter space that give rise
to unphysical stellar configurations (owing to the existence
of regions where causality would be violated). After
discarding such configurations from further study, we
calculate the change in the tidal deformability parameter
of neutron stars for a few cases of anisotropic pressure
EOS, in an otherwise standard relativistic equation of state
(EOS). We find that the presence of pressure anisotropy
generally reduces its tidal deformability, for a fixed stellar
mass. We demonstrate how this property allows certain
relativistic EOSs, for a range of pressure anisotropy
magnitudes, to remain viable in light of GW170817. We
also use that observation and universality relations between
the tidal deformability parameter and stellar compactness,
deduced here, to constrain the pressure anisotropy param-
eter. Finally, we explain how future observations of GWs
from binary neutron stars can tighten this constrain further.
Throughout this paper, we set the gravitational constant

G and the speed of light in vacuum c to unity, except when
computing observational quantities, such as the second
Love number or the tidal deformability parameter, for
comparison with observations.

II. EQUILIBRIUM CONFIGURATIONS OF
ANISOTROPIC COMPACT STARS

We consider a static, spherically symmetric fluid dis-
tribution with an anisotropic component. Its stress-energy
tensor is given as:

Tμ
ν ¼ diagðρ;−pr;−pt;−ptÞ; ð1Þ

where ρ is the density, and the transverse pressure pt
differs from the usual radial pressure pr owing to
anisotropy. In Schwarzschild coordinates the metric takes
the form

ds2 ¼ gð0Þαβ dx
αdxβ ¼ eνdt2 − eλdr2 − r2dθ2 − r2 sin2 θdφ2:

ð2Þ

Using this matter distribution and spacetime geometry in
Einstein’s equations gives one the following modified
Tolman-Oppenheimer-Volkov (TOV) equations,

dpr

dr
¼ −

ðρþ prÞðmþ 4πr3prÞ
rðr − 2mÞ þ 2

r
ðpt − prÞ; ð3Þ

dm
dr

¼ 4πr2ρ; ð4Þ

where mðrÞ is the mass enclosed within areal radius r.
To close this system of equations one considers two

separate EOSs for pr and pt. We will assume barotropic
EOS for radial pressure, pr ¼ prðρÞ. Specifically, we study
stars with two different EOSs based on the relativistic mean
field (RMF) parametrization, namely, DDHδ [42] and GM1
[43] in beta equilibrium. In both cases, for the crust an EOS
by Douchin and Haensel [44] is added below a density of
10−3 fm−3. For transverse pressure, we consider the func-
tional form given by Bowers and Liang [19],

pt ¼ pþ 1

3
λBL

ρþ 3p
1 − 2m=r

ðρþ pÞr2; ð5Þ

where the constant λBL is a measure of anisotropy. Note
that in Eq. (5), and hereafter, we use p≡ pr to denote the
radial pressure. For this particular choice of anisotropic
EOS, the pressure anisotropy ðpt − pÞ [which affects the
second term on the right-hand side of Eq. (3)] must vanish
quadratically with r at the center of the star in order to yield
regular stellar solutions. This form of pt was also motivated
in Ref. [19] by the consideration that at least a part of the
anisotropy is gravitationally induced, thereby, giving rise to
its nonlinear dependence on p. The boundary condition
pðr ¼ RÞ ¼ 0 determines the radius R of the star. For all
physically acceptable solutions we must have p; pt ≥ 0
inside the star.
Following Silva et al. [36] we begin by examining

solutions in the relatively narrow range −2 ≤ λBL ≤ 2
around isotropy, which is when λBL ¼ 0. For DDHδ and
GM1, we find that when the transverse pressure is higher
than the radial pressure (i.e., λBL > 0) the star can support
more mass against gravitational collapse compared to the
opposite situation (i.e., λBL < 0). We also find that, for a
fixed central density, compactness of the star increases
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(decreases) if the transverse pressure exceeds (falls below)
radial pressure. These properties are depicted in Fig. 1.
Is it possible to observationally constrain the degree of
anisotropy in a neutron star? Below we present a way to do
so with gravitational wave observations.
Focusing first on negative values of λBL, we find some

evidence that the transverse pressure in such configurations
may not always be positive. (See Fig. 2 for λBL ¼ −1, −2.)
Since these may correspond to unphysical solutions, we
choose to study them in a separate work. However, for
smaller negative values of λBL, the condition pt ≥ 0 can be
respected everywhere in the star. Nevertheless, in those
cases the anisotropic effects will be smaller; we do not
study such cases here. Below we exclusively study the
positive λBL solutions, with particular attention on how
their tidal deformability may differ from the corresponding
λBL ¼ 0 solutions.
In Fig. 3 both radial pressure and transverse pressure

are plotted as functions of r for the central baryon density
ρ ¼ 5ρ0 (chosen arbitrarily) using DDHδ EOS for the
positive values of λBL ¼ 1 and 2. In both cases, we see

transverse pressure does not differ drastically from the
radial pressure. Therefore, the amount of anisotropy that is
allowed in this work is quite reasonable and also does not
violate causality.

III. COMPUTATION OF TIDAL
DEFORMABILITY

In the presence of an external tidal field ϵij the equilib-
rium configuration of a neutron star gets tidally deformed.
As a result the spherically symmetric star develops a
quadrupole moment Qij. To linear order in ϵij, this induced
response of the body is described as

Qij ¼ −λϵij; ð6Þ

where λ is tidal deformability of the neutron star and is
related to the dimensionless second Love number k2 as
λ ¼ 2

3
k2R5. We also denote the mass of the star as M. To

determine k2, we study linear perturbation of the back-
ground metric following Thorne and Campolattaro [45]:
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FIG. 1. The mass-radius relationship (left panel) and compactness of the neutron star as a function of normalized baryon density (right
panel) for several values of the anisotropic parameter λBL using EOSs DDHδ (top panel) and GM1 (bottom panel).
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gαβ ¼ gð0Þαβ þ hαβ; ð7Þ

where hαβ is the linearized perturbed metric. We expand
components of metric and fluid perturbation variables in
terms of spherical harmonics Ylm [46]. We restrict ourselves
to even parity perturbation for fixed values of l and m.
Since we are interested only in quadrupolar deformation we
set l ¼ 2, and the result is independent of the choice ofm [6].
With these restrictions the perturbed metric becomes

hαβ ¼ diag½H0ðrÞeν; H2ðrÞeλ; r2KðrÞ; r2sin2θKðrÞ�
× Y2mðθ;φÞ; ð8Þ

whereH0,H2, and K are all radial functions determined by
the perturbed Einstein equations.
Expansion of the perturbed stress-energy tensor gives

us the following relations: δT0
0 ¼ δρ ¼ dρ

dp δp, δT
r
r ¼ −δp

and δTθ
θ ¼ δTφ

φ ¼ −δpt ¼ − dpt
dp δp. We insert these fluid

and metric perturbations in linearized Einstein equations
δGβ

α ¼ 8πδTβ
α. From δGθ

θ − δGφ
φ ¼ 0 and δGr

θ ¼ 0 we get
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FIG. 2. Radial profile of transverse pressure for different values of central density using DDHδ (top panel) and GM1 (bottom panel)
EOS: λBL ¼ −1 (left panel) and λBL ¼ −2 (right panel).

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14

P
re

ss
ur

e 
[M

eV
/fm

3 ]

Radius [km]

pr
pt , λBL=1
pt , λBL=2

FIG. 3. Comparison of radial pressure and transverse pressure
as functions of r for λBL ¼ 1 and λBL ¼ 2 using DDHδ EOS for
the central density ρ ¼ 5ρ0. In both cases, the transverse pressure
remains within a factor of a few of the radial pressure and does
not violate causality. As we study later, even smaller values of the
transverse pressure can have observational consequences.

BHASKAR BISWAS and SUKANTA BOSE PHYS. REV. D 99, 104002 (2019)

104002-4



H0 ¼ H2 ≡H and K0 ¼ Hν0 þH0, respectively. By sub-
tracting the equation δGθ

θ þ δGφ
φ ¼ −16πδpt from the

tt-component of the perturbed Einstein equations we obtain
the following differential equation for H:

H00 þH0
�
2

r
þ eλ

�
2mðrÞ
r2

þ 4πrðp − ρÞ
��

þH

�
4πeλ

�
4ρþ 8pþ ρþ p

Acs2
ð1þ c2sÞ

�
−
6eλ

r2
− ν02

�

¼ 0; ð9Þ

where A≡ dpt
dp , and c2s ≡ dp

dρ is the speed of sound squared;
moreover, the prime denotes derivative with respect to r. If
we put A ¼ 1 in Eq. (9) we recover the familiar master
equation for the isotropic case [6].
Tidal Love number can be calculated by matching the

internal solution with the external solution of the perturbed
variableH at the surface of the star [6–8]. Then the value of
tidal Love number can be found in terms of y and
compactness parameter C ¼ M

R :

k2 ¼
8

5
ð1− 2CÞ2C5½2Cðy− 1Þ− yþ 2�

�
2Cð4ðyþ 1ÞC4

þ ð6y− 4ÞC3 þ ð26− 22yÞC2 þ 3ð5y− 8ÞC− 3yþ 6Þ

− 3ð1− 2CÞ2ð2Cðy− 1Þ− yþ 2Þ ln
�

1

1− 2C

��
−1
;

ð10Þ

where y depends on the value of H and its derivative at the
surface:

y ¼ rH0

H

����
R
:

In the left panel of Fig. 4, the tidal Love number k2 is
plotted as a function of mass for positive λBL using DDHδ
(top panel) and GM1 (bottom panel). The isotropic case
corresponds to λBL ¼ 0. We observe that as λBL increases,
the tidal Love number at a constant stellar mass decreases
for both EOSs. In the right panel of Fig. 4 the dimen-
sionless tidal deformability Λ≡ λ=M5 is plotted as a
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FIG. 4. Tidal Love number k2 (left panel) and dimensionless tidal deformability Λ (right panel) are plotted as functions of mass using
EOSs DDHδ (top panel) and GM1 (bottom panel) for positive values of λBL.
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function of the star’s mass between 1 M⊙ to 2 M⊙. We
observe that positive anisotropy reduces the value of Λ, for
a given mass.

IV. IMPLICATIONS OF GW170817 ON EOS
WITH ANISOTROPIC PRESSURE

At leading order Λ1;2 appear in the gravitational wave
phase through the effective tidal deformability

Λ̄ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
; ð11Þ

where Λ1 and Λ2 are the tidal deformabilities of the
heavier and lighter stars, respectively. The recent detec-
tion of GWs from the binary neutron star merger event
GW170817 has constrained Λ̄ to be ≤720 [2,3] at
90% confidence level for low spin (dimensionless spin
magnitude ≤ 0.05) prior. The corresponding chirp mass,

Mc ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5, was measured to be 1.188þ:004

−:002 M⊙ and

the mass ratio, q ¼ m2

m1
, was constrained between 0.7-1 for

low spin prior. Also the EM counterpart of GW170817,
named AT2017gfo, provides an additional constraint of
Λ̄ ≥ 400 [4]. Indeed, constraints from chiral effective
field theory and perturbative quantum chromodynamics
suggest for a lower bound on Λ that is as low as 120 for
1.4 M⊙ [47]. As we show below, a lower value of Λ1;2

and, therefore, Λ̄, can allow for a larger range of λBL
to be admissible by GW170817 observations. Here, we
choose to be conservative and take Λ̄ ≥ 400. Combining
these GW and EM constraints gives the allowed range of
Λ̄ to be 400 ≤ Λ̄ ≤ 720.
Many of the relativistic equations of state struggle to

satisfy the upper bound, Λ̄ ≤ 720 (see, e.g., Ref. [48]),
assuming λBL ¼ 0. That situation changes if anisotropy in
pressure is present. In the left panel of Fig. 5, we have
plotted Λ̄ as a function of q for positive λBL using
both DDHδ (upper panel) and GM1 (lower panel) EOSs.
The allowed ranges of Λ̄ are shaded in gray. Figure 5 shows
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that between GM1 and DDHδ, only the latter satisfies the
constraint on Λ̄ set in Ref. [2,3] when λBL ¼ 0. Indeed,
Λ̄ > 1000 if these were GM1 stars with λBL ¼ 0. However,
when λBL ≠ 0 the value of Λ̄ falls by a large amount for
both EOSs, so much so that it can lie within the GW-EM
bounds for a certain amount of pressure anisotropy.
Furthermore, the lower bound on Λ̄ helps limit the value
of λBL from above. In the right panel of Fig. 5 the allowed
ranges of λBL are plotted against q for DDHδ (upper panel)
and GM1 (lower panel) EOSs. We find that presence of
anisotropy in pressure can reduce the value of Λ by a
significant amount. Thus, certain EOSs that were ruled
out by GW170817 observations for λBL ¼ 0 become viable
if the stars support an anisotropic component in the
pressure.
It is important to note that, GW170817 was

undoubtedly hot near merger and post merger. There-
fore, the limit Λ̄ > 400 may be potentially affected by
details such as whether hot equations of state are
considered in the late inspiral and merger phases of
the binary.

A. Using universality relations for further
constraining pressure anisotropy

As shown in Fig. 4 in the mass range of interest
½1; 2� M⊙, in the presence of positive pressure anisotropy
the tidal Love number decreases for any fixed stellar
mass. Thus, the Λ distribution of stars with a soft EOS,
such as SLy4 with no pressure anisotropy, can be difficult
to distinguish from that of stars with a stiff EOS, such as
DDHδ, but nonzero pressure anisotropy, say, λBL ¼ :59;
see the left panel of Fig. 6. In this sense, positive
anisotropy has an effect that is similar to making a star
softer, for a given mass. This poses the problem of how
one might distinguish these two types of stars. We argue

here that it is possible to make the correct identification
in some cases by measuring the stellar radius. This is
because a nonzero λBL tends to make the star larger, for
any fixed stellar mass (see the right panel of Fig. 6). Note
there that DDHδ with λBL ¼ :59 has a larger radius for
most of the mass range than SLy4 with any λBL ∈ ½0; 2�.
To measure the stellar radius, we adopt the same trick

that was resorted to in Ref. [2], namely, to use universality
relations between Λ and stellar compactness. Universality
of the C − Λ relationship was first pointed out by Maselli
et al. [49]. Here, we inspect whether this universality also
holds in the presence of pressure anisotropy, Eq. (5). In the
top left panel of Fig. 7, C vs lnΛ is plotted for five different
isotropic EOSs. We find that C is well fitted by the
following relation,

C ¼ 0.356883 − 0.0363734 lnΛþ 0.000899844ðlnΛÞ2:
ð12Þ

GW170817 has constrained the value of Λ for a 1.4 M⊙
star to be 190þ390

−120 [2]. If we use the above mentionedC − Λ
relationship and this constraint on Λ, then the radius of the
two stars in GW170817 is measured to be 10.8þ2.0

−1.4 km,
with the upper limit consistent with Ref. [2], and the lower
limit larger by 0.3 km at most.
In the top right panel of Fig. 7, C vs lnΛ is plotted for

different EOSs but with fixed λBL ¼ 0.59. We observe
universality relation holds, in fact somewhat more tightly,
for such pressure anisotropy. The fitted C − Λ relation for
this anisotropic configuration is

C ¼ 0.349945 − 0.0382978 lnΛþ 0.00106643ðlnΛÞ2;
ð13Þ
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corresponds to DDHδ stars but with EOS anisotropic pressure λBL ¼ :26.
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and the radius is constrained to 11.6þ2.2
−1.6 km for the same Λ

measurement of 190þ390
−120 . With λBL ¼ 0.80 (bottom left

panel),

C ¼ 0.347709 − 0.0384087 lnΛþ 0.00108876ðlnΛÞ2;
ð14Þ

and the radius will be constrained to 11.7þ2.3
−1.6 km for the

aforementioned Λ. With λBL ¼ 2 (bottom right panel),

C ¼ 0.337864 − 0.0367376 lnΛþ 0.000985149ðlnΛÞ2;
ð15Þ

and the radius is found to be 12.0þ2.3
−1.6 km.

We illustrate in Table I how the above radius measure-
ments can be used to rule in or out various EOSs with
nonzero λBL. For example, the universality relation Eq. (13)
implies that for DDHδ neutron stars with the same masses
as GW170817, and λBL ¼ :59, the radius must obey
11.6þ2.2

−1.6 km (90% CL), which allows for the maximum
radius of such stars to be 13.8 km. However, Fig. 6 shows

that the minimum radius for such a star in the 1–2 M⊙ mass
range is Rmin ¼ 12.7 km, which is less than 13.8 km.
This is why we infer that DDHδ remains viable following
the observation of GW170817 provided λBL ≥ 0.59.
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FIG. 7. C − Λ relationship for different cases: different EOSs with λBL ¼ 0 (top left), different λBL for fixed DDHδ EOS (top right),
different EOSs with λBL ¼ 1 (bottom left), different EOSs with λBL ¼ 2 (bottom right).

TABLE I. Use of radius constraints to discern the presence or
absence of pressure anisotropy. For example, the universality
relation Eq. (13) implies that for DDHδ neutron stars with the
same masses as GW170817, and λBL ¼ :59, the radius must obey
11.6þ2.2

−1.6 km (90% CL), which allows for the maximum radius of
such stars to be 13.8 km. However, Fig. 6 shows that the
minimum radius for such a star in the 1–2 M⊙ mass range is
Rmin ¼ 12.7 km, which is less than 13.8 km. This is why we infer
that DDHδ remains viable following the observation of
GW170817 provided λBL ≥ 0.59.

EOS
Degree of
anisotropy

Bound on
radius Rmin (km) Comment

DDHδ λBL ¼ :59 11.6þ2.2
−1.6 12.7 Survive

GM1 λBL ¼ :80 11.7þ2.3
−1.6 14.2 Ruled out

GM1 λBL ¼ 2 12.0þ2.3
−1.6 15.1 Ruled out
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Note that DDHδ with λBL ≥ 0.59 is allowed by the
GW-EM constraint on Λ̄, as already observed in Fig. 5.
On the other hand, the universality relation Eq. (14)
implies that for GM1 neutron stars with the same masses
as GW170817, and λBL ¼ :80, the radius must obey
11.7þ2.3

−1.6 km (90% CL), which allows for the maximum
radius of such stars to be 14.0 km. However, Fig. 6 shows
that the minimum radius for such a star in the 1–2 M⊙
mass range is Rmin ¼ 14.2 km, which is larger than
14.0 km. This is why we infer that GM1, with
λBL ≥ 0.80, is ruled out following the observation of
GW170817.
In the analysis of the GW170817 signal in Ref. [2],

LIGO and Virgo used another factor, arising from pulsar
mass observations, namely that any viable EOS must
support NS with a maximum mass that is at least
1.97 M⊙. This requirement gives an improved measure-
ment of radius. We leave the study of the corresponding
impact in λBL constraints to a future study.
We also observe that more observations of neutron star

mergers, as anticipated, will help constrain λBL more
tightly. This will help in narrowing the statistical errors,
thereby allowing smaller systematic effects arising from
λBL to stand out. Indeed, when the statistical error of any
GWobservable gets so precise (e.g., with larger number of
observations) that it is smaller than the systematic shift
induced by nonzero λBL, then it becomes meaningful to use
it to constrain the presence of anisotropic pressure in
these stars.
Note that there are preliminary indications from

numerical relativity simulations that the ejecta mass from
such mergers is correlated with the neutron star equation
of state or radius [50] and might be estimated precisely
enough from the luminosity of any electromagnetic
emission it fuels. As these simulations mature and their
results become more reliable, they have the potential to
provide an additional channel for measuring these param-
eters and, perhaps, aid in constraining anisotropy.

V. CONCLUSION

In this paper, we have calculated tidal Love number and
deformability of neutron stars in the presence of anisotropic
pressure. As a first step, we use two RMF EOSs to describe
radial pressure and a functional form of anisotropic
pressure as proposed by Bowers and Liang [19]. We obtain
the equilibrium solutions numerically by integrating modi-
fied TOV Eqs. (3) and (4), and find that they can differ
significantly from the isotropic ones: We observe that for
any fixed central density, the compactness of the star
increases for positive anisotropy (λBL > 0) and decreases
for negative anisotropy (λBL < 0). In a further investiga-
tion, when we plot transverse pressure as a function of
radius for the chosen negative values of λBL we notice that
the pt ≥ 0 requirement is not met everywhere inside the

star. Therefore, we discard those anisotropic EOSs with
negative values of λBL.
The tidal Love numbers and deformabilities are obtained

by integrating the single Eq. (9) for the perturbed
metric variable H, along with the modified TOV Eqs. (3)
and (4), and for the boundary condition pðr ¼ RÞ ¼ 0. It
turns out that both tidal Love numbers and deformabil-
ities can reduce by a significant amount in the presence
of pressure anisotropy. This leads to an interesting
possibility. Earlier, a subset of those EOSs that failed
to satisfy the bound of tidal deformability set byGW170817,
can now become viable if anisotropy in pressure is
present beyond a certain threshold. We demonstrate this
by analyzing the cases of two RMF EOSs, DDHδ and
GM1, for various values of λBL. Finally we propose how
future observations may be able to discern the presence or
absence of anisotropic pressure. However, there is scope to
extend this study for a spinning object. Tidal deformation
of a spinning object has been studied in case of isotropic
star [51,52]. These studies show that value of tidal
deformability increases by 10%. So, spin has the opposite
effect compared to anisotropy. This is why we have studied
isotropy alone here. Adding spin can be pursued in the
future.
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APPENDIX: COMMENT ON ANISOTROPIC
ULTRACOMPACT OBJECTS

Positive anisotropy parameter yields higher compact-
ness. It has been argued that by increasing the value of
the anisotropic parameter sufficiently the black hole limit
can be reached [38,39]. But one should carefully examine
how the transverse pressure behaves for those high
anisotropic parameters. In the left panel of Fig. 8 trans-
verse pressure is plotted as a function of radius using
DDHδ and λBL ¼ 4 for different values of central energy
density. We observe transverse pressure increases with
the radius and finally near the surface it starts decreasing
and vanishes at the surface. In order to obtain such
behavior for the transverse pressure we need some exotic
physical phenomenon that enhances the value of the
transverse pressure. But in reality, we do not expect such
type of physical processes. In the right panel of Fig. 8
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radial profile of the transverse sound speed squared
(defined as, c2s;t ¼ dpt

dρ ) is plotted for the same configu-
ration used in left panel. The region where the transverse
pressure increases with r, the transverse sound speed

becomes negative. Also, for higher central density (here,
ρ
ρ0
¼ 6) transverse EOS becomes acausal. So, clearly, it is

physically not possible to achieve the black hole limit by
increasing the degree of anisotropy.
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