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Using dynamical system analysis, we explore the cosmology of theories of order up to eighth order of the
form fðR;❑RÞ. The phase space of these cosmologies reveals that higher-order terms can have a dramatic
influence on the evolution of the cosmology, avoiding the onset of finite time singularities. We also confirm
and extend some of results which were obtained in the past for this class of theories.
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I. INTRODUCTION

General relativity (GR) deals with second-order
differential equations for the metric gμν. Higher-order
modifications of the gravitational interaction have been
for a long time the focus of intense investigation. They
have been proposed for a number of reasons including the
first attempts of unification of gravitation and other
fundamental interactions. Nowadays, the main reason
why one considers this kind of extension in GR is of
quantum origin. Studies on the renormalization of the
stress-energy tensor of quantum fields in the framework
of a semiclassical approach to GR, i.e., what we call
quantum field theory in curved spacetime, shows that
such corrections are needed to take into account the
differences between the gravitation of quantum fields and
the gravitation of classical fluids [1,2].
With the introduction of the paradigm of inflation and

the requirement of a field able to drive it, it was natural,
although not obvious, to consider these quantum correc-
tions as the engine of the inflationary mechanism.
Starobinski [3] was able to show explicitly in the case
of fourth-order corrections to GR that this was indeed the
case: quantum corrections could induce an inflationary
phase. Such result should not be surprising. Fourth-order
gravity carries an additional scalar degree of freedom and
this scalar degree of freedom can drive an inflationary
phase. In the following years other researchers [4–7] tried
to look at the behavior of sixth-order corrections, to see if
in this case one could obtain a richer inflationary phase
and more specifically a cosmology with multiple infla-
tionary phases. However, it turned out that this is not the
case: in spite of the presence of an additional scalar
degree of freedom, multiple inflationary phases were not

possible. The reason behind this result is still largely
unknown.
The discovery of the dark energy offered yet another

application for the additional degree of freedom of higher-
order gravity. Like in the case of inflation, this perspective
offered an elegant way to explain dark energy: higher-order
corrections were a geometrical way to interpret the
mysterious new component of the Universe [8]. Here an
important point should be stressed: differently from the
standard perturbative investigation of a physical system,
in the case of higher-order gravity, the behavior of the
new theory cannot be deduced as a small perturbation of
the original second-order one. The reason is that, since the
equations of motion switch order, the dynamics of
the perturbed system are completely different from the
nonperturbed one whatever the (nonzero) value of the
smallness parameter. For this reason, the properties of
higher-order gravity cannot be deduced from their lower-
order counterpart, even if the higher-order terms are sup-
pressed by a small coupling constant. This fact calls for a
complete reanalysis of the phenomenology of these theo-
ries. Such study should be performed with tools designed
specifically for this task, which therefore contain no hidden
assumptions or priors which might compromise the final
result. One of these tools, which will be used in the
following is the so called dynamical system approach
(DSA) [9,10]. DSA has been used now for a long time
to understand the dynamics of cosmologies of a number of
different modifications of GR (see, e.g., Refs. [11–30]). It is
based on the definition of a set of expansion normalized
variables of clear physical meaning which help the physical
interpretation of the orbits obtained. The first attempt to
apply this technique to a theory of order six was made in
Ref. [7]. Recently a new version of DSA has been proposed
[14], which helped clarify the cosmological dynamics of
fourth-order gravity, revealing new aspects of these theo-
ries. The technique is also extendable to consider higher-
order theories and in the following we will propose a
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formalism able to treat a subclass of theories of gravity of
order six and eight.
Among the many unresolved issues that are known to

affect higher-order theories, it is worth to mention briefly
the so-called Ostrogradski theorem [31]. The theorem
shows that for a generic system with a higher-order
Lagrangian, there exist a conserved quantityH correspond-
ing to time shift invariance. When this quantity is inter-
preted as a Hamiltonian, by the definition of a suitable
Legendre transformation, it can be shown that such
Hamiltonian, not being limited from below, leads to the
presence of undesirable features of the theory upon
quantization, whereas the classical behavior, which
includes classical cosmology, has no problem. In view
of this conclusion higher-order theories, with the notable
exception of fðRÞ gravity, are deemed as unphysical. The
most important issue for this work is then, why bother with
higher-order gravity? We can give two arguments. The first
is that, as mentioned above, the higher-order terms we will
consider are terms of a series of corrections arising in a
renormalization procedure. In this perspective, therefore,
there is no requirement that the truncated series had the
same convergence property of its sum. A typical example is
the Taylor series of sinðxÞ. The truncated series is not
bound, whereas its full sum is. In the same way the
truncation of the original semiclassical model that gives
rise to a higher-order theory might be fundamentally flawed
on the quantum point of view. The problem only arises if
one chooses the complete theory of quantum gravity to be
given by a n–order truncation. The second is that a study of
the behavior of the truncation allows an understanding of
the interplay between the different terms of the develop-
ment and in particular if and how the pathologies of the
theory at a certain order are changed by the terms of higher-
order. This on one hand allows us to give statements on the
validity of the procedure of renormalization in quantum
field theory in curved spacetime and, on the other hand, it is
interesting in the context of the cosmology of fourth-order
gravity, as it is known that this class of theories can present
a number of issues, i.e., scale factor can evolve toward a
singularity at finite time [14] which is independent from the
Ostrogradski instability. An analysis of the higher-order
theories can therefore shed light on the real nature of these
pathologies.
In this paper we will propose a DSA able to give a

description of the dynamics of cosmological models based
on a subclass of theories of gravity represented by the
Lagrangian density L ¼ fðR;❑RÞ. We will show that the
higher-order terms in these theories act in an unexpected
way on the cosmology: They can be dominant and prevent
the appearance of finite time singularities. The calculations
involved in this task are formidable so we will give the full
expression only when strictly necessary.
The paper is organized as follows. In Sec. II we give the

general form of the field equations. In Sec. III we construct

a general formalism for theories of order six and we
consider two specific examples. Section IV we compare
directly sixth order and fourth order theories. Section V is
dedicated to the setup of a DSA formalism for theories of
order eight together with other three examples. Section VI
contains the conclusions.

II. BASIC EQUATIONS

The general action for a relativistic theory of gravity of
order six is given by [5,6]

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;❑RÞ þ Lm�; ð1Þ

where g is the metric determinant of the metric gμν, f
is a generic function of the Ricci scalar R and of its
d’Alembertian ❑R, and Lm is the standard matter
Lagrangian. This theory is in general of order eight in
the derivative of the metric. Since we consider the boundary
terms as irrelevant, integrating by parts leads to a series of
relevant properties in the theory above. First, it is important
to note that, not differently from the case of the Einstein-
Hilbert action, if f is linear in❑R the theory is only of order
six. In fact, any nonlinear term in ❑R appearing in f can
always be recast as a higher-order term. Thus, for example,
ð❑RÞ2 can be written as

ð❑RÞ2 ¼ ∇μð∇μR❑R − R∇μ❑RÞ þ R❑2R: ð2Þ

Thus terms of the type ð❑RÞn can be converted into terms
of the form R❑nR. In general, therefore, the class of
theories of gravity with Lagrangian

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
f0ðRÞ þ

Xn
i¼1

aiðRÞð❑RÞi þ Lm

�
; ð3Þ

where the ai are functions of the Ricci scalar, will have the
same equations of motion of a theory whose action which
contains terms of higher order like, e.g., Rn❑nR. In this
sense the analysis given in the following will extend also to
this specific class of theories.
In the following we will start describing the general

theory and then, using the considerations above, we will
present explicitly a dynamical systems formalism for
Lagrangians of the type of Eq. (3).
Variation of Eq. (3) upon the metric tensor gives the

gravitational field equations

GGμν ¼
1

2
gμν½f − GR� þ G;μν − gμν❑G

−
1

2
gμν½F ;γR;γ þ F❑R�

þ F ;ðμR;νÞ þ Tμν; ð4Þ
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where Tμν is the standard stress energy tensor and

G ¼ ∂f
∂Rþ❑F ; F ¼ ∂f

∂❑R : ð5Þ

In the Friedmann-Lemaître-Robertson-Walker metric and
assuming the matter component to be an isotropic perfect
fluid, i.e., Tb

a ¼ ð−μ; p; p; pÞ, where μ is the energy density
and p is the pressure of the fluid, we obtain the cosmo-
logical equations which are usually written as

G

�
H2 þ k

a2

�
¼ 1

6
ðRG − f þ F❑Rþ _R _F Þ

−H _Gþ μ

3
; ð6Þ

Gð _H þH2Þ ¼ −
1

6
ðf − RG − F❑RÞ − 1

3
_R _F

−
1

2
G̈ −

1

2
H _G −

1

6
ðμþ 3pÞ; ð7Þ

where k ¼ −1, 0, 1 is the spatial curvature,

H ¼ _a
a
; ð8Þ

is the Hubble parameter, aðtÞ is the scale factor, a dot ð_Þ
denotes a derivative with respect to time, and

R ¼ 6

�
_H þ 2H2 þ k

a2

�
;

❑R ¼ −R̈ − 3H _R: ð9Þ
With an abuse of terminology, we will sometimes refer to
Eq. (6) as the Friedmann equation and to Eq. (7) as the
Raychaudhuri equation.
We introduce now the logarithmic time

N ¼ ln
a
a0

; ð10Þ

where a0 is a constant with units of length that represents
the value of the scale factor at the initial time t ¼ t0. We
also define a set of seven parameters as

q ¼ Hð1Þ
N

H
; j ¼ Hð2Þ

N

H
; s ¼ Hð3Þ

N

H
; s1 ¼

Hð4Þ
N

H
;

s2 ¼
Hð5Þ

N

H
; s3 ¼

Hð6Þ
N

H
s4 ¼

Hð7Þ
N

H
; ð11Þ

where HðiÞ
N represent the ith-derivative of H with respect to

N. One can write these equations in terms of these
variables, but this is a long and rather tedious exercise
which does not really add anything to the understanding of
the problem. For this reason we will not show them here,
giving directly the equations in terms of the dynamical
variables in the following sections.

III. DYNAMICAL SYSTEM APPROACH
FOR THE SIXTH-ORDER CASE

A. The basic equations

Let us start looking at the sixth-order case, i.e., n ¼ 1.
Recalling the argument of the previous section, all theories
of order six that have the form fðR;❑RÞ can be written
without loss of generality as

f ¼ f1ðRÞ þ f2ðRÞ❑R; ð12Þ
where f1 and f2 are in general different functions of R.
Equation (12) has the immediate consequence that s3 and
s4 are not present in the cosmological equations and the
analysis of this classes of modes is greatly simplified.
In order to apply the scheme presented in Ref. [14] the

action will need to be written in a dimensionless way. We
introduce therefore the constant R0, with R0 > 0, which has
dimension of a length squared and we will consider the
function f of the type f ¼ R0f̄ðR−1

0 R;R−2
0 ❑RÞ, for some

function f̄. This implies the definition of an auxiliary
dynamical variable related to R0. We then define the set of
dynamical variables

R ¼ R
6H2

; B ¼ ❑R
6H4

; K ¼ k
a2H2

; Ω ¼ μ

3H2
;

J ¼ j; Q ¼ q; S ¼ s; S1 ¼ s1; A ¼ R0

H2
:

ð13Þ
Note that in the above setting A and Ω are defined positive
so that all fixed points with A < 0 or Ω < 0 should be
excluded. The Jacobian of this variable definition reads

M6 ¼ −
1

108a2H32
; ð14Þ

which implies that the variables are always regular ifH ≠ 0
and a ≠ 0.
The requirement to have a closed system of equations

demands the introduction of the auxiliary quantities

X1ðA;RÞ ¼
f1ðA;RÞ

H2
;

X2ðA;RÞ ¼ H2f2ðA;RÞ;
Y1ðA;RÞ ¼ f01ðA;RÞ;
Y2ðA;RÞ ¼ H4f02ðA;RÞ;
Z1ðA;RÞ ¼ H2f001ðA;RÞ;
Z2ðA;RÞ ¼ H6f002ðA;RÞ;
W1ðA;RÞ ¼ H4fð3Þ1 ðA;RÞ;
W2ðA;RÞ ¼ H8fð3Þ2 ðA;RÞ;
TðA;RÞ ¼ H10fð4Þ2 ðA;RÞ; ð15Þ

where the prime represents the derivative with respect to the
Ricci scalar R. The dynamical equations can be written as
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dR
dN

¼ Jþ ðK − 2ÞK − ðR − 2Þ2;
dB
dN

¼ Bð3K − 3Rþ 7Þ þ 1

2
½JþK2 − 2KðRþ 1Þ þ R2 − 4�2 þ 1

Y2

�
Ω
12

þ 18½JþK2 − 2KðRþ 1Þ þR2 − 4�3W2

−
1

72
X1 −

1

12
ðK −Rþ 1ÞY1 þ

�
2 −

J
2
−
K2

2
þ KRþK −

R2

2

�
Z1

− 3½4B − ðK −R − 5ÞðJþ K2 − 2KðRþ 1Þ þ R2 − 4Þ� þ ½Jþ K2 − 2KðRþ 1Þ þR2 − 4�Z2

�
;

dΩ
dN

¼ Ωð1 − 3wþ 2K − 2RÞ;
dJ
dN

¼ Jð5K − 5Rþ 3Þ þ ðK −RÞ½K2 − Kð2Rþ 7Þ þRðRþ 5Þ�;
− B − 22Kþ 20R − 12;

dK
dN

¼ 2KðK −Rþ 1Þ;
dA
dN

¼ 2AðK −Rþ 2Þ: ð16Þ

To eliminate the equations for S1, Q, S we have
implemented in the equations above the Friedmann equa-
tion, Eq. (6), and the following constraints coming from the
definition of R and ❑R in Eq. (9):

R ¼ KþQþ 2;

B ¼ −4JQ − 7Jþ 2KQþ 2K

−Q3 − 11Q2 − 12Q − S: ð17Þ
As mentioned in the Introduction, for the sake of simplicity,
we do not report here the full cosmological equations in
terms of the variables in Eq. (11). They are very long and
their full form does not add much to the understanding of
the derivation of the fixed points and their properties. The
reader can find some examples of the full form of these
equations in the Appendix.
The solutions associated to the fixed points can be derived

writing Raychaudhuri equation, Eq. (7), in terms of the
variables given in Eq. (11) and solving for s2. Since Eq. (7) is
linear in s2 via the term G̈, this does not present any problem.
From the definition of s2, in a fixed point we can write

1

H
d5H
dN5

¼ s�2; ð18Þ

where here, and in the following, the asterisk � indicates the
value of a variable in a fixed point. The characteristic poly-
nomial of Eq. (18) has one real and two pairs of complex
roots. Hence, we can write an exact solution for HðNÞ:

H ¼
X2
i¼0

exp ðpαiNÞ½Hi cos ðβipNÞ þ H̄i sin ðβipNÞ�;

ð19Þ

where p ¼ −
ffiffiffiffiffi
s�2

5
p

, Hi and H̄i are integration constants and
ai and bi are given by

α0 ¼ −1; β0 ¼ 0;

α1 ¼
1

4
ð

ffiffiffi
5

p
þ 1Þ; β1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

8
−

ffiffiffi
5

p

8

s
;

α2 ¼
1

4
ð1 −

ffiffiffi
5

p
Þ; β2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

8
þ

ffiffiffi
5

p

8

s
; ð20Þ

i.e., are connected with the fifth root of unity. We are
obviously interested in real solutions, which can be derived
by a suitable redefinition of the integration constants. The
solutions above are oscillating, however they do not corre-
spond to oscillating scale factors. Indeed the scale factor is
given by the equation

_a ¼
X2
i¼0

a1þpαi ½Hi cos ðβip ln aÞ þ H̄i sin ðβip ln aÞ�;

ð21Þ

which can be solved numerically. Notice that this solution,
like Eq. (19) is parametrized only by the quantity p and
therefore s�2. In the following we will characterise these
solutions only by the value of s�2.
In the case s�2 ¼ 0 the equation to solve is

_N ¼
X4
i¼0

HiNi; ð22Þ

which in terms of a reads
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_a ¼ a
X4
i¼0

Hiðln aÞi: ð23Þ

Equation (22) can be solved by separation of variables and
it has a solution that depends on the roots of the polynomial
in N on the right-hand side. In particular, the scale factor
can have a finite time singularity if any of the roots of the
polynomial are complex, otherwise it evolves asymptoti-
cally towards a constant value of the scale factor, i.e.,
a static universe. Therefore, a fixed point with s2 ¼ 0, will
correspond to one of these two cosmic histories depending
on the value of the constants Hi. Considering that the
solution given in Eq. (23) can be viewed as an approxi-
mation of the general integral of the cosmology, then the
values of the constants Hi should match the initial con-
ditions of the orbit. This implies that the solution in the
fixed point will depend on the initial condition of the orbit
that reaches it. In Fig. 1 we show time dependence of the
scale factor corresponding to this point.
In the following we will examine two specific examples.

The first one will show the phase space of a theory in which
only sixth-order terms are present other than the Einstein-
Hilbert one. This example will clarify the action of these
terms. The second one will contain also fourth-order terms,
so that the interaction between sixth and fourth-order
corrections can be observed explicitly.

B. Two examples

1. Case f =R + γR❑R

In this case only the Einstein-Hilbert plus sixth-order
terms are present in the theory. It is an interesting example
as it clarifies the interplay between these terms. In this case
the action can be written as

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ γR−2
0 R❑Rþ Lm�; ð24Þ

which implies f1 ¼ R−1
0 R and f2 ¼ γR−3

0 R. Then the only
nonzero auxiliary quantities in Eq. (15) are

X1ðA;RÞ ¼ 6R; X2ðA;RÞ ¼
6γR
A

;

Y1ðA;RÞ ¼ 1; Y2ðA;RÞ ¼
γ

A2
; ð25Þ

and the Friedmann and Raychaudhuri equations, Eqs. (6)
and (7) respectively, can be found in Eq. (A1) of Appendix.
The dynamical system in Eq. (16) becomes

dR
dN

¼ Jþ ðK − 2ÞK − ðR − 2Þ2;
dB
dN

¼ Bð3K − 3Rþ 7Þ − A2ðK −Ωþ 1Þ
12γ

þ 1

2
ðJþ K2 − 2KðRþ 1Þ þ R2 − 4Þ2;

dJ
dN

¼ J½5ðK − RÞ þ 3� − B − 22Kþ 20R − 12

þ ðK −RÞ½K2 − Kð2Rþ 7Þ þ RðRþ 5Þ�;
dΩ
dN

¼ Ωð1 − 3wþ 2K − 2RÞ;
dK
dN

¼ 2KðK −Rþ 1Þ;
dA
dN

¼ 2AðK −Rþ 2Þ: ð26Þ

The system presents three invariant submanifolds Ω ¼ 0,
K ¼ 0, and A ¼ 0, therefore only points that belong to all
of these three submanifolds can be true global attractors.
The fixed points of the system can be found in Table I,
together with their associated solutions which are repre-
sented graphically in Fig. 2. Point C has a solution of the
type described by Eq. (23) and as such can indicate the
occurrence of a finite time singularity.
The stability of fixed points B for w ≠ 1=3, I1 and I2,

can be deduced by the Hartmann-Grobmann theorem and it
is also shown in Table I. Points B and I1 are unstable, but
I2 is an attractor. Indeed this point is a global attractor for
the cosmology as it lays on the intersection of the three
invariant submanifolds of the phase space. The remaining
points A, B for w ¼ 1=3, and C, are nonhyperbolic, as they
have a zero eigenvalue. Their stability can be analyzed via
the central manifold theorem [32].
For point A, for example, defining the variables

x1 ¼ 12Bð3wþ 1Þ þ Ω;

x2 ¼
B
6
þ Jþ Ω

72ð3w − 5Þ − 1;

x3 ¼ A;

x4 ¼
B
2
þ J − 4ðKþ 1Þ þ 4Rþ Ω

24ð3w − 1Þ − 1;

x5 ¼ Ω;

y ¼ B
4
þ J − 4ðKþ 1Þ þ 2Rþ Ω

144ðw − 1Þ − 1; ð27Þ

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

t / t0

a
(t

)
/a

0

FIG. 1. Behavior of the scale factor in a fixed point s�2 ¼ 0. All
integration constants have been chosen to be one.
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and expressing the dynamical equations in the new vari-
ables, the equation of the center manifold x ¼ hðyÞ is given
by the system of equations

dx
dN

¼ dhðyÞ
dy

dy
dN

; ð28Þ

where the vector x has components x ¼ fx1; x2; x3; x4; x5g.
Solving the above system per series at third-order, i.e.,
setting

x ¼
X3
i¼2

aiyi þOðy4Þ; ð29Þ

gives the solutions

a2 ¼
�
−
3

2
ð3ωþ 1Þ; 1

24
; 0;−

1

8
; 0

�
;

a3 ¼
�
−

3

16
ð3ωþ 1Þ; 5

384
; 0;−

5

128
; 0

�
: ð30Þ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

t / t0

a
(t

)
/a

0

(a) Point

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

t / t0

a
(t

)
/a

0

(b) Point

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

t / t0

a
(t

)
/a

0

(c) Point

0 2 4 6 8 10

0

1

2

3

4

5

6

7

t / t0

a
(t

)
/a

0

(d) Point

FIG. 2. Behavior of the scale factor in the fixed points of the phase space of the theory fðR;❑RÞ ¼ R−1
0 Rþ R−3

0 R❑R. The integration
constants have all been chosen to be one.

TABLE I. Fixed points of fðR;❑RÞ ¼ R−1
0 Rþ R−3

0 R❑R and the parameter s2 that characterize its solution. Here A stays for attractor,
S for saddle, NHR for nonhyperbolic repeller, NHS for nonhyperbolic saddle.

Point Coordinates fR;B;J;Ω;K;Ag Solution Stability

A f0; 0; 1; 0;−1; 0g s2 ¼ −1 NHS

B f0; 0; 4; 0; 0; 0g s2 ¼ −32 NHR for w < 1=3
NHS for w > 1=3

C f2; 0; 0; 0; 0; 0g s2 ¼ 0 → (23) NHS
I1 fa−I ; b−I ; cþI ; 0; 0; 0g s2 ¼ sI1

2
S

I2 faþI ; bþI ; c−I ; 0; 0; 0g s2 ¼ sI2

2
A

a�I ¼ 1
10
ð16� ffiffiffiffiffi

46
p Þ b�I ¼ − 9

250
ð74� 9

ffiffiffiffiffi
46

p Þ c�I ¼ 1
50
ð31� 4

ffiffiffiffiffi
46

p Þ sI1

2 ¼ − 1
10
ð4þ ffiffiffiffiffi

46
p Þ sI2

2 ¼ − 1
10
ð4 − ffiffiffiffiffi

46
p Þ
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Note that the center manifold coincides with the center
space for the variables x3 and x5. The equation for the
central manifold is

dy
dN

¼ 1

8
y2 þOðy3Þ: ð31Þ

Using the Shoshitaishvili theorem we can conclude that
the stability of A is a complex combination of saddle
nodes in each plane ðxi; yÞ with i ≠ 3, 5 and the center
spaces for x3 and x5. Looking at the coefficients of a2 we
can conclude that this point is in general unstable.
We can apply the same procedure to the other

nonhyperbolic points. However, we can also evaluate
the character of these points in a faster way. In fact,
point A has eigenvalues f4;−2; 2; 2; 0;−ð1þ 3wÞg, i.e.,
with alternate signs. Therefore, regardless of the behav-
ior of the central manifold, this point is in fact always a
saddle. This implies that in some cases we can evaluate
the stability of a nonhyperbolic fixed point without
analyzing in detail the central manifold. Clearly this is
insufficient if the aim is to characterize the exact
behavior of the flow in the phase space. However, since
we are mainly interested in the attractors in the phase
space, such less precise analysis will be sufficient here.

2. Case f =R+αR3 + γR❑R

In this case the Einstein-Hilbert plus fourth- and sixth-
order correction terms are present in the theory and the
interaction between them can be appreciated. Consider then
the action

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ αR−2
0 R3 þ γR−2

0 R❑Rþ Lm�; ð32Þ

which implies f1 ¼ R0Rþ αR3
0R

3 and f2 ¼ R−3
0 R. Hence

the only nonzero auxiliary quantities in Eq. (15) are

X1ðA;RÞ ¼ 6Rþ 216αR3

A2
; X2ðA;RÞ ¼

6γR
A2

;

Y1ðA;RÞ ¼ 1þ 108αR2

A2
; Y2ðA;RÞ ¼

γ

A2
;

Z1ðA;RÞ ¼
36αR
A2

; W1ðA;RÞ ¼
6α

A2
; ð33Þ

and the cosmological equations can be decoupled to give an
explicit equation for S1 and S2. These are given in Eq. (A2)
of Appendix.
The dynamical system Eq. (16) becomes

dR
dN

¼ Jþ ðK − 2ÞK − ðR − 2Þ2;
dB
dN

¼ Bð3K − 3Rþ 7Þ

þ 1

2
ðJþ K2 − 2KðRþ 1Þ þ R2 − 4Þ2

−
3α

γ
R½6ðJþ ðK − 2ÞK − 4Þ þ 3Rð1 − 3Kþ 1Þ

þ 4R2� þ A2

12γ
ð−Kþ Ω − 1Þ;

dΩ
dN

¼ Ωð1 − 3wþ 2K − 2RÞ;
dJ
dN

¼ −Bþ Jð5K − 5Rþ 3Þ þ ðK −RÞðK2 − Kð2Rþ 7Þ
þRðRþ 5ÞÞ − 22Kþ 20R − 12;

dK
dN

¼ 2KðK −Rþ 1Þ;
dA
dN

¼ 2AðK −Rþ 2Þ: ð34Þ

The system above presents the same invariant submani-
folds of Eq. (26) and therefore we can draw the same

TABLE II. Fixed points of fðR;❑RÞ ¼ R−1
0 Rþ R−3

0 R3 þ R−3
0 R❑R and their associated solutions. Here A stays for attractor, R for

repeller, S for saddle, NHS for nonhyperbolic saddle. The quantities R�
i are the solutions of Eq. (35).

Point Coordinates fR;B; J;Ω;K;Ag Solution parameter s2 Existence/Physical Stability

A f0; 0; 1; 0;−1; 0g s2 ¼ −1 Always NHS

B f0; 0; 4; 0; 0; 0g s2 ¼ −32 Always
R for w < 1=3
S for w > 1=3

C f2; 0; 0; 0; 0; 12 ffiffiffi
α

p g s2 ¼ 0 α > 0 S
G f12þ 2γ

3α ; 0; 1; 0; 11þ 2γ
3α ; 0g s2 ¼ sG fα; γg ≠ 0 S

H1 fR�
1;−6R�

1ðR�
1 − 1ÞðR�

1 − 2Þ; ðR�
1 − 2Þ2; 0; 0; 0g s2 ¼ σ1 Fig. 3 Fig. 4

H2 fR�
2;−6R�

2ðR�
2 − 1ÞðR�

2 − 2Þ; ðR�
2 − 2Þ2; 0; 0; 0g s2 ¼ σ2 Fig. 3 Fig. 5

H3 fR�
3;−6R�

3ðR�
3 − 1ÞðR�

3 − 2Þ; ðR�
3 − 2Þ2; 0; 0; 0g s2 ¼ σ3 Fig. 3 S

sG ¼ −577 − 5184 α
γ − 11 γ

α

σi ¼ α
γ ð−150R4

�;i þ 435R3
�;i − 252R2

�;iÞ þ 101R5
�;i − 610R4

�;i þ 1306R3
�;i − 1180R2

�;i þ 416R�;i − 32 ≠ 0
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conclusions for the existence of global attractors.
Table II summarizes the fixed points for this system
with the associated solution and their stability. All the
solutions associated to the fixed points are characterized
by s2 ≠ 0 with the exception of C which is characterized
by the solution Eq. (23).
Some of the fixed points exist only for specific values

of the parameters α and γ. For example, the existence
of C requires α > 0 and more complex conditions hold for

the points Hi whose coordinates are determined by the
equation

3αð21− 10R�
i ÞR�

i þ 2γðR�
i − 2Þ½2R�

i ð5R�
i − 16Þþ 21� ¼ 0:

ð35Þ

In Fig. 3 we plot the region of existence of these points.
With the exception of point A all the other fixed points
are hyperbolic, although their stability depends on the
parameters α and γ. This complex dependence makes
very complicated to make general statements on the
stability of points Hi. We can conclude however that
one of these points H3 is always a saddle. As in the
previous case, the stability of point A can be determined
by the analysis of the central manifold. However, from
the sign of the other eigenvalues, we can conclude that
the point is unstable. In Figs. 4 and 5 we also plot the
stability, see Table II.

IV. SIXTH ORDER TERMS VS FOURTH
ORDER TERMS

It is useful to compare the results that we have obtained
so far with an analysis of fourth order models madewith the
same approach (see also Ref. [14] for an equivalent, but
slightly different choice of some of the dynamical varia-
bles). For simplicity we will consider here a fourth order
theory of the form f ¼ Rþ αRq. For this choice of f the
cosmological equations read

ALL

1

1

ALL

2

2

–10 –5 0 5 10
–10

–5

0

5

10

FIG. 3. Region of the parameter space of α and γ for which the
fixed points H exist. The number in the colored area refer to the
index i of the point Hi.
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FIG. 5. Stability of the fixed point H2. A stands for attractor
(green), R stands for repeller (red), and S stands for saddle
(yellow).
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FIG. 4. Stability of the fixed point H1. A stands for attractor
(green), R stands for repeller (red), and S stands for saddle
(yellow).
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H2 þ k
a2

¼ 1

3ð1þ αqRq−1Þ
�
1

2
αðq − 1ÞRq − 3αqðq − 1ÞHRq−2 _Rþ μm

�
;

2 _H þH2 þ k
a2

¼ −
1

ð1þ αqRq−1Þ
�
1

2
αðq − 1ÞRq − 3αqðq − 1ÞHRq−2 _R

þ qðq − 1Þðq − 2ÞRq−3 _R2 þ qðq − 1ÞRq−2RR̈þ pm

�
: ð36Þ

Defining the variables

R ¼ R
6H2

; K ¼ k
a2H2

; Ω ¼ μ

3H2
;

J ¼ j; Q ¼ q; A ¼ R0

H2
: ð37Þ

which are a subset of the variable in Eq. (13), the cosmological equations can be written as

dR
dN

¼ R½qð2n − 3ÞK − ð2q2 þ 3qþ 1ÞRþ qΩþ 4q2 − 5q�
qðq − 1Þ −

ðK − Ωþ 1Þ
6q−1αðq − 1ÞqAq−1Rq−2 ;

dΩ
dN

¼ Ωð1 − 3wþ 2K − 2RÞ;
dK
dN

¼ 2KðK −Rþ 1Þ;
dA
dN

¼ 2Að2þ K −RÞ; ð38Þ

with the constraints

R ¼ KþQþ 2;

6

�
ð1þ K − RÞ

�
1þ 6q−1R

Aq−1

�
þR −Ω

�
þ α6qA1−qRq−2½qðq − 1ÞðJþ K2 − 2K − 4Þþ
−2qðq − 1ÞKRþ ðq2 − qþ 1ÞR2� ¼ 0: ð39Þ

The solutions associated to the fixed points can be obtained
from the equation

s ¼ 1

H
d3H
dN3

ð40Þ

where s is defined in Eq. (11) and its expression in the
fixed point can be deduced by the second of Eq. (36) as we
have done for the higher order case. As in the previous
sections the solution can be given in general noting that the
characteristic polynomial for this equation has one real root
and a pair of complex roots. Hence, we can write an exact
solution for HðNÞ:

H ¼ exp ð−pNÞ þ exp

�
1

2
pN

�

×

�
H cos

�
p

ffiffiffi
3

p

2
N

�
þ H̄ sin

�
p

ffiffiffi
3

p

2
N

��
; ð41Þ

where p ¼ −
ffiffiffiffiffi
s�3

p
, H and H̄ are integration constants.

Naturally for s� ¼ 0 we have the usual equation for the
scale factor

_a ¼ a
X2
i¼0

Hiðln aÞi: ð42Þ

The fixed points for the system in Eq. (38) with their
stability is presented in Table III.
Let us now repeat the same analysis for a theory that

contains the fourth order term considered above plus a sixth
order term. Consider then the action

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ αR1−q
0 Rq þ γR−2

0 R❑Rþ Lm�; ð43Þ

which implies f1 ¼ R0Rþ αR1−q
0 Rq and f2 ¼ R−2

0 R. The
nonzero auxiliary quantities in Eq. (15) are

X1ðA;RÞ ¼ 6Rþ α6qRqA1−q; X2ðA;RÞ ¼
6γR
A2

;

Y1ðA;RÞ ¼ 1þ 6q−1αRq−1A1−q; Y2ðA;RÞ ¼
γ

A2
;

Z1ðA;RÞ ¼ αqðq − 1Þ6q−2Rq−2A1−q;

W1ðA;RÞ ¼ αqðq − 1Þðq − 2Þ6q−3Rq−3A1−q: ð44Þ
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As before the cosmological equations can be decoupled to give an explicit equation for S1 and S2 and one can construct the
dynamical system equations to have:

dR
dN

¼ Jþ ðK − 2ÞK − ðR − 2Þ2;
dB
dN

¼ Bð3K − 3Rþ 7Þ þ 1

2
ðJþ K2 − 2KðRþ 1Þ þR2 − 4Þ2

−
α

γ
f2q−33q−2A3−qRq−2½qðq − 1ÞðJþ ðK − 2ÞK − 4Þ þ qRðKð3 − 2qÞ þ 1Þ þ ðq − 1Þ2R2�g

þ A2

12γ
ð−Kþ Ω − 1Þ;

dΩ
dN

¼ Ωð1 − 3wþ 2K − 2RÞ;
dJ
dN

¼ −Bþ Jð5K − 5Rþ 3Þ þ ðK − RÞðK2 − Kð2Rþ 7Þ þ RðRþ 5ÞÞ − 22Kþ 20R − 12;

dK
dN

¼ 2KðK − Rþ 1Þ;
dA
dN

¼ 2AðK − Rþ 2Þ: ð45Þ

In Table IV we give the fixed points and their stability.

TABLE III. Fixed points of the fourth order model fðRÞ ¼ Rþ αRq with their interval of existence and their
associated solutions. Here A stands for attractor, R stands for repeller, S stands for saddle, and NHS for
nonhyperbolic saddle.

Point Coordinates fR;J;K;Ω;Ag Solution Existence Stability

A f0; 1;−1; 0; 0g s ¼ −1 α ≠ 0 S
B f0; 4; 0; 0; 0g s ¼ −8 α ≠ 0 R or S

C f2; 0; 0; 0; 12½αðq − 2Þ� 1
q−1g s ¼ 0

if q ∈ ℜ
A if 32

25
≲ q < 2

αðq − 2Þ > 0
D f2nðn − 1Þ; 1; 2ðn − 1Þn − 1; 0; 0g s ¼ −1 q > 1 S

E
n

ð5−4nÞn
4n2−6nþ2

;
	

n−2
ðn−1Þð2n−1Þ



3
; 0; 0; 0

o
s ¼

	
n−2

ðn−1Þð2n−1Þ


3 q > 1 A if q > 2

TABLE IV. Fixed points of the model fðR;❑RÞ ¼ R−1
0 Rþ R1−q

0 Rq þ R−3
0 R❑R and their associated solutions. Here A stays for

attractor, R for repeller, NHS for nonhyperbolic saddle. The quantitiesR�
i are the solutions of Eq. (35). We assume fα; γg ≠ 0 and q ≠ 1.

Point Coordinates fR;B;J;Ω;K;Ag Solution parameter s2 Existence/Physical Stability

A f0; 0; 1; 0;−1; 0g s2 ¼ −1 q ≤ 3 NHS

B f0; 0; 4; 0; 0; 0g s2 ¼ −32 always
R for w < 1=3
S for w > 1=3

C f2; 0; 0; 0; 0; 12½αðq − 2Þ� 1
q−1g s2 ¼ 0

if q ∈ ℜ
S

αðq − 2Þ > 0
G f12þ 2γ

3α ; 0; 1; 0; 11þ 2γ
3α ; 0g s2 ¼ sG q ¼ 3 S

H1 fR�
1;−6R�

1ðR�
1 − 1ÞðR�

1 − 2Þ; ðR�
1 − 2Þ2; 0; 0; 0g s2 ¼ σ1 q ¼ 3, Fig. 3 Fig. 4

H2 fR�
2;−6R�

2ðR�
2 − 1ÞðR�

2 − 2Þ; ðR�
2 − 2Þ2; 0; 0; 0g s2 ¼ σ2 q ¼ 3, Fig. 3 Fig. 5

H3 fR�
3;−6R�

3ðR�
3 − 1ÞðR�

3 − 2Þ; ðR�
3 − 2Þ2; 0; 0; 0g s2 ¼ σ3 q ¼ 3, Fig. 3 S

I� f 1
10
ð16� ffiffiffiffiffi

46
p Þ; 1

50
ð31� 4

ffiffiffiffiffi
46

p Þ;− 9
250

ð74� 9
ffiffiffiffiffi
46

p Þ; 0; 0; 0g s2 ¼ σ4 q < 3 S

sG ¼ −577 − 5184 α
γ − 11 γ

α

σi ¼ α
γ ð−150R4

�;i þ 435R3
�;i − 252R2

�;iÞ þ 101R5
�;i − 610R4

�;i þ 1306R3
�;i − 1180R2

�;i þ 416R�;i − 32 ≠ 0

σ4 ¼ 5−ðqþ1Þ
	
� 4549

2
− 2689

ffiffiffi
23
2

p
4
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Although fundamentally different the two phase spaces
present some similarities. Points A, B, and C have exactly
the same coordinates. In Points E and Point D, instead,
the relation among the values of some of the coordinates
is the same as the one of Points H. The difference in the
coordinates of these points is probably due to the additional
contributions generated in the gravitational field equations by
theR❑R correction.As one could expect, the same additional
terms can change the stability of all the fixed points.

For our purposes, the most important result of this
comparative analysis is the fact that both the phase spaces
present the fixed point C. As we have seen, such point is
characterized by the vanishing of the quantity associated
to the higher derivative ofH and it can represent a solution
with a finite time singularity. Looking at Table III we see
that the fourth order theory point C for 32=25 < q < 2 is
an attractor. However, in the sixth order theory, it is
possible to prove numerically that in the interval 32=25 <
q < 2 the point C is always unstable (see Fig. 6).
Therefore we can say that the introduction of the sixth
order terms prevents the cosmology to evolve towards C.
Effectively, this amounts to “curing” the pathology of the
fourth order model as the sixth order terms prevents the
occurrence of a finite time singularity. In this sense, we
can say that, as the time asymptotic state of sixth order
cosmologies is never singular, these models are more
“stable” with respect to the appearance of singularities.
When we will consider eighth order corrections, we will
use in the results obtained in this section to reach the same
conclusion.

V. GOING BEYOND SIXTH-ORDER

A. The basic equations

Let us start extending the set of variables used in the
previous section, i.e.,

R ¼ R
6H2

; B ¼ ❑R
6H4

; K ¼ k
a2H2

; Ω ¼ μ

3H2
; J ¼ j;

Q ¼ q; S ¼ s; S1 ¼ s1; S2 ¼ s2; S3 ¼ s3; A ¼ R0

H2
: ð46Þ

The Jacobian of this variable definition reads

M8 ¼ −
1

108a2H47
; ð47Þ

which implies that, as in the sixth-order case, the variables
are always regular if H ≠ 0 and a ≠ 0.
The requirement to have a closed systems of equations

implies the introduction of the auxiliary quantities,

XðA;R;BÞ ¼ fðA;R;BÞ
H2

;

Y1ðA;R;BÞ ¼ fð1;0ÞR;❑RðA;R;BÞ;
Y2ðA;R;BÞ ¼ H4fð1;1ÞR;❑RðA;R;BÞ;
Y3ðA;R;BÞ ¼ H2fð0;1ÞR;❑RðA;R;BÞ;
Z1ðA;R;BÞ ¼ H2fð2;0ÞR;❑RðA;R;BÞ;
Z2ðA;R;BÞ ¼ H6fð2;1ÞR;❑RðA;R;BÞ;

Z3ðA;R;BÞ ¼ H10fð2;2ÞR;❑RðA;R;BÞ;
Z4ðA;R;BÞ ¼ H8fð1;2ÞR;❑RðA;R;BÞ;
Z5ðA;R;BÞ ¼ H6fð0;2ÞR;❑RðA;R;BÞ; ð48Þ

W1ðA;R;BÞ ¼ H4fð3;0ÞR;❑RðA;R;BÞ;
W2ðA;R;BÞ ¼ H8fð3;1ÞR;❑RðA;R;BÞ;
W3ðA;R;BÞ ¼ H12fð3;2ÞR;❑RðA;R;BÞ;
W4ðA;R;BÞ ¼ H14fð2;3ÞR;❑RðA;R;BÞ;
W5ðA;R;BÞ ¼ H12fð1;3ÞR;❑RðA;R;BÞ;
W6ðA;R;BÞ ¼ H10fð0;3ÞR;❑RðA;R;BÞ;
T1ðA;R;BÞ ¼ H14fð0;4ÞR;❑RðA;R;BÞ;
T2ðA;R;BÞ ¼ H16fð1;4ÞR;❑RðA;R;BÞ;

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

–4

–3

–2

–1
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FIG. 6. Sign of the real part of the four eigenvalues associated
to point C in the case α ¼ 1, γ ¼ 1, w ¼ 0. The signs of the
eigenvalues are discordant whatever the choice of the values of
these parameters.
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T3ðA;R;BÞ ¼ H10fð4;1ÞR;❑RðA;R;BÞ;
VðA;R;BÞ ¼ H18fð0;5ÞR;❑RðA;R;BÞ; ð49Þ

where, for simplicity, we indicate with fði;jÞR;❑R the ith
R-derivative and the jth ❑R-derivative of f.
The cosmological dynamics can be described by the

autonomous system

dR
dN

¼ J − 2K − 2QRþQðQþ 4Þ;
dB
dN

¼ −4BQ − 4J2 þ Jð2K −Qð11Qþ 43Þ − 12Þ
−QðQð−2KþQðQþ 22Þ þ 36Þ þ 7SÞ
− 4K − 7S − S1;

dΩ
dN

¼ −Ωð2Qþ 3wþ 3Þ;
dJ
dN

¼ S − JQ;
dQ
dN

¼ J −Q2;

dK
dN

¼ −2KðQþ 1Þ; dS
dN

¼ S1 −QS;

dS1

dN
¼ S2 −QS1;

dS2

dN
¼ S3ðX;Y1; ::Þ −QS2;

dS3

dN
¼ S4ðX;Y1; ::Þ −QS3ðX;Y1; ::Þ;

dA
dN

¼ −2AQ; ð50Þ

where S4 ¼ s4. As before, the system above is completed
by three constraints: the one coming from the modified
Friedmann equation, Eq. (6), and the ones in Eq. (17). We
choose to use these constraints to eliminate Q, S, and S3.
The variable S4 instead, can substituted using the modified
Raychaudhuri equation. In Eq. (50) these variables are not
substituted explicitly in order to give a more compact
representation of the system. The substitution of S3 and S4

also brings in the system the parameters given in Eqs. (48)
and (49).
In the same way of Sec. III A, the solutions associated to

the fixed points can be found by solving the differential
equation

1

H
d7H
dN7

¼ s�4; ð51Þ

where s�4 is provided by the modified Raychaudhuri
equation, Eq. (7).
Equation (51) can be shown to give a result structurally

similar to the one of the previous section. The characteristic
polynomial of Eq. (18) has one real and three pairs of
complex roots. This leads to the exact solution

H ¼
X3
i¼0

exp ðpαiNÞ½Hi cos ðβipNÞ þ H̄i sin ðβipNÞ�;

ð52Þ

where p ¼ −
ffiffiffiffiffi
s�4

7
p

, Hi and H̄i are integration constants and
ai and bi are the real and imaginary part of the seventh root
of the unity. These quantities are expressed by the relation

α0 ¼ −1; β0 ¼ 0;

αi ¼
r
2
; i ≠ 0;

βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

4

r
; i ≠ 0; ð53Þ

where r is the solution of the algebraic equation
r3 þ r2 − 2r − 1 ¼ 0. The scale factor is given by the
equation

_a ¼
X3
i¼0

a1þpαi ½Hi cos ðβip ln aÞ þ H̄i sin ðβip ln aÞ�;

ð54Þ

which can be solved numerically. As before H and a are
parametrized only by the quantity p, i.e., s�4. In the
following we will characterize these solutions only by
the value of s�4.
If s�4 ¼ 0 then Eq. (51) can be written as

_N ¼
X6
i¼0

HiNi; ð55Þ

and the existence of a finite time singularity is only possible
if the polynomial on the left-hand side has complex roots.
In Fig. 7 we show time dependence of the scale factor
corresponding to fixed points with s�4 ¼ 0.
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(t
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FIG. 7. Behavior of the scale factor in a fixed point with s�4 ¼ 0.
All integration constants have been chosen to be one.
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Wewill consider now three examples of theories of order
eight. As in the previous section we will first examine a
model in which the Hilbert-Einstein term appears together
with a contribution of order eight. In the second we will
introduce a fourth order terms in order to explore the
interaction of the eighth order terms with the fourth-order
ones. Finally in the third awe will explore a theory in which
the Hilbert-Einstein appears together with fourth, sixth, and
eighth orders.

B. Three examples

1. Case f =R+ γð❑RÞ2
Here we examine a model in which the only new

contribution comes from a term of order eight. The action
for this theory can be written as

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ γR−3
0 ð❑RÞ2 þ Lm�: ð56Þ

For this theory the only nonzero auxiliary quantities in
Eq. (15) are

XðA;R;BÞ ¼ 6

�
Rþ 6γB

A2

�
; Y1ðA;R;BÞ ¼ 1;

Y3ðA;R;BÞ ¼
12γB
A3

; Z5ðA;R;BÞ ¼
2γ

A3
: ð57Þ

The cosmological equations can be decoupled to give
explicit equations for S3 and S4, which can be found in
Eq. (A3) of Appendix.
The dynamical system Eq. (50) then becomes

dR
dN

¼ −ðR − 2Þ2 þ Jþ ðK − 2ÞK; dA
dN

¼ 2AðK −Rþ 2Þ;
dΩ
dN

¼ ð1 − 3w − 2Kþ 2RÞΩ; dK
dN

¼ 2KðK −Rþ 1Þ;
dJ
dN

¼ Bþ Jð−5Kþ 5R − 3Þ þ 22Kþ 12;
dS1

dN
¼ ð2þ K − RÞS1 þ S2;

dB
dN

¼ 6K4 − 24RK3 − 26K3 þ 36R2K2 þ 66RK2 − 123K2 − 24R3K − 54R2Kþ 226RK − 146Kþ 6R4 þ 14R3

− 4J2 − 103R2 þ 136Rþ Bð−3Kþ 3Rþ 1Þ þ Jð17K2 − 34RKþ 36Kþ 17R2 − 34Rþ 37Þ − S1 − 68;

dS2

dN
¼ S2f1ðR;B;J;S1;K;AÞ þ

α

γ
f2ðR;B; J;S1;K;AÞ þ

β

γ
f3ðR;B; J;S1;K;AÞ þ

1

γ
f3ðR;B; J;S1;K;AÞ; ð58Þ

where the full equation for S2 is only shown in its structure
due to it length. Its full expression can be found in
Appendix.
The system above presents the invariant submanifolds

(A ¼ 0, Ω ¼ 0, K ¼ 0) and therefore no global attractor

with coordinates different from A ¼ 0, Ω ¼ 0, K ¼ 0
can exist. Table V summarizes the fixed points for this
system with the associated solution and their stability.
The system presents a line of fixed points, all unstable,
and a global attractor, point I2, which is associated with

TABLE V. Fixed points of fðR;❑RÞ ¼ Rþ γð❑RÞ2 and their associated solutions. Here R stands for repeller, S for saddle, FA for
attractive focus, NHS for nonhyperbolic saddle.

Point Coordinates fR;B; J;S1;S2;K;Ω;Ag Solution Existence Stability

A f1; 0; 1; 1;−1; 0; 0; 0g s4 ¼ −1 γ ≠ 0 NHS

B f0; 0; 4; 16;−32; 0; 0; 0g s4 ¼ −128 γ ≠ 0
R for w < 1=3
S for w > 1=3

C f2; 0; 0; 0; 0; 0; 0; 0g s4 ¼ 0 γ ≠ 0 NHS
I1 fa−H;−6a−Hða−H − 1Þða−H − 2Þ; ða−H − 2Þ2; ða−H − 2Þ4; ða−H − 2Þ5; 0; 0; 0g s4 ≈ −7.8 × 10−3 γ ≠ 0 S
I2 faþH;−6aþHðaþH − 1ÞðaþH − 2Þ; ðaþH − 2Þ2; ðaþH − 2Þ4; ðaþH − 2Þ5; 0; 0; 0g s4 ≈ 5.6 × 10−5 γ ≠ 0 FA

Line Coordinates fR;B; J;S1;S2;K;Ω;Ag Solution Existence Stability

L fR�; 0; 1; 1;−1; 0;R� − 1; 0g s4 ¼ −1 always NHS

a�I ¼ 1
210

ð373� ffiffiffiffiffiffiffiffiffiffi
9769

p Þ
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a solution with non zero s4. The solutions for the scale
factor are not structurally different form the ones of the
sixth order case. In Fig. 8 we give, as an example, a plot
of the solution associated to I2. Points A and C are
nonhyperbolic, the latter having two zero eigenvalues,
but they can be both considered unstable. A detailed
treatment of the stability of C would require blow up
techniques. We refer the reader to Ref. [33] for more
information on this topic.

2. Case f =R+αRq + γð❑RÞ2
Here we consider the case in which both eighth-order

and fourth-order terms are present. The action for this
theory can be written as

A¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½RþαR1−q
0 RqþγR−6

0 ð❑RÞ2þLm�: ð59Þ

For this theory the only nonzero auxiliary quantities in
Eq. (15) are

XðA;R;BÞ ¼ 6

�
Rþ 6γB

A2
þ α6qRqA1−q

�
;

Y1ðA;R;BÞ ¼ 1þ 6q−1αRq−1A1−q;

Y3ðA;R;BÞ ¼
12γB
A3

;

Z1ðA;R;BÞ ¼ αqðq − 1Þ6q−2Rq−2A1−q;

Z5ðA;R;BÞ ¼
2γ

A3
;

W1ðA;R;BÞ ¼ αqðq − 1Þðq − 2Þ6q−3Rq−3A1−q: ð60Þ
As before, the cosmological equations can be decoupled to
give an explicit equation for S3 and another for S4.
However, we will not show them here due to their size.
The dynamical system Eq. (50) is now

dR
dN

¼ −ðR − 2Þ2 þ Jþ ðK − 2ÞK; dA
dN

¼ 2AðK −Rþ 2Þ;
dΩ
dN

¼ ð1 − 3w − 2Kþ 2RÞΩ; dK
dN

¼ 2KðK −Rþ 1Þ;
dJ
dN

¼ Bþ Jð−5Kþ 5R − 3Þ þ 22Kþ 12;
dS1

dN
¼ ð2þ K −RÞS1 þ S2;

dB
dN

¼ 6K4 − 24RK3 − 26K3 þ 36R2K2 þ 66RK2 − 123K2 − 24R3K − 54R2K

þ 226RK − 146Kþ 6R4 þ 14R3 − 4J2 − 103R2 þ 136Rþ Bð−3Kþ 3Rþ 1Þ
þ Jð17K2 − 34RKþ 36Kþ 17R2 − 34Rþ 37Þ − S1 − 68;

dS2

dN
¼ S2f1ðR;B; J;S1;K;AÞ þ

α

γ
f2ðR;B; J;S1;K;AÞ

þ β

γ
f3ðR;B; J;S1;K;AÞ þ

1

γ
f3ðR;B;J;S1;K;AÞ; ð61Þ

where the full equation for S2 is only shown in its structure due to its length. Its full expression can be found in Appendix.
This system presents analogies with the ones of the previous examples. The invariant submanifolds present in these cases

are also A ¼ 0, Ω ¼ 0, K ¼ 0 and therefore the only possible type global attractor must lay on the intersection of these
coordinates. The fixed point with their stability and the parameter s4 that characterize the solution is given in Table VI. The
coordinates of the point Hi are determined by the solution of the equation

3α

γ
ð21R − 44ÞR3 þRðR − 2Þ2ðR − 1Þð105R2 − 373Rþ 308Þ ¼ 0; ð62Þ

One of these points is an attractor for specific values of α and γ (see Table VI). In the other cases no attractor can be found in
the finite phase space.
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FIG. 8. Behavior of the scale factor in the fixed points of the
phase space of the theory fðR;❑RÞ ¼ R−1

0 Rþ R−3
0 ð❑RÞ2. The

integration constants have been chosen to be one.
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3. Case f =R+αR4 + βR❑R+ γð❑RÞ2
We consider now an example in which fourth, sixth and eighth order corrections appear in the action. For the

fourth order term we consider a correction of the type αR4 to reduce the number of the parameters involved in the
analysis.
For this theory the only nonzero auxiliary quantities in Eq. (15) are

XðA;R;BÞ ¼ 6

�
Rþ α

63R3

A3
þ β

62BR
A2

þ γ
6B
A3

�
;

Y1ðA;R;BÞ ¼ 1þ 4α
63R3

A3
;

Y2ðA;R;BÞ ¼
β

A2
;

Y3ðA;R;BÞ ¼ 6

�
β
6R
A2

þ γ
2B
A3

�
;

Z1ðA;R;BÞ ¼
63αR2

A3
;

Z5ðA;R;BÞ ¼
2γ

A3
;

W1ðA;R;BÞ ¼
144α

A2
: ð63Þ

As before, the cosmological equations can be decoupled to give an explicit equation for S3 and another for S4. However,
we will not show them here due to their size.

TABLE VI. Fixed points of fðR;❑RÞ ¼ Rþ αRq þ γð❑RÞ2 and their associated solutions. Here A stands for attractor, Re stands for
repeller, S stands for saddle, and NHS for nonhyperbolic saddle. We also assume α, γ ≠ 0. The index “i” of the pointsHi runs from 1 to
5. The value of R�

i are the roots of the Eq. (62).

Point Coordinates fR;B;J;S1;S2;K;Ω;Ag Solution Existence Stability

A f1; 0; 1; 1;−1; 0; 0; 0g s4 ¼ −1 q ≤ 3 NHS

B f0; 0; 4; 16;−32; 0; 0; 0g s4 ¼ −128 γ ≠ 0
R for w < 1=3
S for w > 1=3

C f2; 0; 0; 0; 0; 0; 0; 12½αðq − 2Þ� 1
q−1g s4 ¼ 0

if q ∈ ℜ
S

αðq − 2Þ > 0
I1 f2; 0; 0; 0; 0; 0; 0; 0g s4 ¼ 0 γ ≠ 0 NHS

Hi fR�
i ;−6R�

i ðR�
i − 1ÞðR�

i − 2Þ; ðR�
i − 2Þ2; ðR�

i − 2Þ4; ðR�
i − 2Þ5; 0; 0; 0g s2 ¼ σi q ¼ 4

One A for
j αγ j ≳ 0.011
j αγ j ≲ 0.0035
other points

unstable
I1 fa−H;−6a−Hða−H − 1Þða−H − 2Þ; ða−H − 2Þ2; ða−H − 2Þ4; ða−H − 2Þ5; 0; 0; 0g s4 ≈ −7.8 × 10−3 q ≤ 3 S
I2 faþH;−6aþHðaþH − 1ÞðaþH − 2Þ; ðaþH − 2Þ2; ðaþH − 2Þ4; ðaþH − 2Þ5; 0; 0; 0g s4 ≈ 5.6 × 10−5 q ≤ 3 S

Line Coordinates fR;B;J;S1;S2;K;Ω;Ag Solution Existence Stability

L fR�; 0; 1; 1;−1; 0;R� − 1; 0g s4 ¼ −1 q ≤ 3 S

a�H ¼ 1
210

ð373� ffiffiffiffiffiffiffiffiffiffi
9769

p Þ
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The dynamical system Eq. (50) is now

dR
dN

¼ −ðR − 2Þ2 þ Jþ ðK − 2ÞK; dA
dN

¼ 2AðK −Rþ 2Þ;
dΩ
dN

¼ ð1 − 3w − 2Kþ 2RÞΩ; dK
dN

¼ 2KðK −Rþ 1Þ;
dJ
dN

¼ Bþ Jð−5Kþ 5R − 3Þ þ 22Kþ 12;
dS1

dN
¼ ð2þ K −RÞS1 þ S2;

dB
dN

¼ 6K4 − 24RK3 − 26K3 þ 36R2K2 þ 66RK2 − 123K2 − 24R3K − 54R2K

þ 226RK − 146Kþ 6R4 þ 14R3 − 4J2 − 103R2 þ 136Rþ Bð−3Kþ 3Rþ 1Þ
þ Jð17K2 − 34RKþ 36Kþ 17R2 − 34Rþ 37Þ − S1 − 68;

dS2

dN
¼ S2f1ðR;B; J;S1;K;AÞ þ

α

γ
f2ðR;B; J;S1;K;AÞ

þ β

γ
f3ðR;B; J;S1;K;AÞ þ

1

γ
f3ðR;B;J;S1;K;AÞ; ð64Þ

where the full equation for S2 is only shown in its structure
due to its length. The full expression can be easily
calculated and does not add anything to the understanding
of the properties of the dynamical system.
The system in Eq. (64) presents the usual invariant

submanifolds A ¼ 0, Ω ¼ 0, K ¼ 0. The fixed points with
their stability and the parameter s4 that characterize the
solution are given in Table VII.
The dynamics of this case is very similar to the one of the

previous case, with the difference that the line of fixed
points is not present. The only possible attractor is given by
one of the points Hi whereas all the other points are
unstable.

VI. ANALYSIS OF THE RESULTS

The structure of the phase space has similarities in all of
the particular cases studied. For example, all of those cases
feature a fixed point which is a past attractor, that we

denoted as point B. This point is not a global feature of the
phase space, as it does not lay in the intersection of all the
invariant submanifolds. Also, fixed points A and C exist in
all the cases studied and they are always unstable.
Concerning the attractors of the theory, we find that for

the model of Sec. III B 1 there exists one global attractor,
point I2. Point I2 is characterized by B ≠ 0, i.e., it
represents a state in which the higher-order terms ❑R of
the theory are dominant. This is an unexpected result, as it
is normally assumed that these terms to be less and less
important as the curvature becomes smaller and smaller.
The fact that I2 is an attractor seems to indicate that instead
the cosmology of these theories tends to a state with B ≠ 0.
Such a state is represented by a solution in which the scale
factor converges to a constant value asymptotically. The
theory contains a fixed point which can represent a solution
with a finite time singularity C, but this point is always
unstable. Since the approach to such solution is very
common in theories of fourth order of the form fðRÞ,

TABLE VII. Fixed points of f ¼ Rþ αR4 þ βR❑Rþ γð❑RÞ2 and their associated solutions. Here A stands for attractor, R stands for
repeller, S stands for saddle, and NHS for nonhyperbolic saddle. The index “i” of the pointsHi runs from 1 to 5. The value of R�

i are the
roots of Eq. (62).

Point Coordinates fR;B;J;S1;S2;K;Ω;Ag Solution Existence Stability

A f1; 0; 1; 1;−1; 0; 0; 0g s4 ¼ −1 α, β, γ ≠ 0 NHS

B f0; 0; 4; 16;−32; 0; 0; 0g s4 ¼ −128 α, β, γ ≠ 0
R for w < 1=3
S for w > 1=3

C f2; 0; 0; 0; 0; 0; 0; 12½αðq − 2Þ� 1
q−1g s4 ¼ 0

if q ∈ ℜ
S

αðq − 2Þ > 0
I1 f24; 0; 1; 1;−1; 23; 0; 0g s4 ¼ −1 α, β, γ ≠ 0 S
Hi fR�

i ;−6R�
i ðR�

i − 1ÞðR�
i − 2Þ; ðR�

i − 2Þ2; ðR�
i − 2Þ4; ðR�

i − 2Þ5; 0; 0; 0g s2 ¼ σi α, β, γ ≠ 0 One A for
−0.0044 ≲ α

γ ≲ −0.0060

σi ¼ α
γ ð−150R4

�;i þ 435R3
�;i − 252R2

�;iÞ þ 101R5
�;i − 610R4

�;i þ 1306R3
�;i − 1180R2

�;i þ 416R�;i − 32 ≠ 0
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[but also in fðGÞ theories], this results suggests that six
order theories of this type do not incur in these singularities,
because the phase space orbits do not converge to fixed
points which represent them.
In Sec. III B 2 we have put at test the robustness of the

previous result considering a theory which contains a fourth
order term on top of the sixth order one. We have that even
in this case in the action the time asymptotic phase space is
characterised by a B ≠ 0 and therefore to a static universe,
while the fixed point C is unstable. This is an interesting
phenomenon as in Ref. [14] it was shown that points of
the type C are very often attractors in the phase space for
fourth order models. This result suggest that higher order
terms might “cure” the pathologies induced by the fourth
order ones.
In Sec. IV we have given an explicit analysis of this

possibility. In particular, we have shown that the same fixed
point C appears in the phase space for the theory f ¼
Rþ αRq and f ¼ Rþ αRq þ γR❑R. For the values of the
parameter q for which C is an attractor the fourth order
model, the same point is unstable (saddle). This indicates
that the inclusion of sixth order terms is able to prevent the
onset of a singularity that would otherwise plague its fourth
order counterpart. In this sense, the sixth-order theory
seems to be “more stable”. The final state of the cosmology,
however, depends on the value of q. In the specific case
q ¼ 3 this endpoint is represented by one of the points H.
However this is not true for all values of q, as the pointsHi
do not exist for q ≠ 3. In this case the final state of the
cosmology is probably a point in the asymptotic part of the
phase space which we have not explored here. Clearly
we have considered here only a particular example and
therefore we cannot prove that this behavior is general.
However, the fact that any fourth order model analyzed in
Ref. [14] presents one or more points of the type C and that
we always expect a change in stability of the corresponding
sixth order theory, suggests that we are reporting here a
general phenomenon.
The phase space structure is basically the same when one

introduces eighth order terms. When these terms are added
directly to the Hilbert-Einstein Lagrangian the attractor of
the new theory is a static cosmology which corresponds to
the dominance of the eighth order terms. When also fourth

order terms are introduced, we observe the same phenome-
non observed in the case of sixth order actions: the
potentially pathological fixed point that is present in the
fourth order gravity phase space becomes unstable for
every value of the parameters. We conclude therefore that,
like for sixth order terms, also the inclusion eighth order
terms is able to avoid the onset of singularities. We also
considered a model in which fourth, sixth and eighth order
terms are present in order to estimate their comparative
effect. However, in the formalism we have chosen six and
eight-order are indistinguishable. A different set of varia-
bles might resolve this degeneracy, but its determination
and use is left for a future work.

VII. CONCLUSIONS

In this paper we have applied dynamical systems
techniques to analyze the structure of the phase space of
fðR;❑RÞ gravity. Our choice of dynamical variables allows
us to study the cosmology of this entire class of theories by
means of a phase space which has at most dimension eight.
We have then considered some examples of theories of
order six and eight designed specifically to highlight the
influence that higher-than-fourth order terms have on the
cosmological evolution. We found that there is complex
interplay between terms of different order which make the
time asymptotic behavior of these cosmological model
nontrivial and not easily deducible from their lower order
counterpart. Remarkably, we found that higher order terms
can profoundly modify the behavior of the cosmology,
preventing, for example the occurrence of singularities
which are known to be induced by the lower order
terms [14].
Connecting our results with the ones available in

literature, we can state that our analysis confirms the result
of the absence of a double inflationary phase in theories of
order six in full accord with the results of Refs. [4,5].
Indeed, we are able to extend this conclusion also to
theories of order eight. This might indicate that no theory of
the type fðR;❑RÞ is indeed able to generate multiple
inflationary phases in spite of their multiple scalar field
representation. Further work on these might be able to
confirm this hypothesis.

APPENDIX: EXPLICIT COSMOLOGICAL AND DYNAMICAL EQUATIONS

Cosmological equations for the case III B 1

S1 ¼ K½−6Bþ ð218 − 32JÞRþ 38J − 22R3 − 52R2 − 154� þ R½6B − 34ðJ − 4Þ�

− 6B −
9J2

2
þ K2ð16Jþ 33R2 þ 62R − 121Þ þ ð16J − 99ÞR2 þ 41Jþ 11K4

2

þ K3ð−22R − 24Þ þ 11R4

2
þ 14R3 − 76 −

A2ðK − Ωþ 1Þ
12γ

;
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S2 ¼
A2ð11ΩðR − KÞ þKð11K − 11Rþ 23Þ − 9Rþ 3wΩ − 13Ωþ 12Þ

12γ

þK

�
Rð68B − 864Jþ 4086Þ − 26ð4Bþ 97Þ − 151J2

2

þ3ð59J − 652ÞR2 þ 926Jþ 295R4

2
þ 46R3

�

þR

�
100Bþ 151J2

2
− 864Jþ 2264

�
þR2ð−34Bþ 395J − 1815Þ

þK2½−34Bþ ð2210 − 177JÞRþ 469J − 295R3 − 138R2 − 2295�
þ 5Bð3J − 19Þ þ K3ð59Jþ 295R2 þ 138R − 830Þ þ ð576 − 59JÞR3

þ 5ð89 − 11JÞJþ 59K5

2
þ K4

�
−
295R
2

− 46

�
−
59R5

2
þ 932; ðA1Þ

Cosmological equations for the case III B 2

S1 ¼ 3αRð6ðJþ ðK − 2ÞK − 4Þ þ ð3 − 9KÞRþ 4R2Þ

þ A2

12γ
ðK − Ωþ 1Þ 1

2γ
fKð4ð3B − 19Jþ 77Þ þ ð64J − 436ÞRþ 44R3 þ 104R2Þ

þ K2ð−32J − 66R2 − 124Rþ 242Þ þ K3ð44Rþ 48Þ − 11K4

− 4Rð3B − 17Jþ 68Þ þ ð198 − 32JÞR2 − 11R4 − 28R3 þ 12Bþ Jð9J − 82Þ þ 152g;
S2 ¼

α

γ
f18K4 þK3ð126R − 72Þ þ K2½36ðJ − 2Þ − 387R2 − 36R�Kð18ð7J − 52ÞR − 72ðJ − 4Þ þ 357R3 þ 99R2Þ

þ ð756 − 162JÞR2 − 18RðB − 12Jþ 48Þ þ 39R3 − 114R4 þ 18ðJ − 4Þ2g

þ A2

12γ

�
11K2

12
þ K

�
1

12
ð23 − 11ΩÞ − 11R

12

�
þ 1

12
Rð11Ω − 9Þ þ 1

12
ð3w − 13ÞΩþ 1

�

þ K

�
Rð68B − 864Jþ 4086Þ − 26ð4Bþ 97Þ − 151J2

2
þ 3ð59J − 652ÞR2 þ 926Jþ 295R4

2
þ 46R3

�
þ K2ð−34Bþ ð2210 − 177JÞRþ 469J − 295R3 − 138R2 − 2295Þ

þ K3ð59Jþ 295R2 þ 138R − 830Þ þK4

�
−
295R
2

− 46

�
þ 59K5

2
−
59R5

2
þ ð576 − 59JÞR3

þ R2ð−34Bþ 395J − 1815Þ þR

�
100Bþ 151J2

2
− 864Jþ 2264

�
þ 5Bð3J − 19Þ þ 5ð89 − 11JÞJ − 932: ðA2Þ

Cosmological equations for the case V B 1

S3 ¼ Qð2Bð2J − Kþ 6Þ þ 646J2 þ Jð−78Kþ 184Sþ 159Þ − 26KS − 8Kþ 317Sþ 125S1 þ 15S2Þ
þQ2½11B − 40JKþ Jð161Jþ 1261Þ þ 4K2 − 38Kþ 507Sþ 66S1 − 108�
þQ3ðBþ 727J − 48Kþ 97Sþ 294Þ þQ4ð43J − 4Kþ 425Þ þ 72Q5 þQ6

þ 38J3 þ J2ð206 − 18KÞ þ Jð4K2 − 2Kþ 194Sþ 27S1 − 36Þ
− 8K2 − 10KS − 4KS1 − 12Kþ 15S2 þ 3Sþ 23S1 þ 9S2

þ Bð7J − 2Kþ SÞ þ B2

2
þ A3ðR −Ω − 1 −QÞ

12γ
;
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S4 ¼
A3

12γ
½−22Q2 þ 11Qð2R − 2Ω − 3Þ þ ð2Kþ 9R − 3ðwþ 4ÞΩ − 9Þ�

þQ½11B2 þ 2Bð95J − 31Kþ 11Sþ 54Þ þ 340J3 þ J2ð6985 − 260KÞ
þ Jð72K2 − 934Kþ 2574Sþ 120S1 þ 1251Þ − 152K2 − 406KS

− 44KS1 − 232Kþ 63S2 þ 2823Sþ 1165S1 þ 145S2�
þQ2½11Bð8J − 4Kþ 33Þ þ 10543J2 þ Jð−1844Kþ 2554Sþ 13911Þ
þ 2Kð28K − 222S − 291Þ þ 8571Sþ 2098S1 þ 174S2 − 972�
þQ3½ð251B − 776JKþ Jð2774Jþ 27195Þ þ 84K2 − 1348K

þ 8871Sþ 1026S1 þ 1350� þQ4ð22Bþ 13372J − 1024Kþ 1711Sþ 9483Þ
þQ5ð826J − 84Kþ 8588Þ þ Jð2Kð28Kþ 30S − 5Þ þ 1078S − 69S1 − 42S2 − 324Þ
þ 1410Q6 þ 21Q7 − 4K2ðSþ 28Þ þ 2Kð59Sþ 18S1 − 2S2 þ 66Þ þ 52S2 þ 56S1

þ 63Sþ 204S1 þ 58S2 þ
9B2

2
þ 9Bð7J − 2Kþ SÞ − 276J3 − J2ð142Kþ 294S − 1779Þ: ðA3Þ

Dynamical equation for S2 for the case V B 1

dS2

dN
¼ S2ð16K − 16Rþ 23Þ − 29B2

2
− B½16Jð4K − 4Rþ 9Þ þ 71K − 53R − 261

þ ðK −RÞð67K2 þKð259 − 134RÞ þ Rð67R − 225ÞÞ� − 38J3

þ J2ð335K2 þ Kð780 − 670RÞ þRð335R − 762Þ þ 601Þ
− Jð−409K4 þ 4K3ð409R − 103Þ þ K2ð6ð238 − 409RÞRþ 2576Þ
þ 4Kð409R3 − 405R2 − 1154Rþ 1135Þ þ 604R3 − 409R4 þ 2044R2Þ − 4216R

þ 27S1 þ 1911g þ 81K6 − 2K5ð243Rþ 178Þ þK4½Rð1215Rþ 1624Þ − 2926�
− 4K3ð405R3 þ 734R2 − 2792Rþ 889Þ þ K2ð1215R4 þ 2624R3 − 15960R2 þ 10688R

− 66S1 þ 3817Þ þ K½3ð44R − 45ÞS1 − 2ð2243R5 þ 578R4 − 5060R3 þ 5354R2 þ 3169Rþ 8566Þ�
þ 81R6 þ 200R5 − 2402R4 þ 3576R3 − 66R2S1 þ 2537R2 − 7712R

þ ð139R − 37ÞS1 þ 3516þ A3

12γ
ðΩ − K − 1Þ: ðA4Þ

Dynamical equation for S2 for the case V B 2

dS2

dN
¼ S2ð16K − 16Rþ 23Þ þ A3

12γ
ð−Kþ Ω − 1Þ

−
2q−33q−2A4−qRq−2

γ
½ðq − 1ÞqðJþ ðK − 2ÞK − 4Þ þ qRðKð3 − 2qÞ þ 1Þ þ ðq − 1Þ2R2�

−
29B2

2
− B½16Jð4K − 4Rþ 9Þ þ 71K − 53R − 261

þ ðK −RÞð67K2 þKð259 − 134RÞ þ Rð67R − 225ÞÞ� − 38J3

þ J2ð335K2 þ Kð780 − 670RÞ þRð335R − 762Þ þ 601Þ
− Jð−409K4 þ 4K3ð409R − 103Þ þ K2ð6ð238 − 409RÞRþ 2576Þ
þ 4Kð409R3 − 405R2 − 1154Rþ 1135Þ þ 604R3 − 409R4 þ 2044R2Þ − 4216R

COSMOLOGY OF fðR;❑RÞ GRAVITY PHYS. REV. D 99, 104001 (2019)

104001-19



þ 27S1 þ 1911g þ 81K6 − 2K5ð243Rþ 178Þ þ K4½Rð1215Rþ 1624Þ − 2926�
− 4K3ð405R3 þ 734R2 − 2792Rþ 889Þ þ K2ð1215R4 þ 2624R3 − 15960R2 þ 10688R

− 66S1 þ 3817Þ þ K½3ð44R − 45ÞS1 − 2ð2243R5 þ 578R4 − 5060R3 þ 5354R2 þ 3169Rþ 8566Þ�
þ 81R6 þ 200R5 − 2402R4 þ 3576R3 − 66R2S1 þ 2537R2 − 7712R

þ ð139R − 37ÞS1 þ 3516þ A3

12γ
ðΩ − K − 1Þ: ðA5Þ
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