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Implications of string swampland criteria for a dark energy dominated universe, obtained through the use
of Gaussian processes and HðzÞ data analysis, are discussed, in particular, swampland criteria for a scalar-
field dark energy without assuming any specific form for the potential. Allowing the Gaussian process to
reconstruct the form of the potential from HðzÞ data, upper bounds on the second swampland criterion
(SC2, involving jV 0j=V) for two different kernel functions [square exponential and Matern (ν ¼ 9=2)
kernels] are estimated. The approach here differs from all previous studies, since the upper bound of the
second Swampland criterion is derived in a thoroughly model-independent way, without employing a
model-to-model comparison strategy. The analysis is performed using the latest values of H0 reported
by the Planck and Hubble missions. Results for the estimation of the constant of SC2 hint towards the
possibility of getting upper bounds well behind the estimations for the dark energy dominated universe
reported in previous studies, corresponding to the model-to-model comparison method. The estimation
performed using the model-independent approach (Gaussian processes) turns out to be quite sensitive and
dependent upon the data and kernel employed. This study is a first attempt towards the exploitation of
the swampland criteria in a model-independent way and may be extended by involving other data sets
and trying to understand what is the impact of higher-redshift data on the upper bounds. In the analysis,
40-pointHðzÞ data have been used, consisting of a 30-point sample deduced from a differential age method
and an additional 10-point sample obtained from the radial BAO method. Hints towards the possibility of
eventually disproving the swampland conjecture are noted.
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I. INTRODUCTION

The accelerated expansion of the Universe [1–10] is a
very surprising fact, which has been proven through several
independent observations and is still open to different
physical interpretations in terms of various gravity theories.
In particular, the idea itself of dark energy, introduced in
general relativity (GR) to address the physics of this
phenomenon [11–22] (and references therein), acquires
different forms. The first, and most simple, mathematical
model for dark energy is the cosmological constant
associated to the vacuum energy of the quantum fields
at the cosmological level, giving origin to the cold dark
matter model with cosmological constant Λ (ΛCDM), the

standard cosmological model [23]. But, additionally, this
simple model exhibits a theoretical problem, known as the
cosmological coincidence problem [24,25]. This issue is
the hidden motivation behind different dynamical and
interacting dark energy models considered in the recent
literature (see [11–22] and references therein). One of the
possibilities, when we describe the background dynamics
using GR, is to represent the dynamical dark energy by a
scalar field. The usual way to obtain a model for the
Universe having positive vacuum energy and involving a
scalar field is to use a field potential with a local minimum
at a positive value, leading to a stable or metastable de
Sitter (dS) vacuum. Another interesting situation should be
mentioned, too, namely, the case of quintessence models
where the potential is positive but the scalar field is not at a
minimum. This could occur when j∇Vj is sufficiently small
and of the order of V itself.
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On the other hand, according to the most common
viewpoint, GR can in no way be the ultimate theory of
the Universe, operating from cosmological scales to
extremely small scales. Quantum corrections are bound
to become important, and this is reflected in various viable
modified theories of gravity that effectively deal with dark
energy, dark matter, inflation, and other relevant problems
[26–31] (to mention a few). We can however assume
that GR might be the low-energy limit of a well-motivated
(but yet to be found) high-energy UV-complete theory.
In other words, we may play with the idea that the effective
field theory has been originated from its low-energy limit
and effectively captures the behavior of the inflaton field
and dark energy phenomena. In this regard, string theory,
which has the capacity to unify the standard model of
particle physics with gravity, perfectly qualifies as a
candidate for such an UV-complete theory.
However, an interesting situation has been met in string

theory when confronted with the task of constructing dS
vacua. Despite heroic attempts, until now no dS vacuum
could be obtained, owing to numerous problems [32–54].
Therefore, we are led to assume, as of now, that in a
consistent quantum theory of gravity, dS does not exist. The
landscape provided by string theory yields the existence of a
vast range of choices fitting our Universe in a consistent
quantum theory of gravity; in other words, a whole land-
scape of vacua provided by string theory, which are believed
to lead to consistent, effective field theories (EFT). However,
taking into account the aforementioned problem with dS
vacua, and that in the string landscape it is actually easy to
obtain Minkowski and anti–de Sitter solutions, one is led to
believe in the existence of the swampland—a region wherein
inconsistent semiclassical EFTs inhabit. This statement
can be understood as a claim of the existence of a set of
consistently looking effective quantum field theories coupled
to gravity, which are actually inconsistent with a quantum
theory of gravity. And this could be an indicator that dS
vacua may reside in the swampland [55,56].
In this promising context, it becomes an urgent task to

investigate the cosmological implications of two of the
proposed swampland criteria, expressed as
(1) SC1: the scalar field net excursion in reduced Planck

units should satisfy the bound [55]

jΔϕj
MP

< Δ ∼Oð1Þ; ð1Þ

(2) SC2: the gradient of the scalar field potential is
bounded by [56]

MP
jV 0j
V

> c ∼Oð1Þ; ð2Þ

if we consider GR with the standard matter fields in the
presence of a quintessence field ϕ to be the effective field

theory. Here, both Δ and c are positive constants of order
one; the prime denotes the derivative with respect to the
scalar field ϕ, and MP ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck

mass. On the other hand, it is well-known that this effective
field theory admits solutions modeling an accelerated
universe, and it is reasonable to investigate and try to
understand what are the conditions to be satisfied in order
not to end up in the swampland. In this regard, the one
associated with the second swampland criterion (SC2),
Eq. (2), is primarily relevant and the more interesting one to
study. The two swampland criteria above demand that the
field traverses a larger distance in order to have the domain
of validity of the effective field theory and SC2 to be
fulfilled.
An investigation of the implications of the string swamp-

land criteria based on scalar field dark energy models [57]
highlights the conditions to be met in order to remain
outside of the swampland. Observational implications of
future surveys on quintessence models with VðϕÞ ∼ e−λϕ,
which impose constraints on λ, are also discussed there. An
interesting question has arisen: how tightly future surveys
will be able to decide whether dark energy is a cosmo-
logical constant or not. A first analysis shows that with the
data expected from Euclid, the λ parameter should have to
fall below 0.3, leaving only room for very small deviations
of quintessence from a cosmological constant. On the other
hand, the estimation constraining λ < 0.1 shows that the
necessary survey volume would need to grow by a factor of
∼400, as compared to that covered by the Euclid survey.
Therefore, one should expect fundamental observational
limitations to lowering λ to λ < 0.1 with near-future
surveys.
Present analyses, such as the one in [57], which can be

considered an extension of [58], are being performed by
using a model-by-model comparison method, in order
to obtain the constraints on λ and on the SC2 constant
c. In particular, the standard eight-parameter Chevallier-
Polarski-Linder (CPL) cosmology is taken as a fiducial
model to fit data, and then quintessence dark energy
cosmology has been chosen as the comparison model.
Finally, the simplest exponential potential for the quintes-
sence field has been considered. On the other hand, also
with a model-by-model comparison method based on the
belief that the Universe should be multifeature and inform-
ative, possibly the largest upper bound on the swampland
constant c has been reported recently in [59]. In that paper,
interacting quintessence is considered as the comparison
model for dark energy, constraining an 18-parameter
extension of the ΛCDM cosmology, in light of current
observations. The 3σ upper bound on the swampland
constant c, following from this analysis, is 1.94. Such a
result would permit, for instance, an 11-dimensional
M-theory with a double-exponential potential to be the
string-theory model for dark energy. It is interesting that
using Bayesian evidence as the model selection tool, the
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author found that this 18-parameter multifeature cosmo-
logical model is very strongly preferred over the ΛCDM
cosmology. For more details, in relation to the results on
the bounds of c relevant to inflation, we refer the readers
to [59].
Also in [59], the urgent necessity to clarify several

important aspects concerning previous studies, which have
reported different upper bounds on c, has been expressed.
In our opinion, these differences clearly indicate that
interacting dark energy models can lead to interesting
deviations from the cases with no interaction. One finds
in the literature examples that show how a specific form of
interaction can affect the structure formation process or
how it can give rise to an effective degree of freedom to
solve the cosmological coincidence problem and how this
can be incorporated to the recently announced 21-cm
anomaly. Some studies point to the fact that the result
for the Hubble parameter at z ¼ 2.34, reported by the
BOSS experiment, is also an indication of a certain
interaction between dark energy and dark matter.
Moreover, we have examples where this interaction, under-
stood as an energy transfer between them, can affect the
precise type and the formation of future finite-time singu-
larities (see, e.g., [11–22], for more details). In light of the
above mentioned facts, the results in Ref. [59] indicate that
the interaction between dark energy and dark matter can
indeed have a strong impact on the bounds of the SC2,
Eq. (2), constant c. However, to convert this guess into a
solid conclusion, a deeper investigation is required, involv-
ing different forms of linear and nonlinear, sign fixed and
sign changing interactions, as the ones considered in the
recent literature.
It should be stressed again that all results discussed

above have been obtained in a model-dependent way, by
performing a model-to-model comparison. It is an urgent
task to understand the upper bounds on c in a dark-energy
dominated universe that are from different observational
data in a model-independent way. Will the results change
substantially? Our goal in this paper is to give an answer to
this key question. For our purposes, we will use Gaussian
process techniques (GP) and HðzÞ data. It is well-known
that the GP is a powerful tool allowing us to reconstruct the
behavior of a function (and its derivatives) directly from
given data [60] (see also [61]). Moreover, studies carried
out in the recent literature have shown that with the GP
method, it is possible to reconstruct the behavior of the
nongravitational interaction between dark energy and dark
matter (among other results). It should be noted that model-
independent GP techniques depend on the covariance
function (kernel), and that the hyperparameters describing
it can be estimated directly from observational data (see
[60–70], to mention a few). Therefore, we do not consider
any specific parametrization for, e.g., the interaction
term between dark energy and dark matter, but we can
reconstruct it from observational data directly, by using

the cosmological equations. Of course, in this case,
reconstruction is possible if the description of dark energy
is assumed. In general, the reconstruction of a function that
is interesting for our study, in the scope of a certain
cosmological model, will be easy to implement if we
use the HðzÞ data. This is obvious, since all cosmological
quantities, after some algebra, can be eventually expressed
as functions of the Hubble parameter and its derivatives; all
of which can be reconstructed directly from the HðzÞ data.
Therefore, we are able, in particular, to model the decel-
eration parameter at different redshifts directly from HðzÞ,
by using GP, since

q ¼ −1þ ð1þ zÞH
0

H
; ð3Þ

where the prime means the derivative with respect to the
redshift.
In the next section, we will consider the data to be

employed in this study, describing also how we can make
use of GPs to reconstruct and estimate the swampland c
parameter in a model-independent way. We will demon-
strate that, for the study of the problem in this fashion, we
do not need to make any assumptions concerning the form
of the scalar-field potential or dark-energy model, nor go
through any model-to-model comparison as has been done
until now, e.g., in [57–59]. We refer the readers to several
interesting works concerning the swampland criteria for
an inflating universe [71–78], and to a recently appeared
discussion on the possible types of singularities for the
swampland potential VðϕÞ ∼ e−λϕ, analyzed by means of
the asymptotic splitting method [79]. On the other hand, we
should mention some clarifying discussions of the swamp-
land criteria in two papers that appeared recently, [80,81].
The paper is organized as follows. In Sec. II, we present

the data to be used in our analysis, discussing the strategy to
be followed. In Sec. III, we introduce our model and obtain
the equations, written in an appropriate form, which allow
us to see how the reconstructed behavior of the Hubble
parameter and its derivatives up to a high order can be used
for the study of the swampland criteria in a model-
independent way by directly using observational data. In
Sec. IV, we discuss the results obtained from the
reconstruction of two types of kernel functions and three
different values of the Hubble parameter at z ¼ 0 in each
case. One of the values of H0 used in our analysis has been
estimated with the GP method and using high-redshift data
for HðzÞ, while the other two are taken to be the values
recently reported by the Planck [9] and Hubble [10]
missions. To finish, the conclusions and a final discussion
can be found in Sec. V.

II. DATA AND GAUSSIAN PROCESSES

In order to make the discussions in Secs. III and IV more
transparent for the readers, we devote the present one to
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some crucial aspects related to GP. In particular, we
concentrate our attention on some crucial aspects related
to the GP method, providing a basic knowledge of it.
Additionally, the references may serve to find more
information on the topic, with some cosmological appli-
cations existing in the recent literature. To start, we recall
that the Gaussian distribution corresponds to a random
variable characterized by a mean value and a covariance.
Similar to Gaussian distributions, GPs should be under-
stood as distributions over functions, characterized by a
mean function and a covariance matrix. In other words,
when we reconstruct a function fðxÞ at x, the GP creates a
Gaussian random variable with a mean μðxÞ and variance
σðxÞ. But it is important to note that the function obtained at
x using the GP depends on that obtained at xþ dx, both
being related by a covariance function, namely the GP,
which correlates the values of the resulting function at
different points. Therefore, the key ingredient of a GP is the
covariance function, which for a given set of observations
can infer the relation between independent and dependent
variables. A number of possible choices for the covariance
function exist—squared exponential, polynomial, spline,
etc., to mention a few. In our studies, as a first option for the
covariance function, we chose the commonly used squared
exponential function,

kðx; x0Þ ¼ σ2f exp

�
−
ðx − x0Þ2

2l2

�
; ð4Þ

where σf and l are parameters known as hyperparameters.
These parameters represent the length scales in the GP.
The l parameter corresponds to the correlation length along
which the successive fðxÞ values are correlated, while to
control the variation in fðxÞ relative to the mean of the
process, we need the σf parameter. Therefore, the covari-
ance between output variables will be written as a function
of the inputs. Another interesting issue to be mentioned is
that the covariance is maximum for variables whose inputs
are very close. We should mention also that the two
hyperparameters of Eq. (4) characterize the smoothness
of the function kðx; x0Þ, and their values will be eventually
determined by the training of the data (assuming the errors
are Gaussian), using either a maximum likelihood pro-
cedure or an optimization algorithm, which leads to the
reconstructed function of interest. The training of the data
to determine the values of the hyperparameters is applicable
to all kernels, which can be used without any restriction.
We can see from Eq. (4) that the squared exponential
function is infinitely differentiable, a useful property in the
case of constructing higher-order derivatives. However, it
cannot be used, for instance, to identify and study possible
singularities in the future or past, based on the data used to
do the reconstruction. In this regard, GPs have limited
power and cannot be used to study all types of problems of
modern cosmology. On the other hand, the main benefit of

using the GP approach is the avoidance to assume a
parametric form of the function representing the data,
based on particular models that may or may not be
reasonable representations of the true measurements.
We have already mentioned that we have at our disposal

various options to choose the kernel function, since we do
not have any other method to decide which is its preferred
form. In this regard it makes sense, in principle, to pick up
one that only depends on the distances between different
data points, as in the case of the kernel given by Eq. (4).
However, to be sure that the choice of the covariance
function is not unduly affecting the model selection, we
have the choice to perform the analysis using another
covariance function. Moreover, the discussion of the results
of the study presented in Sec. IV will demonstrate that,
although the choice of the kernel may modify the values of
the bounds on SC2, the final outcome based on this
approach is not changed qualitatively. As a consequence,
following the recommendations mentioned above, coming
from other studies (see, for instance, [63]) and with the aim
to reveal additional aspects concerning the application of
GP methods in the estimation of upper bounds for SC2,
Eq. (2), we will also use here the so-called Matern
(ν ¼ 9=2) covariance function,

kMðx; x0Þ ¼ σ2f exp
�
−
3jx − x0j

l

�

×

�
1þ 3jx − x0j

l
þ 27ðx − x0Þ

7l2

þ 18jx − x0j3
7l3

þ 27ðx − x0Þ4
35l4

�
: ð5Þ

This is a popular covariance function. In Ref. [63], the
Matern (ν ¼ 9=2) kernel, Eq. (5), was the preferred one,
because it led to the most reliable results amongst all the
covariance functions involved in the analysis. This means,
in particular, for Ref. [63], that for the various cosmological
models and many realizations of mock data sets considered
there, the model derived using this kernel lied on average
within the reconstructed 1 − σ limits for approximately
68% of the redshift range and within the reconstructed
2 − σ limits for 95% of the redshift range. Moreover, for a
detailed analysis regarding the optimal choice of the
covariance function in a GP, in cosmological applications,
we refer the readers to Ref. [67].
In what follows, we will use the freely available package

GaPP (Gaussian Processes in Python) developed by Seikel
et al. In [60], the authors provide a very complete
description of the method (see also [62–70], for additional
explanatory references). This technique allows us to choose
different covariance functions, including the Matern covari-
ance function given by Eq. (5), while the squared expo-
nential function, Eq. (4), is used in the code as the default
option. The code is also very useful to combine different
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observational data sets, provided the proper relation
between them is known. Below, we present the data set
we used and some clarification about the accepted strategy
for our study, concerning the Hubble parameter value at
z ¼ 0. In particular, we use 30-point samples of HðzÞ
coming from the differential age method. Then, we add
10-point samples obtained from the radial BAO method
(see Table I). In the first case, as we can see from Table I,
we have relatively good data up to z ¼ 2. On the other
hand, the added data points from the radial BAO method
allow us to extend the data range up to z ¼ 2.4 improving
also low-redshift data. However, we can see that the data
points listed in Table I do not include the value of the
Hubble parameter at z ¼ 0, i.e., the value of H0. This value
will play an important role in our study in what will be seen
in Sec. III at the theoretical level and in Sec. IV during the
discussion of the results. It should be noted that in our study
we will consider three different values for H0. Specifically,
the two values ofH0 reported by the Planck mission and the
Hubble space telescope, respectively, and, in addition, we
will let the GP itself to estimate a third value for H0, from
the values of the HðzÞ data points corresponding to the
higher redshifts, listed in Table I.
Recently, a situation similar to the last case has been

considered, in a study relying on a new dark energy

TABLE I. HðzÞ and its uncertainty σH in units of
km s−1 Mpc−1. In the upper panel, 30 samples deduced from
the differential age method. In the lower one, 10 samples obtained
from the radial BAO method. The table is according to [62] (see
also references therein, for details).

z HðzÞ σH z HðzÞ σH

0.070 69 19.6 0.4783 80.9 9
0.090 69 12 0.480 97 62
0.120 68.6 26.2 0.593 104 13
0.170 83 8 0.680 92 8
0.179 75 4 0.781 105 12
0.199 75 5 0.875 125 17
0.200 72.9 29.6 0.880 90 40
0.270 77 14 0.900 117 23
0.280 88.8 36.6 1.037 154 20
0.352 83 14 1.300 168 17
0.3802 83 13.5 1.363 160 33.6
0.400 95 17 1.4307 177 18
0.4004 77 10.2 1.530 140 14
0.4247 87.1 11.1 1.750 202 40
0.44497 92.8 12.9 1.965 186.5 50.4
0.24 79.69 2.65 0.60 87.9 6.1
0.35 84.4 7 0.73 97.3 7.0
0.43 86.45 3.68 2.30 224 8
0.44 82.6 7.8 2.34 222 7
0.57 92.4 4.5 2.36 226 8

FIG. 1. GP reconstruction of HðzÞ, H0ðzÞ, H00ðzÞ, and H000ðzÞ, for the 40-point sample deduced from the differential age method, with
an additional 10-point sample coming from the radial BAO method, for H0 ¼ 67.66� 0.42 as reported by the Planck survey. Each
prime means a derivative with respect to the redshift variable z.
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parametrization, given by ω ¼ ω0 þ ω1q, where ω0 and ω1

are the parameters of themodel to be determined and q is the
deceleration parameter Eq. (3). To save space, let us refer the
readers to [13], where the value ofH0 has been estimated for
two cases using the GP directly. In particular, it was found in
this reference that the GP can estimate the Hubble value for
this case, yielding H0 ¼ 71.286� 3.743 and 67.434�
4.748 (at 1σ reconstruction level) for 40 and 30-point
samples of HðzÞ data, respectively. On the other hand, in
the same work, the authors discussed the reconstructed
behavior of the Hubble parameter and its higher-order
derivatives for the squared exponent kernel given by
Eq. (4) [13]. Here, we present the results of the recon-
struction for H0 ¼ 67.66� 0.42 and H0 ¼ 73.52� 1.62
reported from the Planck and Hubble surveys, respectively,
for the Matern (ν ¼ 9=2) kernel, Eq. (5); see Figs. 1 and 2,
which show the results of the reconstruction.
To end this section, note that a visual comparison of the

behavior of the reconstructed H and H0ðzÞ reveals some
differences between the two cases considered, described by
the kernels given by Eqs. (4) and (5), respectively, which
could induce some effect on the estimations under study.
In the next section, we will see that, for this model-
independent way of estimating the upper bound of SC2,
we just need the reconstructed behavior of the Hubble
parameter and its first-order derivative, when H0 and Ωdm

at z ¼ 0 are known. More on this issue in Sec. IV. On the
other hand, since SC2 will be eventually expressed as a
function of H and H0, we can expect to obtain different
upper bounds on SC2 for both cases. In the next section, we
present a detailed demonstration of how the results of this
one can be applied to the problem under study. Moreover,
we should also mention a number of interesting papers
where it is demonstrated that GPs can be used as an
effective tool to select the best cosmological model among
several acceptable possibilities [82–84].

III. THE MODEL

Here we shall consider GR with the standard matter field
in the presence of a quintessence field ϕ to be the EFT
described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
þ Sm; ð6Þ

where Sm corresponds to standard matter, MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass, R is the Ricci scalar, ϕ the field,
and VðϕÞ is the field potential. It is well-known that, when
we consider the Friedmann-Lemaître-Robertson-Walker
universe, the dynamics of the scalar field’s dark energy
and dark matter are described by the equations,

FIG. 2. GP reconstruction of HðzÞ, H0ðzÞ, H00ðzÞ, and H000ðzÞ for the 40-point sample deduced from the differential age method, with
an additional 10-point sample obtained from the radial BAO method, when H0 ¼ 73.52� 1.62 as reported by the Hubble telescope.
Each prime means the derivative with respect to the redshift z.
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_ρϕ þ 3Hðρϕ þ PϕÞ ¼ 0; ð7Þ

_ρdm þ 3Hρdm ¼ 0: ð8Þ

In other words, Eqs. (7) and (8) are the energy conservation
laws for the components describing the background
dynamics. Moreover, from the form of these equations,
we see the absence of a coupling between the scalar field’s
dark energy and dark matter, which is accounted for in the
recent literature as an energy flow between them. The
presence of this coupling is interpreted as an interaction
between dark energy and dark matter. Furthermore, we
know that ρϕ, ρdm and P ¼ Pϕ are related to each other
through the Friedmann equations, as follows:

H2 ¼ 1

3
ðρϕ þ ρdmÞ; ð9Þ

and

_H þH ¼ −
1

6
ðρϕ þ ρdm þ 3PϕÞ: ð10Þ

If we now assume that the scalar field is spatially
homogeneous, the corresponding energy density and pres-
sure are

ρϕ ¼ 1

2
_ϕþ VðϕÞ; ð11Þ

and

Pϕ ¼ 1

2
_ϕ − VðϕÞ; ð12Þ

where the dot means the derivative with respect to the
cosmic time, while VðϕÞ is the scalar field potential. In all
the equations above, H ¼ _a=a is the Hubble parameter.
Now, we address some basic aspects concerning the

background dynamics in the presence of scalar-field dark
energy and standard matter: let us see how GPs can be
involved in the study of such theories, in a model-
independent way. In particular, how the HðzÞ data obtained
from astronomical observations can be used, bypassing the
need to have the form of the scalar field potential be given
in advance. From Eqs. (11) and (12), it is easy to see, in
particular, that

_ϕ2 ¼ ρϕ þ Pϕ; ð13Þ

while

VðϕÞ ¼ ρϕ − Pϕ

2
: ð14Þ

Now, from Eq. (8), we have ρdm ¼ 3H2
0Ω0ð1þ zÞ3, then

from Eq. (9), we can determine the energy density of the
scalar field, which in the present case reads

ρϕ ¼ 3H2 − 3H2
0Ω0ð1þ zÞ3; ð15Þ

where H0 is the Hubble parameter value at z ¼ 0 (z is the
redshift). It is then clear that in order to perform the analysis
of the model and estimate the upper bound on SC2, we need
to determine the functional dependence of Pϕ onH. This is
an easy task by using Eq. (10). After some algebra, we see
thatPϕ ¼ 2ð1þ zÞHH0 − 3H2, where the prime denotes the
derivative with respect to the redshift. Of course, we can
see immediately that ρ0ϕ ¼ 6HH0 − 9H2

0Ω0ð1þ zÞ2 and
P0
ϕ ¼ 2ð1þ zÞðH02 þHH00Þ − 4HH0. Coming back to the

form of SC2 to be reconstructed, we need only take into
account that dVðϕÞ=dϕ ¼ ðdV=dzÞ=ðdϕ=dzÞ, where
dϕ=dz follows from Eq. (13) and that _ϕ ¼ −ð1þ zÞHϕ0.
It is also easy to see that within the described approach,

we are also able to reconstruct the equation of state (EoS)
parameter of the model dark energy directly from the
observational data. In particular, we can see that the EoS
parameter is a function of the Hubble parameter and its first
order derivative, specifically,

ωϕ ¼ 2ð1þ zÞHH0 − 3H2

3H2 − 3H2
0Ω0ð1þ zÞ3 : ð16Þ

On the other hand, it is clear from Eq. (16), which allows
us to reconstruct ωϕ from HðzÞ data, that in order to
estimate the upper bound on SC2 in a dark energy
dominated universe, we can adopt another approach,
different from the one used in this paper. In fact, we could
reconstruct ωϕ from Eq. (16) and use it to obtain the
constrains on the parameters present in the swampland
potential. It is interesting to compare the results from
different approaches to reconstruct the EoS parameter for
dark energy (see, e.g., [85–87]). The results, from the GP
reconstruction of ωϕ from the HðzÞ data of Table I, are
depicted in Fig. 3. The left panel corresponds to the GP
reconstruction for the squared exponent kernel given by
Eq. (4). For the right plot, the kernel is Matern ðν ¼ 9=2Þ,
given by Eq. (5). The solid line traces the mean of the
reconstruction and the shaded blue regions are the 68% and
95% C.L. of the reconstruction, respectively. The value
H0 ¼ 67.66� 0.42 has been used, in accordance with the
latest Planck results [9] withMP ¼ 1. Figure 3 points to the
fact that during the GP reconstruction of ωϕ for the HðzÞ
data at higher redshifts, we are bound to observe very big
reconstruction errors leading to rejection of the model.
However, for low redshifts, when we have a dark energy
dominated universe, GP reconstruction yields a well
behaved mean and 68% and 95% C.L. strips of the
reconstruction for ωϕ. The last one is the key aspect of
our study, which allows us to estimate the upper bound on
SC2 for each of the considered cases, because the behavior
of ωϕ eventually determines the behavior of V 0=V. In order
to gain more knowledge on the subject under study, we
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need to use data corresponding to higher redshifts and also
deeper data sets. In this paper, however, we just concentrate
our attention on HðzÞ data and discuss some relevant
consequences leaving these other important issues to
subsequent study.
After all these considerations, it has become clear that we

are in the position to reconstruct SC2 and to estimate its
upper bound in a model-independent way, directly using
observational data. The results of the study, for the
strategies discussed in Sec. II, are presented in the next
section.

IV. RESULTS

In Sec. II, we already mentioned that the analysis is
carried out using two different kernel functions and for
three different values of the Hubble parameter at z ¼ 0. We
start by presenting the results obtained for the first case,
which corresponds to the squared-exponential kernel func-
tion, Eq. (4), while the value of the Hubble parameter
comes from applying the GP to the higher-redshift data in
Table I. In this case, we have seen that, according to the
mean value of the reconstruction, H0 ¼ 71.28, while
according to the 1σ reconstruction, the 1σ error is 3.74
[13]. On the other hand, the reconstruction of Ωϕ ¼
ρϕ=3H2 shows that the model should be rejected above
z ¼ 1.9 since the mean of the reconstruction predicts a
negative Ωϕ. Moreover, we see also that, according to the
reconstructed behavior of the mean, the dark energy
dominated universe will be observed from z ¼ 0.27, while
according to the 2σ reconstruction band the dark energy
dominated epoch will start from z ¼ 0.5. On the other
hand, we also have been able to estimateΩϕ at z ¼ 0 giving
Ωϕ ¼ 0.7þ0.05þ0.08

−0.05−0.11 according to the mean, and 1σ and 2σ
of the reconstruction bands, respectively.

It should be mentioned, as well, that the results obtained
for 2σ could be questionable, since the estimation of Ωϕ

from the reconstruction induces a tension, yielding results
that are not consistent with those from other missions.
However, for this case, we also estimated the upper bound
on the constant c of SC2, Eq. (2). This could already be an
indicator that we cannot trust too much the results from the
reconstructed SC2, unless new data are available, for the
low-redshift universe. The two plots of Fig. 4 correspond to
the reconstruction of SC2 allowing us to estimate its upper
bound, obtained by involving model-independent proc-
esses, as discussed above.
The left plot of Fig. 4 corresponds to the reconstruction

of SC2 for the squared exponent case, Eq. (4), while the
reconstruction corresponding to the Matern ðν ¼ 9=2Þ
kernel given by Eq. (5) can be found on the rhs plot.
From these plots, we see, that the GP and HðzÞ data
presented in Table I yield a quite good reconstruction of
SC2, allowing us to obtain the upper bounds on this
parameter according to the mean, 1σ, and 2σ reconstructed
bounds, respectively. The results of a further analysis
show that:
(1) According to the mean of the reconstruction, in

the case of the squared exponent kernel, Eq. (4), the
dark energy dominated universe should start from
z ¼ 0.27, while we can observe a dark energy
dominated universe from z ¼ 0.37 according to
the upper bound of the 1σ reconstruction. On the
other hand, from z ¼ 0.5, we can observe a dark
energy dominated universe if we take into account
the upper band from the 3σ reconstruction. The same
picture has been observed after the reconstruction
where we used the Matern ðν ¼ 9=2Þ kernel given
by Eq. (5). In addition, at z ¼ 0, we will have
ωde ¼ −1.15, ωde ¼ −0.96, and ωde ¼ −0.76, from
the mean and the upper bounds for the 1σ and 2σ

FIG. 3. Reconstruction of ωϕ, Eq. (16) from the HðzÞ data in Table I. The left panel corresponds to GP reconstruction for the squared
exponent kernel given by Eq. (4), while the right plot corresponds to the Matern ðν ¼ 9=2Þ, as a kernel, given by Eq. (5). The solid line
depicts the mean of the reconstruction and the shaded blue regions are the 68% and 95% C.L. strips of the reconstruction, respectively.
The value H0 ¼ 67.66� 0.42 has been used, in accordance with the latest Planck results [9]. MP ¼ 1.
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reconstructions, respectively. However, when we
start the estimation of ωde at z ¼ 0, we observe that
ωde ¼ −1.13, ωde ¼ −0.93, and ωde ¼ −0.71, from
the mean and the upper bounds for the 1σ and 2σ
reconstructions, respectively. Moreover, for this
case, the following constraints for ωde, Eq. (16):
ωde ¼ −1.15þ0.19þ0.39

−0.16−0.31 and ωde ¼ −1.13þ0.2þ0.42
−0.18−0.33,

have been obtained at z ¼ 0 using the kernels given
by Eqs. (4) and (5), respectively. It is obvious that
according to the mean of the reconstruction, we
should expect a phantom dark energy dominated
universe at z ¼ 0 in both cases. On the other hand,
the upper bounds for the 1σ and 2σ reconstructions
indicate the possibility to have a quintessence dark
energy dominated universe. In contrast, according to
the lower bounds for the 1σ and 2σ reconstructions,
we should expect to observe the Universe being in a
deep phantom dark energy dominated stage at z ¼ 0.
As a consequence, in this case, there is a tension with
the constraints on ωde reported by PLANCK 2018
[9], which leaves room for additional analysis of the
model involving high redshift data to be obtained
soon from gravitational wave physics.

(2) On the other hand, according to the mean of the
reconstruction, for the upper bound on the SC2
constant c for z ∈ ½0; 0.27�, we will have 0.785.
Moreover, according to the 1σ reconstruction, the
upper bound on c for z ∈ ½0; 0.37� will be 1.786,
while the 4.363 upper bound for c will be observed
from the 3σ reconstruction bands. This estimation
has been obtained with the squared exponent kernel,
Eq. (4) (see the left plot of Fig. 4). When we use the
Matern ðν ¼ 9=2Þ kernel, Eq. (5), we observe that
the upper bounds on c are 1.051, 1.886, and 4.926,
respectively, as it has been discussed for the previous
case (see the rhs plot in Fig. 4).

The results obtained from the case when we consider
H0 ¼ 73.52� 1.62 reported in [10] are summarized below
and depicted in Fig. 5. In particular, we conclude that
(1) According to themean of the reconstruction in the case

of the squared exponent kernel, Eq. (4), the dark
energy dominated universe starts at z ¼ 0.34, while it
will start at z ¼ 0.42 according to the upper bound of
the 1σ reconstruction. On the other hand, wewill have
a dark energy dominated universe starting at z ¼ 0.5 if
we take into account the upper band from the 3σ
reconstruction. However, if the reconstruction is done
by using the Matern ðν ¼ 9=2Þ kernel of Eq. (5), then
the dark energy dominated universe will be observed
from z ¼ 0.27, z ¼ 0.31 and z ¼ 0.37 for the mean
and the upper bands of the 1σ and 2σ reconstruction,
respectively. Moreover, at z ¼ 0, we will have
ωde ¼ −0.96, ωde ¼ −0.88, and ωde ¼ −0.81 from
the mean and from the upper bounds of the 1σ and 2σ
reconstructions, respectively, when the kernel is given
by Eq. (4). On the other hand, for the kernel given by
Eq. (5), for the estimated value ofωde at z ¼ 0, we got
ωde ¼ −1.23, ωde ¼ −1.12, and ωde ¼ −0.99 from
the mean and from the upper bounds of the 1σ and 2σ
reconstructions, respectively. In addition, using the
kernel given byEq. (4), weget the following constraint
onωde, Eq. (5):ωde ¼ −0.96þ0.08þ0.15

−0.09−0.16 , while from the
kernel given by Eq. (5), this other one follows:
ωde ¼ −1.23þ0.11þ0.24

−0.12−0.23 . The estimation of ωde in this
case reveals an interesting situation not observed in
the previous one. Namely, we see that two different
kernels predict two different states for the Universe
at z ¼ 0. In particular, the reconstruction with the
kernel given by Eq. (4) predicts a quintessence
universe for the mean and the upper bounds for the
1σ and 2σ reconstructions, respectively. However,
according to the lower bound of the 1σ reconstruction,

FIG. 4. Reconstruction of the jV 0j=V, Eq. (2), from the HðzÞ data depicted in Table I. The left panel represents GP reconstruction for
the squared exponent kernel given by Eq. (4), while the right plot has been obtained considering the Matern ðν ¼ 9=2Þ kernel given by
Eq. (5). The solid line is the mean of the reconstruction and the shaded blue regions are the 68% and 95% C.L. of the reconstruction,
respectively. H0 ¼ 71.286� 3.743 has been estimated by GP using the data in Table I. MP ¼ 1.
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in this case, we get a result in good agreement with the
2018 data reported from the PLANCK survey. Alter-
natively, if during the reconstruction,we use the kernel
givenbyEq. (5), thenweobtain a phantomdark energy
dominated universe, according to the mean of the
reconstruction, while the upper bound of the 1σ
reconstruction yields a value of ωde at z ¼ 0 in good
agreement with the PLANCK 2018 results. In this
regard, this particular case ismore reliable than the one
previously discussed.

(2) As for the upper bound on the SC2 constant c, again
according to the mean of the reconstruction, for
z ∈ ½0; 0.34�, the bound is 0.649. And, according to
the 1σ reconstruction, the upper bound on c for z ∈
½0; 0.42� is 1.167, while 2.61 is the result obtained
from the 3σ reconstruction bands on z ∈ ½0; 0.5�.
This has been obtained with the squared exponent
kernel, Eq. (4) (see the left plot of Fig. 5). Alter-
natively, for the Matern ðν ¼ 9=2Þ kernel, Eq. (5),
we get the upper bounds on c to be 1.129, 1.691, and
2.52, respectively (see the right plot of Fig. 5), in the
three corresponding cases.

Finally, we would like to summarize the results obtained
from the study when we assume that the value of the
Hubble parameter comes from the Planck survey result, i.e.,
H0 ¼ 67.66� 0.42 [9]. The results for the two different
kernel functions can be summarized as follows:
(1) According to the mean of the reconstruction, in the

case of the squared exponent kernel, Eq. (4), the dark
energy dominated universe starts at z ¼ 0.15, while it
does at z ¼ 0.25, according to the upper bound of the
1σ reconstruction, and at z ¼ 0.36, if we take into
account the upper band from the 3σ reconstruction.
However, if the reconstruction is done by using the
Matern ðν ¼ 9=2Þ kernel given by Eq. (5), then the
dark energy dominated universe will be observed

from z ¼ 0.09, z ¼ 0.19, and z ¼ 0.27 for the mean
and for the upper bands of the 1σ and 2σ reconstruc-
tions, respectively. Moreover, at z ¼ 0, we will have
ωde ¼ −1.097, ωde ¼ −0.977, and ωde ¼ −0.872
from the mean and from the upper bands of the 1σ
and 2σ reconstructions, respectively, when the kernel
is given by Eq. (4). On the other hand, when we
consider the kernel given by Eq. (5), for the estima-
tion of ωde at z ¼ 0, we get ωde ¼ −1.15,
ωde ¼ −1.02, and ωde ¼ −0.89, from the mean
and from the upper bands corresponding to
the 1σ and 2σ reconstructions, respectively. In this
case, the following constraints at z ¼ 0: ωde ¼
−1.097þ0.12þ0.225

−0.133−0.28 and ωde ¼ −1.15þ0.13þ0.26
−0.15−0.31 , have

been obtained as a result of the GP reconstruction
for the kernels given by Eqs. (4) and (5), respectively.
In other words, from the estimation of ωde and with
proper 1σ and 2σ errors, the possibility to extract a
value of ωde in a good agreement with the PLANCK
2018 results forωde is clear. This is also an interesting
case indicating that future results obtained from this
model can be trustable.

(2) As for the upper bound on the SC2 constant c for
z ∈ ½0; 0.15�, according to the mean of the reconstruc-
tion, we obtain 0.52. For the 1σ reconstruction, the
upper bound on c for z ∈ ½0; 0.25� is 1.012, and the
value increases considerably to 2.37 from the 3σ
reconstruction bands on z ∈ ½0; 0.36�. These estima-
tions are obtained with the squared exponent kernel,
Eq. (4) (left plot of Fig. 6). Finally, when we use the
Matern ðν ¼ 9=2Þ kernel, Eq. (5), the upper bounds
on c are 0.51, 1.02, and 2.895, respectively (rhs plot
of Fig. 6).

In summary, our analysis here has allowed us to estimate
the upper bound on the constant of SC2 using a GP and
40-point HðzÞ data. This is a fully model-independent

FIG. 5. Reconstruction of the jV 0j=V, Eq. (2), from theHðzÞ data in Table I. The left panel corresponds to the GP reconstruction for the
squared exponent kernel given by Eq. (4), while the rhs plot has been obtained using the kernel to be Matern ðν ¼ 9=2Þ, Eq. (5). The
solid line is the mean of the reconstruction, and the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively.
H0 ¼ 73.52� 1.62 has been used according to the Hubble mission result [10]. MP ¼ 1.
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estimation, since we do not make any assumption about the
form of the swampland potential, neither assume any
a priori model in order to do the estimation. According
to the discussion presented above, we found that, when
H0 ¼ 67.66� 0.42, according to the Planck results, then
the upper bounds on the SC2 constant are 2.37 and 2.895,
for the squared exponent and Matern ðν ¼ 9=2Þ kernel,
respectively. On the other hand, when H0 ¼ 73.52� 1.62,
then the model-independent estimation of the upper bounds
are found to be 1.167, according to the 1σ reconstruction.
Alternatively, when we use the Matern ðν ¼ 9=2Þ kernel,
Eq. (5), the upper bound moves to 1.691. And, when H0 ¼
71.286� 3.743 is considered, the upper bound on SC2 is
at 0.785. Furthermore, according to the 1σ reconstruction
the upper bound on c reads 1.786 (for the squared kernel
function). However, when we use the Matern ðν ¼ 9=2Þ
kernel, Eq. (5), then the upper bounds on c are 1.051 and
1.886, respectively.
The above estimations of the upper bound of the constant

c of SC2, Eq. (2), prove the possibility to have different
upper bounds depending on the kernel function considered,
and on the precise, present value of the Hubble para-
meter. This is a very interesting result, which nontrivially
complements the upper bounds reported by other (model-
dependent) studies in the recent literature. In particular, our
results are perfectly consistent with the results reported in
[59]. But, on the other hand, we see that, in a model-
independent analysis as the one performed here, we can
even reach upper bounds behind these, what had been
advanced as a feasible possibility in previous studies. Our
results here clearly indicate that each detail concerning the
way the fit is performed, the background dynamics in
model-to-model comparison methods adopted in previous
studies, including the priors and used data sets, can
significantly affect the final values obtained for the upper

bounds on c. Moreover, with the GP estimation of the upper
bound on c adopted here, in order to reject or recover the
status of EFT theories, one still requires additional analysis
considering other data sets and kernels with different priors
on the hyperparameters. The study here performed should
be viewed as just a first (albeit already fruitful) attempt to
use GP methods to study swampland criteria for the dark
energy dominated universe. We have also imposed con-
straints on ωde in a model-independent way and proven that
it is possible to obtain the present state of the Universe at
z ¼ 0 with a dark energy having an EoS parameter in good
agreement with the PLANCK 2018 data run. Anyway,
since constraining the EoS parameter for dark energy was
not the preliminary goal of this paper, we leave a more
detailed analysis of this issue and its comparison with other
studies for future investigation.

V. DISCUSSION

In this paper, we have used GP techniques in order to
investigate the implications of the string swampland criteria
for a scalar-field dark-energy dominated universe, without
assuming any prior specific form for the field potential.
In other words, we have considered GR, with a standard
matter field in the presence of a quintessence field, ϕ,
without fixing the field potential, to be the effective field
theory. Our study consists in a fully model-independent
analysis: we invoke GP to reconstruct the form of the
potential from HðzÞ data and estimate at the same time the
upper bound on the constant c of SC2. The 40-points HðzÞ
data used in the process consist of 30-point samples coming
from the differential age method and additional 10-point
samples obtained from the radial BAO method.
The upper bounds on the second swampland criteria

(jV 0j=V) have been estimated both for the squared exponent

FIG. 6. Reconstruction of jV 0j=V, Eq. (2), from the HðzÞ data in Table I. The left panel corresponds to the GP reconstruction for the
squared exponent kernel given by Eq. (4), while the right plot is for the Matern ðν ¼ 9=2Þ kernel, Eq. (5). The solid line depicts the mean
of the reconstruction and the shaded blue regions are the 68% and 95% C.L. bands of the reconstruction, respectively. The value
H0 ¼ 67.66� 0.42 has been used, in accordance with the latest Planck survey results [9]. MP ¼ 1.
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and Matern (ν ¼ 9=2) kernels, for three different values of
H0 in each case. Specifically, in one case, we have made
use of the GP working with the HðzÞ data sample to
estimate the value of H0, while in the other two situations,
we have considered values of H0 compatible with those
reported by the Planck and Hubble missions, i.e.,
H0 ¼ 67.66� 0.42, and H0 ¼ 73.52� 1.62, respectively.
After some algebra, we have found that in the absence of a
coupling between the scalar field’s dark energy and dark
matter, we can express SC2, Eq. (2), in terms of H and H0,
which are reconstructed by means of the GP. After
establishing a proper mathematical background, we were
able to estimate the upper bounds on SC2, for each case, in
a completely model-independent way. It is obvious that this
approach is quite different from previous model-to-model
comparisons; however, the estimations do heavily depend
on the quality of the data used for the reconstruction.
Eventually, estimations also rely on the kernel used, which
not only controls the mean value of the reconstruction, but
also the error bars of the same and the reconstruction of the
derivatives of the H parameter as well. We should stress
once more that previous estimations of the upper bounds on
the constant of SC2 were based on methods involving
model-to-model comparison, while here we have merely
used a kernel and performed the estimation from the best
observational data available.
In parallel to the reconstruction of SC2 and in order to

estimate the upper bounds on its value, we have also
reconstructed Ωde, ωde and could estimate at which red-
shifts the dark energy dominated universe can be observed,
in order to address the SC2 estimation. In particular, we
have concluded that when we involve the GP alone to
estimate the Hubble parameter value at z ¼ 0 (found to be
H0 ¼ 71.286� 3.743), then according to the mean value
of the reconstruction, in the case of the squared exponent
kernel, the dark energy dominated universe starts at
z ¼ 0.27. On the other hand, the dark energy dominated
universe will start at z ¼ 0.37, when the upper bound of
the 1σ reconstruction is used. Finally, in the case we take
into account the upper band corresponding to the 3σ
reconstruction, we get a dark-energy dominated universe
from z ¼ 0.5 onward.
A similar picture has been obtained as a result of the

reconstruction procedure, when we have used the Matern
ðν ¼ 9=2Þ kernel given by Eq. (5). The reconstruction of
Ωϕ ¼ ρϕ=3H2 shows that the model should be rejected
above z ¼ 1.9, since the mean of the reconstruction
predicts a negative Ωϕ. Eventually, we were also able to
estimate Ωϕ at z ¼ 0, yielding Ωϕ ¼ 0.7þ0.05þ0.08

−0.05−0.11 , accord-
ing to the mean and 1σ and 2σ results for the reconstruction
bands, respectively. The above analysis yields the follow-
ing results for the squared kernel function: according to the
mean of the reconstruction, the upper bound on the SC2 is
0.785; for the 1σ reconstruction, the upper bound on c is
1.786, while for the 3σ reconstruction, we get 4.363 as

upper bound for c. Alternatively, when we used the Matern
ðν ¼ 9=2Þ kernel, Eq. (5), we obtained that the upper
bounds on c turn out to be 1.051, 1.886, and 4.926,
respectively. Surprisingly, in both situations, higher upper
bounds have been obtained for the 3σ reconstruction
bounds, in which case Ωϕ ¼ 0.782, for both kernel func-
tions. Therefore, the most reliable outcome, in the form of
an upper bound for the c constant of SC2 appears to be
1.786 and 1.886, obtained from the 2σ reconstruction
bounds for the two kernels, respectively.
In addition, consideringH0 ¼ 73.52� 1.62 and estimat-

ing Ωϕ at z ¼ 0, we are led to Ωϕ ¼ 0.74, for the upper
bound of the 3σ reconstruction. Again, in this case,
similarly to the first case discussed above, we better trust
the results obtained from the mean and 1σ reconstruction
bands. In this regard, according to the mean value of the
reconstruction, the upper bound lies at 0.649, while it rises
to 1.167, according to the 1σ reconstruction. Alternatively,
when using the Matern ðν ¼ 9=2Þ kernel, Eq. (5), we
observed that the upper bounds on c turn to be 1.129
and 1.691, for the mean and 2σ reconstruction bands,
respectively.
Finally, the analysis of the case when H0 ¼ 67.66�

0.42 has been performed. It reveals that, as more reliable
upper bounds on the constant of SC2, those obtained from
1σ and 2σ reconstructions should be taken, because only
for them can one obtain results for Ωϕ and ωϕ that are
consistent with the results reported by other studies. In this
case, for the upper bound for SC2, we get 1.012 and 2.37,
when the squared exponent kernel is considered. If we start
from the Matern ðν ¼ 9=2Þ kernel, the consistent back-
ground dynamics can be observed when using the 1σ and
2σ reconstruction upper bands, namely 1.02 and 2.895,
respectively.
As argued above, the dS solution seems to be in the

swampland, what would rule outΛCDM in the future of the
universe and maybe start to generate some tensions at
present. More specifically, it has been argued in [88] that
HðzÞ ought to have a turning point at some low value of z,
but the results of our analysis do not seem to show such
implication. It appears as if, at the level of our present
research, the swampland conjecture could be disproven.
However, it would not be reasonable to adventure such a
result with only one case considered; a more rigorous
analysis using different data sets when involving the GP
must be undertaken in order to be able to reach such a sharp
and important conclusion. We expect to return to this
relevant point soon, by increasing the accuracy of our
analysis.
To summarize, our model-independent estimations for

SC2 are in good agreement with the results reported in [59]
for the dark energy dominated universe. However, we have
noticed the possibility to get higher upper bounds on the
SC2 constant, never reported before. This probably could
be achieved directly, by using appropriate forms for the

EMILIO ELIZALDE and MARTIROS KHURSHUDYAN PHYS. REV. D 99, 103533 (2019)

103533-12



interaction term between the scalar field and dark matter.
This may be, of course, a hard task to perform, since there
are various possible forms for the interaction term and
checking any of them is a very time-consuming process. In
this regard, using GP techniques can again be very useful.
The study reported here indicates that every detail, con-
cerning the way the fit was performed, and the background
dynamics in the model-to-model comparison method
adopted in previous studies, including the priors and data
sets used, can significantly affect the results on the upper
bounds of c. Within the adopted GP estimation method of
the upper bound on c, in order to be able to either reject or
recover the status of EFT theories, additional analysis is
still required, starting with the consideration of other data
sets and kernels with different priors for the hyperpara-
meters. Our study, as reported here, is to be pondered as a

first, albeit already revealing, attempt to show the benefits
of using GP techniques in the study of swampland criteria
for the dark-energy dominated universe.
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