
 

Probing redshift-space distortions with phase correlations

Felipe O. Franco,1 Camille Bonvin,1 Danail Obreschkow,2,3 Kamran Ali,2,3 and Joyce Byun1
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Redshift-space distortions are a sensitive probe of the growth of large-scale structure. In the linear
regime, redshift-space distortions are fully described by the multipoles of the two-point correlation
function. In the nonlinear regime, however, higher-order statistics are needed to capture the full information
of the galaxy density field. In this paper, we show that the redshift-space line correlation function—which is
a measure of Fourier phase correlations—is sensitive to the nonlinear growth of the density and velocity
fields and to the nonlinear mapping between real and redshift space. We expand the line correlation
function in multipoles, and we show that almost all of the information is encoded in the monopole,
quadrupole, and hexadecapole. We argue that these multipoles are highly complementary to the multipoles
of the two-point correlation function: first, because they are directly sensitive to the difference between the
density and the velocity coupling kernels, which is a purely nonlinear quantity; and second, because the
multipoles are proportional to different combinations of f and σ8. Measured in conjunction with the two-
point correlation function and the bispectrum, the multipoles of the line correlation function could therefore
allow us to disentangle efficiently these two quantities and to test modified theories of gravity.
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I. INTRODUCTION

Cosmological galaxy redshift surveys, like the 6dF
Galaxy Redshift Survey [1], Sloan Digital Sky Survey
[2], WiggleZ survey [3], VIPERS survey [4], or BOSS
survey [5], map the distribution of galaxies in redshift space.
Since the redshift of galaxies is affected by their peculiar
velocity, the observed galaxy distribution is slightly dis-
torted with respect to the real-space galaxy distribution. In
the linear regime, these redshift-space distortionsmodify the
two-point correlation function and the power spectrum, by
adding a quadrupole and an hexadecapole modulation in the
signal [6,7]. Measuring these multipoles has been one of the
main goals of recent redshift galaxy surveys; see, e.g., [8].
These measurements have been very successful and have
provided constraints on modified theories of gravity [9].
Redshift-space distortions are indeed highly sensitive to the
growth rate of perturbation f, which is generallymodified in
alternative theories of gravity.
In the nonlinear regime, the multipoles of the correlation

function do however not fully trace the information present
in galaxy surveys. The nonlinear gravitational evolution of
the density and peculiar velocity generates indeed a flow of
information into higher-order statistics. An obvious choice
to capture this flow of information is to look at the three-
point correlation function (or Fourier-space bispectrum);
see, e.g., [10–12] and Refs. therein. However, this estimator

is a three-dimensional function with significant redundan-
cies with itself and the two-point statistics, making its
computation and information analysis a complex task.
Various alternative observables have been constructed in

order to access information in the nonlinear regime; see, e.g.,
[13–16]. The goal of such observables is twofold: first, part
of the information present in the bispectrum has already
beenmeasured in the power spectrum. One can then wonder
if it is possible to construct an observable which is less
redundant with the power spectrum. And second, since the
bispectrum is complicated in redshift space, it would be
interesting to construct an estimator which encodes the same
type of information, but which is simpler to model.
In this paper, we study one possible alternative: the line

correlation function. The line correlation function has been
introduced in [17] and analytically modeled in real space in
[18]. This observable is constructed from correlations
between the phases of the density field. Since the two-
point function is only sensitive to the amplitude of the
density field, it seems promising to use in conjunction an
observable which is targeted to measure the phases (see
[19–33] for other observables based on phase correlations).
Fisher forecasts in real space have shown that combining
the line correlation function with the two-point correlation
function does indeed improve parameter constraints on
ΛCDM cosmology by up to a factor of 2 [34,35]. The gain
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obtained from the line correlation function in the case of a
warm dark matter model or alternative theories of gravity,
like the symmetron and fðRÞ model is even stronger [36].
Here we derive an expression for the line correlation

function in redshift space. We show that the line correlation
function can be expanded in Legendre polynomials and that
almost all of the information is encoded in the first even
three multipoles, i.e., the monopole, quadrupole, and
hexadecapole, similarly to the two-point correlation func-
tion. These multipoles are sensitive to the nonlinear
coupling kernels of the density and of the peculiar velocity.
As such, the line correlation function provides a simple way
to probe the nonlinear evolution in redshift space and
consequently, to constrain alternative theories of gravity in
the nonlinear regime, for example, at the scales where
screening mechanisms start to act. Note that our approach
differs and complements the work of [37], which studies a
modified version of the line correlation function (using an
anisotropic window function) and is targeted to measure an
anisotropic signal in two-dimensional Zel’dovich mock
density fields.
Let us mention that throughout this paper we will use

second-order perturbation theory to model redshift-space
distortions. Studies of the bispectrum have shown that this
approach does not fully account for nonlinearities in
redshift space. Various models have been developed over
the years to provide a more accurate description of redshift-
space distortions, either by improving on perturbation
theory [10,38,39] or by building effective coupling kernels
based on numerical simulations [12]. In particular, these
models are able to describe the Fingers of God, which are
not accounted for at second order in perturbation theory.
However, since it is not clear which of these models is more
adapted to describe phase correlations, we start by using
only second-order perturbation theory. Our modeling
should therefore be regarded as a first step towards an
accurate description of phase correlations in redshift space.
In a future work, we will compare our modeling with
measurements of the line correlation function in numerical
simulations, in order to improve the description of redshift-
space distortions in the strongly nonlinear regime.
The remainder of the paper is organized as follows. In

Sec. II, we derive an expression for the line correlation
function in redshift space, at second order in perturbation
theory. In Sec. III, we expand the line correlation function
in Legendre polynomials. We derive a general expression
valid for any multipole n. In Sec. IV, we calculate numeri-
cally the first multipoles in aΛCDM universe, and we show
that the multipoles larger than n ¼ 4 are negligible. We
conclude in Sec. V.

II. THE LINE CORRELATION FUNCTION OF THE
OBSERVED NUMBER COUNTS

Galaxy surveys measure the overdensity of galaxies in
redshift space,

Δðn; zÞ ¼ Nðn; zÞ − N̄ðzÞ
N̄ðzÞ ; ð1Þ

where Nðn; zÞ denotes the number of galaxies detected in a
pixel situated at redshift z and in direction n, and N̄ðzÞ is
the average number of galaxies per pixel at a given redshift.
The Fourier transform of the galaxy overdensity,1 Δðk; zÞ,
is characterized by an amplitude jΔðk; zÞj and a phase

ϵΔðk; zÞ≡ Δðk; zÞ
jΔðk; zÞj : ð2Þ

The line correlation function of Δ is then defined as

lðr;zÞ¼ V3

ð2πÞ9
�
r3

V

�
3=2

hϵΔðs;zÞϵΔðsþr;zÞϵΔðs−r;zÞi

¼ V3

ð2πÞ9
�
r3

V

�
3=2Z Z Z

jk1 j;jk2 j;jk3 j≤2π=r

d3k1d3k2d3k3eiðk1þk2þk3Þ·s

×eiðk2−k3Þ·rhϵΔðk1;zÞϵΔðk2;zÞϵΔðk3;zÞi; ð3Þ

where ϵΔðs; zÞ is the inverse Fourier transform of ϵΔðk; zÞ.
As discussed in [17], the cutoff at high k has been
introduced to avoid the divergence of the line correlation
function due to an infinite number of phase factors at
arbitrarily small scales, which do not carry any information.
We start by calculating the three-point correlation

function of the phase of Δðk; zÞ. For this, we need a
description of the galaxy number count valid at second
order in perturbation theory. At first order in perturbation
theory, we have the standard Kaiser expression,

Δð1Þðn; zÞ ¼ b1δð1Þ −
1

H
∂χðvð1Þ · nÞ; ð4Þ

where H ¼ ðda=dηÞ=a is the Hubble parameter in con-
formal time η, b1 is the linear bias, δ is the matter density
field, v is the peculiar velocity of galaxy, and ∂χ denotes
radial derivative (χ being the conformal distance). The
second term in Eq. (4) represents the contribution from
redshift-space distortions. Note that Δ contains various
other contributions, namely relativistic effects and lensing
effects [40–42], but we neglect these terms here since we
are mainly interested in small scales and low redshifts,
where they are expected to be subdominant.
At second order in perturbation theory, we can identify

two types of contributions: first, the contribution coming
from the nonlinear gravitational evolution of the density
and peculiar velocity field. We call this contribution the
intrinsic contribution, Δð2Þ

int , because it is due to the fact that

1We use the Fourier convention fðxÞ ¼ R
d3keix·kfðkÞ and

fðkÞ ¼ R
d3x
ð2πÞ3 e

−ix·kfðxÞ.

FRANCO, BONVIN, OBRESCHKOW, ALI, and BYUN PHYS. REV. D 99, 103530 (2019)

103530-2



the density, velocity, and bias are intrinsically nonlinear
quantities,

Δð2Þ
int ðn;zÞ¼ b1δð2Þ−

1

H
∂χðvð2Þ ·nÞ

þb2
2
½ðδð1ÞÞ2− hðδð1ÞÞ2i�þbs2

2
½s2− hs2i�; ð5Þ

where s denotes the tidal tensor [43].
In addition, at second order, we have contributions

coming from the fact that the mapping between real
space and redshift space is itself nonlinear. We call these
contributions Δð2Þ

map. A detailed derivation is given in
Appendix A, following [44]. The result is

Δð2Þ
mapðn; zÞ ¼ −

b1
H

δð1Þ∂χðvð1Þ · nÞ −
b1
H

∂χδ
ð1Þðvð1Þ · nÞ

þ 1

H2
∂χ ½∂χðvð1Þ · nÞðvð1Þ · nÞ�: ð6Þ

Note that besides these dominant contributions, many other
terms contribute to Δmap at second order, due to lensing and
relativistic effects [45–47]. But again we neglect them here
since they are expected to become relevant on larger scales
and higher redshifts.
Since Δ is expressed in terms of the observed coordi-

nates xobs ¼ χðzÞn, where χ is the comoving distance
evaluated at the observed redshift z, we can consistently
Fourier transform it,

Δðk; zÞ ¼ 1

ð2πÞ3
Z

d3xobse−ik·xobsΔðxobs; zÞ: ð7Þ

At first order in perturbation theory, we obtain

Δð1Þðk; zÞ ¼ b1δð1Þðk; zÞ −
1

H
ðk̂ · nÞ2Vð1Þðk; zÞ;

¼ ðb1 þ fμ2Þδð1Þðk; zÞ; ð8Þ

where V is related to the Fourier transform of v by

vðk; zÞ ¼ −i
k̂
k
Vðk; zÞ ð9Þ

and μ ¼ k̂ · n. In the second line of (8), we have used the
continuity equation at linear order to relate the velocity to
the density, and we define the growth rate as

f ¼ d lnD1

d ln a
; ð10Þ

where D1 is the linear growth function.
At second order in perturbation theory, the density field

δð2Þ and the velocity field Vð2Þ take the form,

δð2Þðk; zÞ ¼
Z

d3q1

Z
d3q2δDðk − q1 − q2Þ

× F2ðq1;q2Þδð1Þðq1; zÞδð1Þðq2; zÞ; ð11Þ

Vð2Þðk; zÞ ¼ −HðzÞfðzÞ
Z

d3q1

Z
d3q2δDðk − q1 − q2Þ

×G2ðq1;q2Þδð1Þðq1; zÞδð1Þðq2; zÞ; ð12Þ
where the nonlinear kernels are given by [48,49]

F2ðk1;k2Þ ¼
1þ ϵF

2
þ k̂1 · k̂2

2

�
k1
k2

þ k2
k1

�

þ 1 − ϵF
2

ðk̂1 · k̂2Þ2; ð13Þ

G2ðk1;k2Þ ¼ ϵG þ k̂1 · k̂2

2

�
k1
k2

þ k2
k1

�
þ ð1 − ϵGÞðk̂1 · k̂2Þ2; ð14Þ

with ϵF≃ð3=7ÞΩmðzÞ−1=143 and ϵG¼ϵFþð3=2ÞðϵF−3=7Þ.
The kernels depend therefore very mildly on z through ϵF
and ϵG.
With this, the intrinsic part becomes at second order

Δð2Þ
int ðk;zÞ¼

Z
d3q1

Z
d3q2δDðk−q1−q2Þ

×

�
b1F2ðq1;q2Þþ

b2
2
þbs2

2
S2ðq1;q2Þ

þfμ2G2ðq1;q2Þ
�
δð1Þðq1;zÞδð1Þðq2;zÞ; ð15Þ

where μ ¼ k̂ · n and S2ðq1;q2Þ ¼ ðq̂1 · q̂2Þ2 − 1=3.
Finally, themapping part at second order can bewritten as

Δð2Þ
mapðk; zÞ ¼

Z
d3q1

Z
d3q2δDðk − q1 − q2Þ

×
fμk
2

�
μ1
q1

ðb1 þ fμ22Þ þ
μ2
q2

ðb1 þ fμ21Þ
�

× δð1Þðq1; zÞδð1Þðq2; zÞ; ð16Þ
where μi ¼ q̂i · n, i ¼ 1, 2. Note that the mapping term is
often computed in a different way. Instead of writing Δ as a
function of the observed coordinate xobs as we did here and
then Fourier transform it, one can express Δ in terms of the
unperturbed coordinatex and then expand the exponential in
the Fourier transform around x (see Appendix A for more
detail). This procedure gives rise to the same expression for

Δð2Þ
mapðk; zÞ. Note that this term is sometimes defined as part

of the Finger of God contribution, since it arises from the
exponential in the Fourier transform. We reserve however
this name for the damping due to the random motion of
galaxies at small scales (see, e.g., [10,50]), which we do not
include in our derivation, since it is not captured by second-
order perturbation theory.
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We now compute the three-point correlation function of
the phase of Δðk; zÞ, which enters in Eq. (3). We have

hϵΔðk1ÞϵΔðk2ÞϵΔðk3Þi ¼
Z

½dθ�P½θ�ϵΔðk1ÞϵΔðk2ÞϵΔðk3Þ;

ð17Þ

where P½θ� is the probability distribution function of the
field θðkÞ defined through ϵΔðkÞ ¼ eiθðkÞ. Note that here
we have dropped the dependence in redshift z in the
argument of ϵΔ to ease the notation. Following [18,30],
we start by expressing the probability distribution function
for Δðk; zÞ using the Edgeworth expansion [51–53], which
is valid for mildly non-Gaussian fields,

P½Δ� ¼ NG exp

�
−
1

2

Z
d3k

ΔðkÞΔð−kÞ
PΔðkÞ

��
1þ 1

3!

Z
d3pd3q

BΔðp;q;−p − qÞΔð−pÞΔð−qÞΔðpþ qÞ
PΔðpÞPΔðqÞPΔðpþ qÞ

�
; ð18Þ

where NG is a normalization factor. Here, PΔðkÞ and
BΔðp;q;kÞ are the power spectrum and bispectrum of Δ
defined through

hΔðkÞΔðk0Þi ¼ PΔðkÞδDðkþ k0Þ; ð19Þ

hΔðpÞΔðqÞΔðkÞi ¼ BΔðp;qÞδDðpþ qþ kÞ: ð20Þ

Note that since redshift-space distortions break statistical
isotropy, PΔðkÞ depends not only on the modulus of k but
also on its orientation with respect to the direction of
observation n. Similarly, the bispectrum depends not only
on the shape of the triangle but also on its orientation.
Following the derivation in [18], we first discretize the

field ΔðkÞ → Δk for a finite survey volume, and then we
integrate over the amplitude jΔkj to obtain the probability
distribution function of the phase,

PðfθkgÞ
Y
k∈uhs

dθk ¼
�
1þ

ffiffiffi
π

p
6

X
p∈uhs

bΔðp;pÞ cosð2θp − θ2pÞ þ
1

3

� ffiffiffi
π

p
2

�
3 X
p≠q∈uhs

½bΔðp;qÞ cosðθp þ θq − θpþqÞ

þ bΔðp;−qÞ cosðθp − θq þ θp−qÞ�
� Y

k∈uhs

dθk
2π

; ð21Þ

where we have defined

bΔðp;qÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r
BΔðp;qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PΔðpÞPΔðqÞPΔðkÞ
p : ð22Þ

Inserting Eq. (21) into (17), we obtain in the continuous limit,

hϵΔðk1ÞϵΔðk2ÞϵΔðk3Þi ¼
ð2πÞ3
V

� ffiffiffi
π

p
2

�
3

bΔðk1;k2;k3ÞδDðk1 þ k2 þ k3Þ: ð23Þ

At second order in perturbation theory, we have

bΔðk1;k2;k3Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r "
W2ðk1;k2;k3;nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðk1; zÞPLðk2; zÞ

PLðk3; zÞ

s
þ cyc

#
; ð24Þ

where PL denotes the linear power spectrum of δ at redshift z and

W2ðk1;k2;k3;nÞ ¼ Wint
2 ðk1;k2;k3;nÞ þWmap

2 ðk1;k2;k3;nÞ: ð25Þ

The intrinsic and mapping kernels read

Wint
2 ¼ 1

b1 þ μ23f
×

�
b1F2ðk1;k2Þ þ

b2
2
þ bs2

2
S2ðk1;k2Þ þ μ23fG2ðk1;k2Þ

�
; ð26Þ
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Wmap
2 ¼−

fμ3k3½μ1k1 ðb1þfμ22Þþ μ2
k2
ðb1þfμ21Þ�

2ðb1þμ23fÞ
; ð27Þ

with μi ¼ k̂i · n for i ¼ 1, 2, 3.
We see that the phase correlation of the observed number

count Δ is sensitive to the nonlinear coupling kernel of the
density field F2, to the nonlinear coupling kernel of the

velocity field G2, and to the growth rate f. Since redshift-
space distortions are not isotropic, the phase correlations
depend on the direction of observation n. Note that here we
work in the distant-observer approximation, where n is the
same for all galaxies.
The line correlation function is obtained by inserting (24)

and (23) into (3). We get

lðr; zÞ ¼ r9=2

8
ffiffiffi
2

p ð2πÞ3
Z Z
jk1 j;jk2 j;jk1þk2 j≤2π=r

d3k1d3k2W2ð−k1 − k2;k1;k2;nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1 þ k2j; zÞPLðk1; zÞ

PLðk2; zÞ

s

× ½eiðk1−k2Þ·r þ eiðk1þ2k2Þ·r þ e−ið2k1þk2Þ·r�: ð28Þ

Here, we have used the Dirac Delta function to rewrite the
three permutations in (24) with the same kernel W2 multi-
plied by three different exponentials. In this way, the kernel
W2 depends on the directionof observationn only through its
scalar product withk2.Wewill see that this property is useful
to solve analytically some of the integrals in (28).
Since redshift-space distortions break isotropy, the line

correlation function depends not only on the modulus of the
separation r ¼ jrj, but also on the orientation of the vector r
with respect to the line-of-sight: cosα ¼ r̂ · n, as depicted
in Fig. 1. In the rest of this paper, we will study the
dependence of the line correlation function on α. Note that
in the case where f ¼ 0, Eq. (28) is equivalent to the
expression derived in [18].

III. MULTIPOLE EXPANSION OF THE LINE
CORRELATION FUNCTION

In redshift space, the two-point correlation function of Δ
can be written as the sum of a monopole, quadrupole, and

hexadecapole in the angle α. At linear order in perturbation
theory and using the distant-observer approximation, one
can show that these three multipoles encode all the infor-
mation present in the two-point correlation function [7].
Contrary to the two-point correlation function, the line

correlation function cannot be simply expressed as a sum of
the first three evenLegendre polynomials only.However,we
will see that the contribution from the multipoles larger than
n ¼ 4 is actually negligible so that most of the information
about redshift-space distortions is indeed encoded in the
monopole, quadrupole, and hexadecapole of l.
Since the Legendre polynomials form a basis, we can

expand the line correlation function as

lðr; α; zÞ ¼
X∞
n¼0

Qnðr; zÞLnðcos αÞ; ð29Þ

where cos α ¼ r̂ · n and Ln denotes the Legendre poly-
nomial of order n. The multipole of order n can be
measured by weighting the line correlation function by
the appropriate Legendre polynomial,

Qnðr; zÞ ¼
2nþ 1

2

Z
1

−1
dμlðr; μ; zÞLnðμÞ; ð30Þ

where μ ¼ cos α.
To calculate explicitly Qn, we insert Eq. (28) into (29)

and we expand the exponentials in (28) and the Legendre
polynomial in (29) in terms of spherical harmonics,

eik·r ¼ 4π
X∞
n¼0

Xn
m¼−n

injnðkrÞY�
nmðk̂ÞYnmðr̂Þ; ð31Þ

LnðμÞ ¼
4π

2nþ 1

Xn
m¼−n

YnmðnÞY�
nmðr̂Þ: ð32Þ

We obtain

Observer

FIG. 1. Representation of the coordinate system used to express
the line correlation function: r ¼ jrj denotes the separation
between galaxies, and cos α ¼ r̂ · n is the orientation of the line
with respect to the direction of observation n. We work in the
distant-observer approximation, in which n is the same for all
galaxies.
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Qnðr;zÞ¼
r9=2

8
ffiffiffi
2

p ð2πÞ3 8π
2
Xn
m¼−n

X∞
n0¼0

Xn0
m0¼−n0

in
0
Z

1

−1
dμY�

nmðr̂ÞYn0m0 ðr̂ÞYnmðnÞ
Z Z
jk1 j;jk2 j;jk1þk2 j≤2π=r

d3k1d3k2

×W2ð−k1−k2;k1;k2;nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1þk2j;zÞPLðk1;zÞ

PLðk2;zÞ

s
½jn0 ðκ1rÞY�

n0m0 ðκ̂1Þþ jn0 ðκ2rÞY�
n0m0 ðκ̂2Þþ jn0 ðκ3rÞY�

n0m0 ðκ̂3Þ�;

ð33Þ

where

κ1 ≡ k1 − k2; ð34Þ

κ2 ≡ k1 þ 2k2; ð35Þ

κ3 ≡ −2k1 − k2: ð36Þ

Since in the distant-observer approximation, the direction
of observation n is fixed for all galaxies, we can choose n
on the ẑ axis without loss of generality. The integral over μ
in Eq. (33) becomes then an integral over the direction of r,
which can be performed and gives rise to δnn0δmm0 .
Combining the remaining spherical harmonics into Legen-
dre polynomials, we obtain

Qnðr; zÞ ¼
r9=2ð2nþ 1Þ
8

ffiffiffi
2

p ð2πÞ3 in
Z Z
jk1 j;jk2 j;jk1þk2 j≤2π=r

d3k1d3k2W2ð−k1 − k2;k1;k2;nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1 þ k2j; zÞPLðk1; zÞ

PLðk2; zÞ

s

× ½jnðκ1rÞLnðκ̂1 · nÞ þ jnðκ2rÞLnðκ̂2 · nÞ þ jnðκ3rÞLnðκ̂3 · nÞ�: ð37Þ

Equation (37) contains a six-dimensional integral. We now
show how to reduce it to a three-dimensional integral that
we can compute numerically.

A. Multipoles due to the intrinsic contribution

We start by calculating the multipoles generated by the
intrinsic kernel (26). Let us denote by ðθ1;ϕ1Þ and ðθ2;ϕ2Þ
the angular coordinates of k1 and k2. Since we have fixed
the direction of observation n on the ẑ axis, we have
k̂2 · n ¼ cos θ2. We first do a change of variables from
fθ1;ϕ1; θ2;ϕ2g → fγ;φ; θ2;ϕ2g, where cos γ ¼ k̂1 · k̂2

and φ is the azimuthal angle of k1 around k2; see
Fig. 2. The Jacobian of this transformation is 1, since it
is a rotation. In Eq. (37), the only quantities that depend on
φ and ϕ2 are the Legendre polynomials. We have

κ̂1 ·n¼−k1 sinγ sinθ2 cosðφ−ϕ2Þþðk1 cosγ−k2Þcosθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21þk22−2k1k2 cosγ

p ;

κ̂2 ·n¼−k1 sinγ sinθ2 cosðφ−ϕ2Þþðk1 cosγþ2k2Þcosθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21þ4k22þ4k1k2 cosγ

p ;

κ̂3 ·n¼ 2k1 sinγ sinθ2 cosðφ−ϕ2Þ− ð2k1 cosγþk2Þcosθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k21þk22þ4k1k2 cosγ

p :

For any value of n, the integral over ϕ2 and φ can be done
analytically, since the Legendre polynomials can always be

expressed as a series of cosines. For odd n’s, we find that
the integrals vanish, as expected due to the symmetry of the
line correlation function. We present here the derivation and
explicit expression for the monopole n ¼ 0, the quadrupole
n ¼ 2 and the hexadecapole n ¼ 4. In Appendix B, we
derive a general expression valid for any n.

1. The monopole of the intrinsic contribution

For the monopole, the integral over ϕ2 and φ in Eq. (37)
trivially gives 4π2 since the Legendre polynomials are
constant. The integral over θ2 can then be performed
analytically

FIG. 2. Definition of the angles θ2, γ, and φ used in the
calculation of the multipoles Qn.
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Z
1

−1
dμ2

b1F2þb2=2þbs2S2=2þμ22fG2

b1þμ22f
¼ 2

�
G2þ

�
F2−G2þ

b2
2b1

þ bs2
2b1

S2

�
arctan

ffiffiffi
β

pffiffiffi
β

p
�
; ð38Þ

where μ2 ¼ cos θ2 and

β≡ f
b1

: ð39Þ

The monopole then simply becomes

Qint
0 ðr;zÞ¼ r9=2

8π
ffiffiffi
2

p
Z

2π=r

0

dk1k21

Z
2π=r

0

dk2k22

Z
νcut

−1
dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1þk2j;zÞPLðk1;zÞ

PLðk2;zÞ

s �
F2ð−k1−k2;k1Þ

þ
�
b2
2b1

þ bs2
2b1

S2ð−k1−k2;k1Þ
�
arctan

ffiffiffi
β

pffiffiffi
β

p þðF2−G2Þð−k1−k2;k1Þ
�
arctan

ffiffiffi
β

pffiffiffi
β

p −1

��X3
i¼1

j0ðκirÞ; ð40Þ

where

νcut ¼ minf1;maxf−1; ½ð2π=rÞ2 − k21 − k22�=½2k1k2�gg
enforces the condition jk1 þ k2j ≤ 2π=r. Here, the kernel F2 andG2, and the κi defined in Eqs. (34)–(36) can be expressed
as functions of k1, k2 and ν ¼ cos γ ¼ k̂1 · k̂2 only. Equation (40) contains three integrals that can be computed
numerically.

2. The quadrupole of the intrinsic contribution

To calculate the quadrupole, we first need to integrate the terms in the square bracket in Eq. (37) over ϕ2 and φ. As an
example, let us look at the first term. We haveZ

2π

0

dϕ2

Z
2π

0

dφL2ðκ̂1 · nÞ ¼ ð2πÞ2
�
1 −

3

2

k21ð1 − ν2Þ
κ21

�
L2ðcos θ2Þ: ð41Þ

As for the monopole, the integral over θ2 can then be performed analytically

Z
1

−1
dμ2

b1F2þb2=2þbs2S2=2þμ22fG2

b1þμ22f
L2ðμ2Þ¼−

�
F2−G2þ

b2
2b1

þ bs2
2b1

S2

�
β−3=2½−3

ffiffiffi
β

p
þðβþ3Þarctan

ffiffiffi
β

p
�: ð42Þ

Similar expressions can be found for the second and third terms in the square bracket of (37). Putting everything together,
we then obtain for the quadrupole,

Qint
2 ðr; zÞ ¼ r9=2

8π
ffiffiffi
2

p
Z

2π=r

0

dk1k21

Z
2π=r

0

dk2k22

Z
νcut

−1
dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1 þ k2j; zÞPLðk1; zÞ

PLðk2; zÞ

s X3
i¼1

j2ðκirÞ
�
1 −

3

2

ρ2i
κ2i

�

×

�
F2 − G2 þ

b2
2b1

þ bs2
2b1

S2

�
ð−k1 − k2;k1Þ

5

2β3=2
ð−3

ffiffiffi
β

p
þ ðβ þ 3Þ arctan

ffiffiffi
β

p
Þ; ð43Þ

where

ρ21 ¼ ρ22 ¼ k21ð1 − ν2Þ and ρ23 ¼ 4ρ21: ð44Þ
Equation (43) contains again three integrals that can be computed numerically.

3. The hexadecapole of the intrinsic contribution

The hexadecapole can be calculated in a very similar way as the quadrupole. The only difference is that the integral over
ϕ2 and φ in Eq. (41) contains Legendre polynomial of degree four instead of two. The resulting integral over μ2 can again
been done analytically, and we find
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Qint
4 ðr;zÞ¼ r9=2

8π
ffiffiffi
2

p
Z

2π=r

0

dk1k21

Z
2π=r

0

dk2k22

Z
νcut

−1
dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1þk2j;zÞPLðk1;zÞ

PLðk2;zÞ

s �
F2−G2þ

b2
2b1

þ bs2
2b1

S2

�
ð−k1−k2;k1Þ

×
9

8β5=2

�
ð3β2þ30βþ35Þarctan

ffiffiffi
β

p
−
�
55

3
βþ35

� ffiffiffi
β

p �X3
i¼1

j4ðκirÞ
�
1−5

ρ2i
κ2i

þ35

8

ρ4i
κ4i

�
: ð45Þ

4. General expression for the multipole Qn of the intrinsic contribution

Following the same steps as for the monopole, quadrupole, and hexadecapole, one can derive a general expression for the
multipole of order n. The detail of the derivation is presented in Appendix B. Here, we only give the final expression,

Qint
2nðr; zÞ ¼

r9=2

8π
ffiffiffi
2

p
Z

2π=r

0

dk1k21

Z
2π=r

0

dk2k22

Z
νcut

−1
dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1 þ k2j; zÞPLðk1; zÞ

PLðk2; zÞ

s

×
4nþ 1

2
i2nL2nðIÞ

X3
i¼1

j2nðκirÞψ2n

�
ρi
κi

�
: ð46Þ

Here,

L2nðIÞ ¼ 22n
Xn
m¼0

�
2n

2m

��
nþm − 1

2

2n

�
I2m; ð47Þ

with

I2m¼ 2

2mþ1

�
G2ð−k1−k2;k1Þþ

�
F2−G2þ

b2
2b1

þ bs2
2b1

S2

�
ð−k1−k2;k1Þ2F 1

�
1;
1

2
þm;

3

2
þm;−β

��
; ð48Þ

where 2F 1 denotes the Gauss hypergeometric function and

ψ2n

�
ρi
κi

�
¼ 2F 1

�
−n; nþ 1

2
; 1;

�
ρi
κi

�
2
�
; ð49Þ

with the ρi defined in Eq. (44).

B. Multipoles due to the mapping contribution

We now calculate the multipoles generated by the mapping kernel Wmap
2 in Eq. (27). We perform the same change of

variables as in Sec. III A: fθ1;ϕ1; θ2;ϕ2g → fγ;φ; θ2;ϕ2g, and we integrate analytically over φ, θ2 and ϕ2. All the
contributions in Eq. (27) can be written as a sum of the following integrals:

Inmm0 ¼ 1

2ð2πÞ2
Z

π

0

dθ2 sin θ2

Z
2π

0

dϕ2

Z
2π

0

dφ
μm1 μ

m0
2

1þ βμ22
Lnðκ̂i · nÞ: ð50Þ

These integrals can be performed analytically. Their expression is given in Appendix C. The multipoles contain then three
remaining integrals over k1, k2, and ν that can be performed numerically. As an example, here we write the expression for
the monopole, but similar expressions can be derived for any multipole,

Qmap
0 ðr; zÞ ¼ r9=2

8π
ffiffiffi
2

p
Z

2π=r

0

dk1k21

Z
2π=r

0

dk2k22

Z
νcut

−1
dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðjk1 þ k2j; zÞPLðk1; zÞ

PLðk2; zÞ

s X3
i¼1

j0ðκirÞ

×

�
f
2

�
k2
k1

−
k1k2
k212

�
I011 −

f
2

k22
k212

I002 þ
βf
2

k22
k212

I022 þ
βf
2

k32
k1k212

I013

�
; ð51Þ

where k12 ≡ jk1 þ k2j.
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IV. RESULTS

We now calculate explicitly the multipoles of the
line correlation function in a ΛCDM universe with para-
meters [54]: Ωm ¼ 0.3089, Ωbh2 ¼ 0.0223, h ¼ 0.6774,
ns ¼ 0.9667, σ8 ¼ 0.8159. We choose as the fiducial value
for the bias b1 ¼ 1, b2 ¼ 0, and bs2 ¼ 0, except for Fig. 5,
where we show explicitly the impact of nonlinear bias on
the multipoles. In Fig. 3, we show the monopole, quadru-
pole, hexadecapole, and tetrahexadecapole (n ¼ 6) at
different redshifts. These multipoles are the sum of the
intrinsic contribution and the mapping contribution. The
monopole decreases with redshift, whereas the quadrupole,
hexadecapole, and tetrahexadecapole have a more compli-
cated behavior. The redshift dependence is governed by the
coupling kernels F2 and G2, by the linear power spectrum,
and by the growth rate f, which enters in a different way in
the different multipoles.
We see that the monopole dominates over the other

multipoles by at least one order of magnitude. Note that the
monopole is always positive, whereas the quadrupole,
hexadecapole, and tetrahexadecapole change sign. The r
dependence of the multipole n is governed by the sum of the
spherical Bessel functions jnðκirÞ, weighted by different k-
and ν-dependent prefactors. It is therefore not surprising
that the multipoles can change sign. This behavior is not
specific to the line correlation function: the monopole of the

two-point correlation function in redshift space does indeed
also change sign at large separation; see, e.g., [55]. Note that,
as mentioned before, our results are obtained using second-
order perturbation theory. At small scales, Fingers of God
are expected to generate non-negligible corrections to the
line correlation function and to change, consequently, its
behavior.
In Fig. 4, we show the relative contribution due to

redshift-space distortions

ΔQn ¼
Qn −Qno rsd

n

Qno rsd
0

; ð52Þ

for n ¼ 0, 2, 4, 6, and 8. Note that Qno rsd
0 is equivalent

to Eq. (30) for lðr; zÞ in [18]. We see that redshift-
space distortions generate a correction of up to 20% in
the monopole, at small separation and high redshift. The
quadrupole is roughly 5% of the monopole and the
hexadecapole 1%. The tetrahexadecapole is always less
than 0.5% of the monopole, apart at high redshift and very
small separation where it reaches 2%. Most of the infor-
mation about redshift-space distortions is therefore cap-
tured by the first three even multipoles.
In Fig. 5, we compare the different contributions to the

multipoles at z ¼ 1. We choose the value b1 ¼ 2.1 for the
linear bias, as measured in [56], and we split the intrinsic
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FIG. 3. Multipoles of the line correlation function, plotted as a function of separation r, for redshift z ¼ 0.1 to z ¼ 2. The monopole is
positive at all separations. The quadrupole, hexadecapole, and tetrahexadecapole change sign.
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contribution into: the redshift-space distortion part gener-
ated by the F2 andG2 kernels (blue line), the nonlinear bias
contribution with b2 ¼ 0.9 (green line) [56], and the
nonlocal bias contribution with bs2 ¼ −4=7ðb1 − 1Þ ¼
−0.63 (yellow line) [43]. The mapping contribution is
shown in red, and for the monopole, we also show
separately the density contribution (purple line). As
expected, the main contribution to the monopole is due
to the density contribution F2, which is intrinsically
isotropic. The nonlocal bias contribution has a shape very
similar to the density contribution, whereas the nonlinear
bias contribution is more relevant at large separation. This
is consistent with the results presented in Fig. 1 of [34] for
the monopole. Comparing the intrinsic redshift-space dis-
tortion contribution (blue line) with the mapping contri-
bution (red line), we see that the former dominates at large
scales, whereas the latter is more important at small scales.
This behavior is even more pronounced for the higher
multipoles (n ¼ 2, 4, and 6), where we see that the mapping
contribution is important mainly below 5 Mpc=h. For these
higher multipoles, contrary to the monopole, the nonlocal
bias contribution is strongly subdominant. This indicates
that this contribution is mainly isotropic. The nonlinear
bias contribution, on the other hand, contributes to all

multipoles, in a very similar way as the intrinsic redshift-
space distortion contribution.
Comparing the amplitude of the density contribution in

the monopole (purple line) with the intrinsic redshift-space
distortions contribution in all multipoles (blue line), we see
that the latter is significantly suppressed with respect to the
former one. This can be understood by looking at the form
of Eqs. (40), (43), and (45), where we see that the intrinsic
redshift-space distortions contribution is always propor-
tional to the difference between the density kernel F2 and
the velocity kernel G2. This follows from the fact that the
correlation between phases in Eq. (23) is proportional to the
weighted bispectrum bΔ ∝ BΔ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PΔPΔPΔ

p
. This weighted

bispectrum probes the difference between the linear relation
between V and δ and the nonlinear relation. If these
relations are the same, then F2 ¼ G2 and the function
Wint

2 defined in Eq. (26) reduces simply to F2 (when
b2 ¼ bs2 ¼ 0). We recover then the expression for the line
correlation function in real space. Hence by measuring the
line correlation function in redshift space, we probe the fact
that the relation between the density δ and the peculiar
velocity V is different at linear and at second order in
perturbation theory. In other words, we probe the difference
between the continuity and Euler equation at linear and
second order in perturbation theory.
As such, the line correlation function is complementary

to the two-point correlation function in redshift space. The
two-point correlation function probes indeed the linear
relation between density and velocity by measuring the
growth rate f. The line correlation function adds informa-
tion since it probes the nonlinear relation between the
density and velocity by measuring the difference F2 −G2.
This clearly shows that phase correlations encode a differ-
ent type of information than the two-point correlation
function. Modified theories of gravity generically modify
both the growth rate f [57–59] and the coupling kernels F2

and G2 [49]. Hence, the line correlation function in redshift
space is expected to be useful to constrain modifications of
gravity.
In Fig. 6, we compare the contribution to the monopole

(40) generated by the kernel F2 only, by the kernel G2, and
by the difference F2 −G2. We see that the difference is
significantly smaller than the individual contributions from
F2 and G2. This explains the suppression of the redshift-
space distortion signal, with respect to the signal in real
space. Note that here we are using second-order perturba-
tion theory, which does not account for the effect of Fingers
of God at small scales. As shown in [11,12,38,39], those
have a strong impact on the bispectrum in the nonlinear
regime. In a future work, we will study the line correlation
function beyond perturbation theory, accounting for the
Fingers of God, to see if they enhance the multipoles.
In Fig. 7, we plot the prefactors for the intrinsic

monopole, quadrupole, and hexadecapole, which depend
on the growth rate β ¼ f=b,
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FIG. 4. Relative contribution due to redshift-space distortions
(52) plotted as a function of separation r, at z ¼ 0.1 (top panel)
and z ¼ 1 (bottom panel). The blue solid line shows the
monopole contribution, the red dotted line the quadrupole
contribution, the black dashed line the hexadecapole contribu-
tion, and the green dot-dashed line the tetrahexadecapole
contribution.
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A2 ¼
5
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ffiffiffi
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p �
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We see that these prefactors evolve slowly with redshift,
showing that the line correlation function is less sensitive
than the two-point correlation function to variations in the
growth rate. We also see that these prefactors are smaller
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FIG. 5. Different contributions to the multipoles of the line correlation function at redshift z ¼ 1.0. We plotted the density contribution
F2 (purple dot-dashed line), redshift-space distortion F2 − G2 (blue dot-dashed line) with linear bias b1 ¼ 2.1, the nonlinear bias
contribution (green dotted line) with b2 ¼ 0.9, the nonlocal bias contribution (yellow solid line) with bs2 ¼ −4=7ðb1 − 1Þ ¼ −0.63, the
mapping contribution (red dashed line) and the total (black solid line).
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FIG. 6. Monopole of the line correlation function (40), at
redshift z ¼ 1, generated by the kernel F2 (blue solid line), G2

(black dashed line), and the difference F2 − G2 (red dotted line).
The contributions from F2 and G2 are negative, while the
difference is positive at small separations and negative at large
separations.
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FIG. 7. Coefficients proportional to the growth rate β ¼ f=b, in
front of the monopole (53) (blue dotted line), quadrupole (54)
(black dashed line), and hexadecapole (55) (red solid line) plotted
as a function of redshift.
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than 1 at all redshift, which also explains why the redshift-
space correction is significantly smaller than the density
contribution.
Note that the different dependence of the multipoles in

the growth rate is very interesting, since it provides a way of
disentangling it from the parameter σ8. The two-point
correlation function measures indeed the combination
fσ8 (see, e.g., [8]). The monopole of the bispectrum has
been shown to measure a different combination, f0.43σ8,
which in combination with the two-point function allows us
to disentangle f and σ8 [56]. Here, we see from Eqs. (40),
(43), and (45) that the multipoles of the line correlation
function are sensitive to yet three other combinations of f
and σ8. Combining these measurements has therefore the
potential to tighten the individual constraints on f and σ8.
In a future work, we will do a detail forecast on the
constraints we expect from the line correlation function on
f, σ8, and the coupling kernels F2 and G2.
Finally, in Fig. 8, we show the relative contribution from

redshift-space distortion as a function of the orientation2 of
the line α and the separation r,

Δlðr; α; zÞ ¼ lðr; α; zÞ − lno rsdðr; zÞ
lno rsdðr; zÞ : ð56Þ

We plot separately the intrinsic contribution (top panels,
with b1 ¼ 1, b2 ¼ 0, and bs2 ¼ 0) and the mapping
contribution (bottom panels). We see that the intrinsic
contribution has the largest impact at small separation and
when the three points are aligned with respect to the
direction of observation (α ¼ 0). In this case, the contri-
bution from redshift-space distortions can reach 17%. This
reflects the fact that redshift-space distortions modify the
apparent radial distance between galaxies but not their
apparent angular separation. As a consequence, it is the
largest when the galaxies are at different radial distances
but in the same direction.
One would then naively expect that in the other extreme,

i.e., when α ¼ π=2, the intrinsic contribution Δlintðr; α; zÞ
would vanish. This corresponds indeed to the case where
the three points are at the same redshift, but in different
directions. From the cyan dashed line in the top left panel of
Fig. 8, we see however that Δlintðr; π=2; zÞ ≠ 0. This can
be understood in the following way: suppose that the three
pixels, which are at the same redshift, are all situated in an
overdense region. As a consequence, the galaxies inside
each pixel are falling toward the center of the pixel. The
pixels in redshift space look therefore denser than they are

FIG. 8. Relative contribution from redshift-space distortion (56) plotted as a function of separation r for fixed values of the orientation
α (left panels) and as a function of the orientation α for fixed separation r (right panels). The plots are at redshift z ¼ 1. The top panels
show the intrinsic contribution, whereas the bottom panels show the mapping contribution.

2Since the multipoles larger than n ¼ 6 are negligible, we can
write the line correlation function as lðr;α;zÞ¼Q0ðr;zÞþ
Q2ðr;zÞL2ðcosαÞþQ4ðr;zÞL4ðcosαÞþQ6ðr;zÞL6ðcosαÞ.
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in real space. Now since the three pixels are situated in the
same overdense region, this effect induces a correlation
between the three pixels. This in turns generates an addi-
tional correlation between the phases of Δint. This effect is
independent of the orientation of r with respect to n. It
simply comes from the fact that correlated density fields
generate correlated velocity fields. Hence, even though at
α ¼ π=2 there is no change in the apparent distance
between the pixels, there is still an effect due to the fact
that the size of each pixel changes in a correlated way. Note
that this effect is not specific to the line correlation function,
but it also exists in the two-point correlation function of
galaxies: the redshift-space two-point correlation function
at α ¼ π=2 is not the same as the real-space two-point
correlation function ξðr; α ¼ π=2Þ ≠ ξno rsdðrÞ.
Finally, from the bottom panels of Fig. 8, we see that the

mapping contribution quickly decreases with separation,
for all orientations. For a fix separation, the dependance in
α is nontrivial, going from a negative contribution when the
three points are aligned with n, to a positive contribution
when the three points are perpendicular to n.

V. CONCLUSIONS

In this paper, we have derived an expression for the line
correlation function in redshift space, which is valid at
second order in perturbation theory. We have expanded the
line correlation function in Legendre polynomials, and we
have derived a generic expression for the multipoles Qn.
We have calculated explicitly the first multipoles in a
ΛCDM universe, and we have found that the monopole,
quadrupole, and hexadecapole encode almost all of the
information in redshift space.
We have shown that the multipoles are sensitive to the

difference F2 − G2, i.e., to the difference between the
nonlinear evolution of the density field and the nonlinear
evolution of the velocity field. As such, the line correlation
function is highly complementary to the two-point corre-
lation function, which is sensitive to the linear growth rate
of the density and velocity fields. This shows that corre-
lations between phases encode different information than
the two-point correlation function. Our expressions for the
multipoles further show that each of them is sensitive to a
different combination of the growth rate f and of σ8.
Combining this with a measurement of the two-point
correlation function, which is sensitive to the product
fσ8, can therefore break the degeneracy between these
two parameters. In a future work, we will forecast how well
this can be achieved with current and future surveys.
Our derivation relies on second-order perturbation

theory. It is however well-known that redshift-space dis-
tortions are not fully described by the second-order
coupling kernel G2 even on mildly nonlinear scales [10–
12,38,39]. In a future work, we will investigate how the
multipoles change if we introduce nonlinear effects, like
Fingers of God. We expect such effects to enhance the

redshift-space distortion signal, since they will increase the
difference F2 −G2.
Finally, let us note that the line correlation function targets

a very particular choice of phase correlations, namely those
that appear along a line, i.e., along filaments. It may be
interesting to investigate other configurations, where the
redshift-space distortions signal may be enhanced with
respect to the real-space signal.
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APPENDIX A: DERIVATION OF Δ AT
SECOND ORDER

The overdensity of galaxies is given by

Δðn;zÞ¼Nðn;zÞ− N̄ðzÞ
N̄ðzÞ ¼ ρgðn;zÞVðn;zÞ− ρ̄gðzÞV̄ðzÞ

ρ̄gðzÞV̄ðzÞ
;

ðA1Þ

where Nðn; zÞ denotes the number of galaxies detected in a
pixel of volume Vðn; zÞ, situated at redshift z, and in
direction n, and ρgðn; zÞ is the energy density of galaxies in
that pixel. Quantities with a bar refer to the average over
directions, at a given redshift. At second order in pertur-
bation theory, we obtain

Δð2Þðn; zÞ ¼ δð2Þg ðn; zÞ þ δVð2Þðn; zÞ
V̄ðzÞ

þ δð1Þg ðn; zÞ δV
ð1Þðn; zÞ
V̄ðzÞ : ðA2Þ

Here, δð2Þg and δVð2Þ are expressed in term of the observed
redshift z. To calculate these quantities, we start from their
expression written as a function of conformal time η, and
we use that a fix η is directly related to a fix background
redshift z̄ ¼ a0

a − 1, where a0 denotes the scale factor today.
We have

Vðn;ηÞ¼Vðn; z̄Þ≃ V̄ðz̄ÞþδVð1Þðn; z̄ÞþδVð2Þðn; z̄Þ

≃ V̄ðzÞ−∂V̄
∂z δzþ

1

2

∂2V̄
∂z2 ðδzÞ

2−
∂δVð1Þ

∂z δzþδVð2Þ;

ðA3Þ

where to obtain the second linewe have used that z̄ ¼ z − δz
and we have Taylor expanded V around z up to second
order. We are interested in the dominant contributions to
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Δð2Þ, i.e., those with the maximum number of radial
derivatives. We can therefore neglect the second and third
term in the second line of (A3). For the fourth term, we
rewrite the derivative with respect to z as a derivative with
respect to the comoving distance coordinate χ ¼ ηO − η, and
we obtain at second order,

δVð2Þ ¼ δVð2Þðn; zÞ − 1

H
∂χδVð1Þ δz

1þ z̄

¼ δVð2Þðn; zÞ − 1

H
∂χδVð1Þðvð1Þ · nÞ; ðA4Þ

where we have used that the dominant contribution to the
redshift perturbation is due to the Doppler effect. The
dominant contribution to the volume perturbation is due
to redshift-space distortions. It reads

δV
V̄

¼ −
1

H
∂χ

�
δz

1þ z̄

�
: ðA5Þ

Doing a similar expansion for δρð2Þg and inserting this into
Eq. (A2), we obtain

Δð2Þðn; zÞ ¼ δð2Þg −
1

H
∂χðvð2Þ · nÞ

−
1

H
δð1Þg ∂χðvð1Þ · nÞ −

1

H
∂χδ

ð1Þ
g ðvð1Þ · nÞ

þ 1

H2
∂χ ½∂χðvð1Þ · nÞðvð1Þ · nÞ�: ðA6Þ

We call the first line the intrinsic contribution, since it
is due to the intrinsic nonlinear evolution of the galaxy
density and peculiar velocity, and the second and third line
the mapping contribution, since it is generated by the
nonlinear mapping between real space and redshift space.
Since Δ is expressed in terms of the observed redshift z and
the direction of the incoming photon n, we can directly
Fourier transform this expression with respect to the
observed coordinate xobs ¼ χðzÞn to obtain Eq. (16).
An alternative way of deriving ΔðkÞ which is often

presented in the literature [10] is to do a change of variable
directly in the Fourier transform. We have

ΔðkÞ ¼ 1

ð2πÞ3
Z

d3xobsΔðxobsÞe−ik·xobs : ðA7Þ

Since the number of galaxies in a given pixel is conserved by
redshift-space distortions,we canwrite ð1þΔðxobsÞÞd3xobs¼
ð1þδgðxÞÞd3x. Using that d3xobs=d3x ¼ ∂χðv · nÞ=H, we
obtain

ΔðxobsÞd3xobs ¼
�
δgðxÞ −

1

H
∂χðv · nÞ

�
d3x: ðA8Þ

Inserting this into (A7) and using that xobs¼xþðv·nÞn=H,
we obtain

e−ik·xobs ¼ e−ik·x−iðv·nÞðk·nÞ=H ðA9Þ

≃e−ik·x
�
1 −

i
H

ðv · nÞðk · nÞ
�

ðA10Þ

and

Δð2ÞðkÞ¼ δð2Þg ðkÞ− 1

H
ðk̂ ·nÞ2Vð2ÞðkÞ

− iðk ·nÞ
Z

d3x
ð2πÞ3 e

−ik·x
�
δð1Þg −

∂χ

H
ðvð1Þ ·nÞ

�
× ðvð1Þ ·nÞ: ðA11Þ

The first line is the intrinsic contribution. For the second line,
we Fourier transform δð1Þ and vð1Þ and we integrate over x.
We obtain then the mapping contribution in Fourier space,
Eq. (16).We see that the two approaches give the same result
in Fourier space.

APPENDIX B: CALCULATION OF THE
INTRINSIC MULTIPOLES Qint

n

In Sec. III, we have performed a multipole expansion for
the line correlation function. All the information of our
statistical measure lðr; zÞ can be encoded in a (infinite)
sum of multipoles Qnðr; zÞ given by (37). Here we show
how three of the six integrals in this expression can be
solved analytically for any order of multipole Qn, namely
the angular integrals θ2, ϕ2, and φ. The multipole Qn
contains an intrinsic and a mapping contribution; here we
present the calculation for the intrinsic contribution Qint

n .
Since only the kernel Wint

2 and the Legendre polynomial
Ln are functions of these angles, the challenge is to solve
the following expression:

Mκi
n ¼

Z
π

0

sin θ2dθ2Wint
2 ð−k1 − k2;k1;k2;nÞ

×
Z

2π

0

dϕ2

Z
2π

0

dφLnðκ̂i · nÞ: ðB1Þ

The kernel Wint
2 is provided by (27) and the vectors κi are

defined in (34)–(36). The angles κ̂i · n can be written as

κ̂i ·n≡ cosθκi ¼
ρi sinθ2 cosðφ−ϕ2Þþϱi cosθ2

κi
; ðB2Þ

where

ρ1 ¼ −k1 sin γ; ϱ1 ¼ k1 cos γ − k2;

ρ2 ¼ −k1 sin γ; ϱ2 ¼ k1 cos γ þ 2k2;

ρ3 ¼ 2k1 sin γ; ϱ3 ¼ −2k1 cos γ − k2; ðB3Þ

with constraint κ2i ¼ ρ2i þ ϱ2i .
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In order to solve the integrals, we express the Legendre
polynomials as

Lnðκ̂i · nÞ ¼ 2n
Xn
m¼0

�
n

m

�� nþm−1
2

n

�
cosmθκi : ðB4Þ

Because of the binomial coefficients, the only terms
that contribute to the sum will be those with the same
parity as n. Using the binomial expansion, cosa θκi can be
rewritten as

cosmθκi ¼ κ−mi
Xm
u¼0

�
m

u

�
ðϱi cos θ2Þm−uðρi sin θ2Þu

× cosuðφ − ϕ2Þ: ðB5Þ

Therefore, the integrals over the axial angles ϕ2 and φ can
be trivially solved, and it yields

Z
2π

0

dϕ2

Z
2π

0

dφcosuðφ − ϕ2Þ

¼ 1þ ð−1Þu
2

ð2πÞ2
� ðu − 1Þ=2

−1=2

�
: ðB6Þ

The integral over θ2 takes the form3

Z
π

0

dθ2 sin θ2
bF2 þ b2=2þ bs2S2=2þ cos2ðθ2ÞfG2

bþ cos2ðθ2Þf
× cosm−uðθ2Þ sinuðθ2Þ: ðB7Þ

These two expressions above reveal an important feature
about the parity of LCF. First, Eq. (C7) tells us that only
even values of u contribute to the sum (C5). Second, due to
the orthogonality of the trigonometric functions, Eq. (B7)
will not vanish if and only if m − u is even, which implies
that m must also be even. Thus, we conclude that in the
multipole expansion (37), only even multipoles contribute
to the sum. This reflects the fact that the line correlation
function is symmetric under the exchange of the three
galaxies on the line.
Thereby, without loss of generality, one can consider a

relabeling: n → 2n,m → 2m, and u → 2u. We can then use

that ϱ2ðm−uÞ
i ¼ ðκ2i − ρ2i Þm−u, so that

κ−2mi ϱ2ðm−uÞ
i ρ2ui ¼

Xm−u

w¼0

�
m − u

w

�
ð−1Þw

�
ρi
κi

�
2ðuþwÞ

: ðB8Þ

In the interval θ2 ∈ ½0; π�, the sine function can be written
as sin θ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðθ2Þ

p
, and consequently,

sin2uðθ2Þ ¼
Xu
v¼0

�
u

v

�
ð−1Þv cos2vðθ2Þ: ðB9Þ

We are now able to solve the integral over θ2, which is of
the form,

Z
1

−1
dμ2

bF2 þ b2=2þ bs2S2=2þ μ22fG2

bþ μ22f
μ2j2

¼ 2

jþ 1

�
G2 þ

�
F2 −G2 þ

b2
2b1

þ bs2
2b1

S2

�

× 2F 1

�
1;
1

2
þ j;

3

2
þ j;−β

��
; ðB10Þ

where in our case j ¼ mþ v − u. Here, 2F 1 denotes the
Gauss hypergeometric function defined by

2F 1ða; b; c; zÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ðB11Þ

where ðaÞn ¼ Γðaþ nÞ=ΓðaÞ is the Pochhammer symbol.
Finally, collecting all these results,Mκi

2n can be written as

Mκi
2n¼2ð2πÞ222n

Xn
m¼0

Xm
u¼0

Xm−u

w¼0

Xu
v¼0

�
2n

2m

��
nþm− 1

2

2n

�

×

�
2m

2u

��
u− 1

2

−1
2

��
m−u

w

��
u

v

�
ð−1Þwþv

�
ρi
κi

�
2ðuþwÞ

×
1

2ðmþv−uÞþ1

�
G2ð−k1−k2;k1Þ

þ
�
F2−G2þ

b2
2b1

þ bs2
2b1

S2

�
ð−k1−k2;k1Þ

× 2F 1

�
1;
1

2
þmþv−u;

3

2
þmþv−u;−β

��
:

ðB12Þ

This expression can be further simplified through a long
algebraic manipulation and indices relabeling, and we
obtain

Mκi
2n ¼ ð2πÞ2L2nðIÞψ2n

�
ρi
κi

�
; ðB13Þ

where

L2nðIÞ ¼ 22n
Xn
m¼0

�
2n

2m

��
nþm − 1

2

2n

�
I2m ðB14Þ

with
3To simplify the notation, we drop the argument in F2, Ss and

G2 which are both functions of ð−k1 − k2;k1Þ.
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I2m ¼ 2

2mþ 1

�
G2ð−k1 − k2;k1Þ

þ
�
F2 −G2 þ

b2
2b1

þ bs2
2b1

S2

�
ð−k1 − k2;k1Þ

× 2F 1

�
1;
1

2
þm;

3

2
þm;−β

��
; ðB15Þ

and

ψ2n

�
ρi
κi

�
¼ 2F 1

�
−n; nþ 1

2
; 1;

�
ρi
κi

�
2
�
: ðB16Þ

This shows that the multipoles can be calculated from an
expression (46).

APPENDIX C: CALCULATION OF THE
MAPPING MULTIPOLES Qmap

n

The calculation for the mapping contribution Qmap
n is

similar to what was done for the intrinsic contribution.
Here, the expression is

Mκi
n ¼

Z
π

0

sin θ2dθ2W
map
2 ð−k1 − k2;k1;k2;nÞ

×
Z

2π

0

dϕ2

Z
2π

0

dφLnðκ̂i · nÞ; ðC1Þ

with the kernelWmap
2 given by (26). For this case, it is better

to express Mκi
n as a linear combination of integrals of the

type

Inmm0 ¼ 1

2ð2πÞ2
Z

π

0

sin θ2dθ2

Z
2π

0

dϕ2

Z
2π

0

dφ

×
μm1 μ

m0
2

1þ βμ22
Lnðκ̂i · nÞ; ðC2Þ

since the kernel is a sum of powers of μ1 and μ2 with the
denominator 1þ βμ22. From (26), it is easy to see the
relation between Mκi

n and Inmm0 ,

Mκi
n ¼ f

2

�
k2
k1

−
k1k2
k212

�
In11 −

f
2

k22
k212

In02

þ βf
2

k22
k212

In22 þ
βf
2

k32
k1k212

In13; ðC3Þ

with k12 ≡ jk1 þ k2j. To calculate the terms Inmm0 , one can
use the same tricks already used previously, namely express
the Legendre polynomials as

Lnðκ̂i · nÞ ¼ 2n
Xn
b¼0

�
n

b

�� nþb−1
2

n

�
cosbθκi ; ðC4Þ

such that

cosbθκi ¼ κ−bi
Xb
c¼0

�
b

c

�
ðϱi cos θ2Þb−cðρi sin θ2Þc

× coscðφ − ϕ2Þ: ðC5Þ

Meanwhile due the change of variables performed in
Sec. III A, one obtains the relation μ1≡cosθ1¼cosγcosθ2−
sinγsinθ2cosðφ−ϕ2Þ. Consequently,

μm1 ¼
Xm
a¼0

�
m

a

�
ð−1Þacosm−aγsinaγ

× cosm−aθ2sinaθ2cosaðφ − ϕ2Þ: ðC6Þ

In this way, the integration over the angles ϕ2 and φ gives

Z
2π

0

dϕ2

Z
2π

0

dφcosaþcðφ − ϕ2Þ

¼ 1þ ð−1Þaþc

2
ð2πÞ2

� aþc−1
2

−1=2

�
; ðC7Þ

implying that aþ c must be even; otherwise, those
integrals vanish. That result allows us to rewrite the sin
function as

sinaþc θ2 ¼ ð1 − μ22Þ
aþc
2 ¼

Xaþc
2

d¼0

� aþc
2

d

�
ð−1Þdμ2d2 ; ðC8Þ

since θ2 ∈ ½0; π�, i.e., sin θ2 ∈ ½0; 1�. So the integration over
θ2 can be fully written in term of μ2, and it has the form

Z
1

−1
dμ2

μX2
1þ βμ22

¼ 1þ ð−1ÞX
1þ X 2F 1

�
1;
1þ X
2

;
3þ X
2

;−β
�
: ðC9Þ

Thereby, the terms Inmm0 can be generally written as

Inmm0 ¼ 22n
Xm
a¼0

Xn
b¼0

Xb
c¼0

Xaþc
2

d¼0

�
m

a

��
n

b

��nþb−1
2

n

�

×
�
b

c

��aþc
2

d

�� aþc−1
2

−1=2

�
ð−1Þaþd1þð−1Þaþc

2

×cosm−a γ sina γ

�
ϱi
κi

�
b
�
ρi
ϱi

�
c

×
1þð−1ÞX
2ð1þXÞ 2F 1

�
1;
1þX
2

;
3þX
2

;−β
�
; ðC10Þ

with X ≡mþm0 − aþ b − cþ 2d. For sake of simplicity,
we present below only the terms that contribute to the
monopole and the quadrupole,
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I000 ¼ H0;

I002 ¼
H2

3
;

I011 ¼
H2

3
cos γ;

I022 ¼
H4

5
cos2γ þ 5H2 − 3H4

30
sin2γ

I013 ¼
H4

5
cos γ;

I200 ¼
�
1 −

3

2

�
ρi
κi

�
2
�
H2 −H0

2
;

I202 ¼
�
1 −

3

2

�
ρi
κi

�
2
�
9H4 − 5H2

30
;

I211 ¼
�
1 −

3

2

�
ρi
κi

�
2
�
9H4 − 5H2

30
cos γ þ ρiϱi

κ2i

3H4 − 5H2

10
sin γ

I222 ¼
�
1 −

3

2

�
ρi
κi

�
2
�
15H6 − 7H4

70
cos2γ þ

��
1 −

3

2

�
ρi
κi

�
2
�
−H6 þ 2H4 −H2

8
þ 15H6 − 42H4 þ 35H2

840

�
sin2γ

þ ρiϱi
κ2i

15H6 − 21H4

35
cos γ sin γ;

I213 ¼
�
1 −

3

2

�
ρi
κi

�
2
�
15H6 − 7H4

70
þ ρiϱi

κ2i

15H6 − 21H4

70
sin γ;

where HX ≡ 2F 1ð1; ð1þ XÞ=2; ð3þ XÞ=2;−βÞ. For higher multipoles, the expressions are more complicated but they can
be straightforwardly obtained by Eq. (C10).
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