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We study the two-field warm inflation models with a double quadratic potential and a linear temperature-
dependent dissipative coefficient. We derive the evolution equation of all kinds of perturbations without
assuming slow-roll approximation and obtained the curvature power spectrum at the end of inflation with a
fully numerical method. Then, we compute the scalar spectral index ns and tensor-to-scalar ratio r for
several representative potentials and compare our results with observational data. At last, we use Planck
data to constrain the parameters in our models. This work is a natural extension of single-field warm
inflation, and the aim of this work is to present some features of multifield warm inflation using a simple
two-field model.
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I. INTRODUCTION

Inflation is widely accepted as the leading theory
describing the early Universe [1–3] because it solves many
long-standing puzzles of the hot big bang model, such as
the horizon, flatness, and monopole problems. In addition,
primordial fluctuations generated in inflation provide the
seed for the large-scale structure of our Universe, and it can
explain the temperature anisotropies on cosmic microwave
background (CMB) naturally. In standard cold inflation,
cosmological expansion and reheating are two separate
periods, and we still know little about the details of
reheating. The recent observational results have reached
an impressive level of precision and improved the upper
bound on tensor-to-scalar ratio r, so many representative
models are ruled out in the standard inflationary paradigm.
Warm inflation is an alternative to standard cold inflation

[4], in which the interaction between the inflaton and
radiation can cause an extra dissipative term. The dissipa-
tive effects can lead to a sustainable radiation production,
so the Universe can become radiation dominated without a
reheating process. In warm inflation, density fluctuations
come from thermal fluctuation, which is much larger than
quantum fluctuations in cold inflation. Consequently, warm
inflation can happen at a much smaller energy scale, and
this leads to a suppressed tensor-to-scalar ratio. Many
inflationary potentials excluded in cold inflation become
consistent with observations again in warm inflation. There

have been various studies on warm inflation [5–8], and
many interesting features are explored. Although warm
inflation remains an appealing alternative to standard cold
inflation, realizing warm inflation in concrete models is not
easy. When coupling the inflaton directly with light fields,
we have to make sure that the thermal corrections to the
inflaton potential are not large so that the inflaton potential
remains flat and we can get sufficient e-foldings. At the
same time, the dissipative effects should be strong enough
to sustain a thermal bath at temperature T > H during
inflationary universe. In Ref. [9], the authors examined the
feasibility of warm inflation from various viewpoints and
showed that it was extremely difficult or perhaps even
impossible to realize the idea of warm inflation. Recently, a
scenario fulfilling these conditions was proposed in
Ref. [10], in which the inflaton is a pseudo-Goldstone-
boson coupled to a pair of fermionic fields through Yukawa
interactions. In this case, the inflaton’s mass gets protection
from large thermal corrections due to the symmetries
obeyed by the model, so the slow roll of warm inflation
will not be affected. This leads to enough dissipation with
only a small number of fields and a linear T dissipative
coefficient.
The simplest inflationary models comprise only a single

scalar degree of freedom (d.o.f.) and are sufficient to obtain
predictions consistent with observational constraints.
Single-field inflation may seem natural from the perspec-
tive of simplicity and economy, but the status is not certain
from the perspective of the microphysical origin of inflation
[11]. In fact, fundamental physics seems to predict the
existence of a large number of scalar fields [12]. If the
inflationary scale is not widely separated from the next
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relevant mass scale, it is natural to expect inflationary
models with more than one active scalar field. Inflation
driven by multiple scalar fields has some specific features,
such as large non-Gaussianity [13–15] and the presence of
isocurvature perturbation [16,17], which can be narrowly
constrained by the improved observational data in the
future.
The content of the early Universe is usually treated as a

mixture of radiation fluid and scalar fields, in which
interactions between different fields and dissipative effects
play an important role. Therefore, to study the dynamical
and perturbation features of multicomponent cosmology
and how it is constrained by observation is an important
topic. One of the models including all these effects is the
multifield warm inflation paradigm, in which the radiation
is regarded as a perfect fluid. In this paper, we will focus on
two-field warm inflation and try to reveal some features of
multifield inflation by constraining our models with obser-
vational data. In our previous work [18], we showed some
simple conclusions in a temperature (T)-independent dis-
sipative coefficient γ, which is not a realistic case. Now, we
extend our analysis as a next step to a linear T dissipative
coefficient. In Ref. [10], it is shown that a dissipative
coefficient γ ¼ CTT can be realized in a little Higgs model,
which puts warm inflation on a solid footing in the aspect of
model building.
This work is organized as follows. In Sec. II, we

introduce some basics of two-field warm inflation and
derive the full set of equations describing the background
dynamics and perturbations. In Sec. III, we give the main
features of two-field warm inflation by numerically solving
the equations obtained in Sec. II. In Sec. IV, we use the
Planck data to constrain our models and give the obser-
vational constraints on model parameters. In Sec. IV, we
present our conclusions.

II. BASICS OF TWO-FIELD WARM INFLATION

The two-field warm inflation dynamics is characterized
by the coupled background equations of inflaton field ϕðtÞ,
χðtÞ and radiation density ρrðtÞ,

ϕ̈þ ð3H þ γÞ _ϕþ Vϕ ¼ 0;

χ̈ þ ð3H þ γÞ _χ þ Vχ ¼ 0;

_ρr þ 4Hρr ¼ γð _ϕ2 þ _χ2Þ; ð2:1Þ

where V is the inflaton potential, Vϕ ¼ ∂Vðϕ; χÞ=∂ϕ,
Vχ ¼ ∂Vðϕ; χÞ=∂χ, overdots represent derivatives with
respect to cosmic time t, and γ is the dissipative coefficient.
In the general case, γ is a function of background inflaton
fields and the temperature T. For simplicity, we will use the
Planck unit in the context

8πG ¼ kB ¼ ℏ ¼ c ¼ 1;

where G is Newton’s gravitational constant, kB is
Boltzmann’s constant, ℏ is the reduced Planck’s constant,
and c is the speed of light. In a spatially flat universe, the
Friedmann equations read

3H2 ¼ 1

2
_ϕ2 þ 1

2
_χ2 þ Vðϕ; χÞ þ ρr; ð2:2Þ

and the slow-roll parameters are defined as

ϵ ¼ −
_H

H2
; η ¼ −

Ḧ

2H _H
: ð2:3Þ

Inflation takes place when the slow-roll conditions ε < 1
and jηj < 1 are satisfied. In slow-roll approximation, we
have

ð3H þ γÞ _ϕþ Vϕ ¼ 0; ð2:4Þ

ð3H þ γÞ _χ þ Vχ ¼ 0; ð2:5Þ

4Hρr ¼ γð _ϕ2 þ _χ2Þ: ð2:6Þ

For convenience, we define adiabatic field σ and entropy
field s by making a rotation in field space, where dσ is
tangent to the background trajectory and ds is normal to
it [19,20],

�
dσ

ds

�
¼

�
cos θ sin θ

− sin θ cos θ

��
dϕ

dχ

�
; ð2:7Þ

where cos θ ¼ _ϕffiffiffiffiffiffiffiffiffiffi
_ϕ2þ _χ2

p , sin θ ¼ _χffiffiffiffiffiffiffiffiffiffi
_ϕ2þ _χ2

p . With this definition,

the background equations (2.1) and (2.2) become

σ̈ þ ð3H þ γÞ _σ þ Vσ ¼ 0;

_θ _σþVs ¼ 0;

_ρr þ 4Hρr ¼ γ _σ2;

3H2 ¼ 1

2
_σ2 þ V þ ρr; ð2:8Þ

where Vσ ¼ cos θVϕ þ sin θVχ and Vs ¼ − sin θVϕ þ
cos θVχ . In this case, slow-roll parameters can be
expressed by

ϵ ¼ ϵσ þ ϵr; ϵσ ¼
1

2

_σ2

H2
; ϵr ¼

2

3

ρr
H2

;

η ¼ ϵσ
ϵ
ησ þ

ϵr
ϵ
ηr; ησ ¼ −

σ̈

H _σ
; ηr ¼ −

1

2

_ρr
Hρr

:

ð2:9Þ

To study the evolution of perturbations, we decompose
each of the fields into a spatially homogenous background
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field and its perturbations, ϕðx; tÞ → ϕðtÞ þ δϕðx; tÞ, and
χðx; tÞ → χðtÞ þ δχðx; tÞ. Similarly, it is convenient to
decompose the field perturbation into an adiabatic compo-
nent δσ and entropy component δs [21],

�
δσ

δs

�
¼

�
cos θ sin θ

− sin θ cos θ

��
δϕ

δχ

�
: ð2:10Þ

The line element of the Friedmann-Robertson-Walker
metric is given by

ds2 ¼ −ð1þ 2AÞdt2 þ 2a∂iBdxidt

þ a2ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj: ð2:11Þ

In warm inflation, we have to take into account the
perturbations resulting from both the inflation field and
radiation. Therefore, the total gauge-invariant comoving
curvature perturbation can be split into two parts [22–24],

R ¼ ϵσ
ϵ
Rσ þ

ϵr
ϵ
Rr; ð2:12Þ

where Rσ ¼ ψ þH δσ
_σ , Rr ¼ ψ − aHðBþ δuÞ, and δu is

the scalar velocity potential of the radiation fluid. For
convenience, we also define the isocurvature perturbation
S ¼ H δs

_σ . The power spectrum of comoving curvature R
perturbation is given by

PR ¼ k3

2π2
hR2i; ð2:13Þ

and the power spectrum of inflaton perturbation Rσ ,
radiation perturbation Rr, and isocurvature perturbation
S are [25]

Pσ ¼
k3

2π2
hR2

σi; Pr ¼
k3

2π2
hR2

ri; PS ¼ k3

2π2
hS2i;
ð2:14Þ

where k denotes the comoving wave number. In warm
inflation, density perturbations mainly arise from thermal
noise [26]. On small scales (k ≫ aH), the metric fluctua-
tions have little effects [27,28], so inflaton fluctuations δφI
(δφI ¼ δϕ; δχ) are described by a Langevin equation [29],

δφ̈Iðk; tÞ þ ð3H þ γÞδφ̇Iðk; tÞ þ
k2

a2
δφI ¼ ξIðk; tÞ; ð2:15Þ

where ξIðk; tÞ is a white-noise term and different compo-
nents of ξIðk; tÞ are independent of each other. In this case,
there is no coupling between different components of
inflaton perturbations before horizon crossing, which is a
common assumption in standard multifield inflation. In the
high-temperature limit, the noise source is Markovian,

hξIðk; tÞξJð−k0; t0Þi ¼ 2γTa−3ð2πÞ3δIJδ3ðk − k0Þδðt − t0Þ;
ð2:16Þ

where T denotes the temperature and a is the scale factor.
The relationship between radiation energy density ρr and T
is ρr ¼ π2

30
g�T4, where g� is the effective particle number of

radiation fluid [30]. We will take g� ¼ 228.75 in the
following numerical calculation, which is the number of
d.o.f. for the minimal supersymmetric Standard Model
[31,32]. After horizon crossing, the effects of thermal noise
are suppressed, while the metric perturbation come to play
an important role [33]. In previous studies, the perturba-
tions in subhorizon and superhorizon scales are often
treated separately for simplicity. The power spectrum in
warm inflation has been studied in many previous works
[34–36], and a general expression for amplitude of the
inflaton power spectrum is given by [37]

P�
δσ ¼

�
H�
2π

�
2
�
T�
H�

2πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πQ�=3

p þ 1þ 2n�

�
GðQ�Þ;

ð2:17Þ

where a subscript * denotes variables evaluated at horizon
crossing, Q ¼ γ=ð3HÞ is the dissipative ratio, and n� ¼
1=ðeH�=T� − 1Þ is the statistical distribution of inflaton
fluctuations at horizon crossing [38]. The function GðQ�Þ
represents the growth of PR due to the coupling between
inflaton fluctuations and radiation fluctuations, and this
growing function can only be determined by solving the
perturbation equations numerically.
When performing numerical calculations, it is more

convenient to take e-foldings N (dN ¼ Hdt) as the time
variable. To get a full picture of the evolution of perturba-
tions, we take into account all kinds of perturbations in
two-field warm inflation and give the evolution equation of
Rσ, Rr, and δs beyond slow-roll approximation (see the
Appendix A for more details),

Rσ
00 þ ð3þ 3Qþ ϵr þ ϵσ − 2ησÞRσ

0 þ ðz2 − 2λθ
2ϵσ − 9Qþ 2ð1þ ϵr − ησÞϵr þQð3ϵr − 11ϵσ þ 6ηrÞÞRσ

¼ −ð3Qþ 2ϵrÞRr
0 þ ð−9Qþ 2ð1þ ϵr − ησÞϵr þQð3ϵr − 11ϵσ þ 6ηrÞÞRr

þ 2λθδs0 þ 2ðλθð3þ 3Q − ϵr − ησÞ þ λθθÞδsþ
z3=2k−3=2ffiffiffiffiffiffiffi

2ϵσ
p ξσ; ð2:18Þ
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Rr
00 þ

�
6þ ϵr þ ϵσ −

7

2
ηr

�
Rr

0

þ
�
1

3
z2 þ 9þ 1

2
ð−9þ ϵσÞηr þ 2ð4þ ϵσ − 2ηrÞðϵr þ ϵσ − ησÞ þ

�
−1þQþ 2

3
ϵr

�
ϵσ

�
Rr

¼
�
2

3
ϵσ þ

5

4
ð4 − 2ηrÞ

�
Rσ

0 þ
�
9þ 1

2
ð−9þ ϵσÞηr þ 2ð4þ ϵσ − 2ηrÞðϵr þ ϵσ − ησÞ þ

�
−1þQþ 2

3
ϵr

�
ϵσ

�
Rσ

þ 1

3
ð−6þ 2ϵσ þ 3ηrÞλθδs; ð2:19Þ

δs00 þ ð3þ 3Q − ϵr − ϵσÞδs0 þ
�
z2 þ Vss

H2
− 2λθ

2ϵσ

�
δs

¼ −4λθϵσRσ
0 − 4λθϵσϵrRσ þ 4λθϵσϵrRr þ z3=2k−3=2ξs; ð2:20Þ

where a prime denotes a derivative with respect to e-folding
N and λθ ¼ θ0=σ0, λθθ ¼ θ00=σ0. Vss ¼ sin2 θVϕϕ þ
cos2 θVχχ is the effective mass of entropy field s, and
z ¼ k

aH. ξσ and ξs are two Gaussian white noises, and their
correlation functions are

hξIðk; NÞξJð−k0; N0Þi ¼ 2γTð2πÞ3δIJδð3Þðk − k0ÞδðN − N0Þ
ð2:21Þ

where I; J ¼ σ, s. Similarly, using N as the time variable,
we can put Eqs. (2.1) and (2.2) in the form

ϕ00 þ ð3þ 3Q − ϵÞϕ0 þ Vϕ

H2
¼ 0; ð2:22Þ

χ00 þ ð3þ 3Q − ϵÞχ0 þ Vχ

H2
¼ 0; ð2:23Þ

ρ0r þ 4ρr ¼ 3H2Qðϕ02 þ χ02Þ; ð2:24Þ
�
3 −

1

2
ϕ02 −

1

2
χ02

�
H2 ¼ V þ ρr: ð2:25Þ

Note that the slow-roll parameters in the above equations
are treated as a function of time variable N and can be
determined by solving background equations (2.22)–
(2.25). When dealing with multifield inflation, it is neces-
sary to go beyond slow roll, or we will miss some important
features. In this case, the numerical method is almost
essential, because we can hardly find any analytic results.

III. NUMERICAL EXAMPLES

To get a picture of the dynamics and perturbations of
two-field warm inflation, we apply the formalism to a
simple example in this section. We use the two-field
quadratic inflation as an example, in which the potential
is given by [39]

Vðϕ; χÞ ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

χχ
2: ð3:1Þ

Although these two scalar fields have no direct coupling,
they can interact gravitationally during inflation. We will
show that even the simplest two-field warm inflation
models can display interesting features, which is very
different from the single-field cases. In the following
calculations, we set N ¼ 0 when the relevant scales cross

FIG. 1. The evolution of inflaton ðϕ; χÞ and slow-roll param-
eters ϵ and η are shown against e-foldings N. In this example, we
choose the initial condition ðϕ0; χ0Þ ¼ ð2.67; 2.23Þ, CT ¼ 0.048,
and inflation ends at about N ¼ 60 in this case. From the lower
panel, we can know that when the field χ decays to zero a local
extreme occurs for slow-roll parameters ϵ and η.
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the Hubble horizon, and we fix Ne ¼ 60 when inflation
ends for definite calculation.
At the beginning of our analysis, we use a representative

example to demonstrate the main features of background
dynamics and perturbations of two-field warm inflation. In
the example, we set mϕ ¼ 2 × 10−8, and the mass ratio
Rm ¼ mχ=mϕ ¼ 5. After choosing the initial condition
ðϕ0; χ0Þ ¼ ð2.67; 2.23Þ and CT ¼ 0.0483, we can perform
our numerical computation by solving the background
equations (2.22)–(2.25) and stochastic perturbation equa-
tions (2.18)–(2.20). Note that, since the background
dynamics will tend to the slow-roll trajectory soon, the
initial values of _ϕ�, _χ�, and ρr� have little impact on the
final results. To eliminate the influence of initial conditions
of perturbations equations, we begin our numerical inte-
gration about five e-foldings before the Hubble exit. The
results are shown in Figs. 1 and 2.
In warm inflation, thermal effects decrease until the

fluctuations freeze out, which is determined by
k2=a2 ≈ ð3H þ γÞH, and the freeze-out time NF always
precedes the horizon crossing time [40]. According to
Fig. 2, we know before freeze-out time the system is
dominated by stochastic noise, and the initial condition of
perturbations has little impact on the final results. In the
period between freeze-out and horizon crossing, the power
spectrum Pσ and Pr may get enhanced due to the coupling

between perturbations of radiation and inflaton, as illus-
trated in the lower left panels of Fig. 2. This growing mode
occurs only when Q� > 1 (in the example illustrated in
Fig. 2,Q� ≈ 10), and in the weak regime of warm inflation,
this is replaced by a constant mode [41]. After horizon
crossing, the power spectrum PR does not change for a
while until the turning occurs at the background trajectory.
When the background evolution trajectory changes direc-
tion, the parameter _θ2 can become large, which makes
perturbations Rσ and Rr couple strongly with the iso-
curvature perturbation S as shown in Eqs. (2.18), (2.19),
and (2.20). At this moment,Rσ andRr increase obviously,
while S decays to zero. In the following period, there is
only one active scalar field, and the curvature perturbation
tends to a constant value. We also know from the top two
panels of Fig. 2 that Rσ ≈Rr on superhorizon scales, and
they evolve together until the end of inflation. Therefore,
we can use Rσ to represent curvature perturbation R
according to Eq. (2.12).

IV. CONSTRAINTS FROM
OBSERVATIONAL DATA

In previous subsection, we showed the main features of
background dynamics and perturbation power spectrum
in two-field warm inflation, and now we turn to the

FIG. 2. The evolution of perturbationsRσ ,Rr, and S and the power spectrum of each kind of perturbations are shown in this figure. In
the top two panels, we show a single realization of the stochastic perturbation equation, and the power spectrum of each perturbation is
illustrated in the lower two panels, which represent an average over 5000 runs. We zoom in to the few e-foldings around horizon
crossing to given more details in the left two panels.
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consistency with observational data. To compare with the
observational data, we should get the power spectrum PR
at the end of inflation first, and then we can obtain the
spectral index ns using the finite difference method [42],

ns − 1 ¼ d lnPR

d ln k
: ð4:1Þ

The tensor mode of perturbations is not affected by the
thermal noise, so the tensor power spectrum and tensor-to-
scalar ratio are given by [43]

PT ¼ 8

�
H�
2π

�
2

; r ¼ PT

PR
: ð4:2Þ

There exist two methods available to compute the final
PR. The most straightforward way is the method we use in
the previous section, where we perform our analysis
by solving the coupled stochastic system numerically until
the end of inflation. However, this is a computationally
intensive way, and the calculations consume a lot of CPU
time because we have to perform tens of thousands of runs
to get a relatively accurate result. There exists another
approach to achieve our purpose that is used more widely.
We can use the analytic expression (2.17) to express Pδσ at
horizon crossing, and the growing function GðQ�Þ can be
determined by integrating the stochastic equations a few
e-foldings before horizon crossing. After horizon crossing,

we can use δN formalism to get the time evolution of PR
until the end of inflation,

PR ¼ P�
δσðN2

ϕ� þ N2
χ� Þ; ð4:3Þ

where P�
δσ is the power spectrum of field perturbation δσ at

horizon crossing.
In the following investigation, we take four representa-

tive values of mass ratio Rm, Rm ¼ 1, Rm ¼ 1.5, Rm ¼ 2,
and Rm ¼ 3 as examples. To obtain the growing function
GðQ�Þ in Eq. (2.17) in two-field warm inflation, we carry
out a numerical simulation for each value of Rm.GðQ�Þ and
numerical results of simulations are shown in Fig. 3.
According to Fig. 3, we know the function GðQ�Þ fits
well with the numerical results.
With a given mass ratio Rm, for every set of initial

conditions ðϕ�; χ�Þ, we can determine the value of mϕ and
CT using Ne ¼ 60 and observational constraints PR ¼
2.2 × 10−9 at the end of inflation. And then with the value
of ðmϕ; CTÞ, we can obtain the spectral index and tensor-to-
scalar ratio ðns; rÞ with Eqs. (4.1) and (4.2). Therefore, we
have a corresponding ðns; rÞ for every set of initial
conditions ðϕ�; χ�Þ. We show the final value of spectral
index ns with initial condition ðϕ�; χ�Þ in Fig. 4. In every
panel in Fig. 4, the damping strength Q� is larger when
ðϕ�; χ�Þ are near the original point (0, 0). According to the
figure, we know the strong dissipative effect will render the
spectrum blue tilted, which agrees with the conclusion in

FIG. 3. The numerical results (blue dots) and analytic fitting function of GðQ�Þ (black line) are shown against Q�. In general, the
analytic expression GðQ�Þ fits well with the numerical results, and the figure shows the growing function GðQ�Þ is slightly different for
different potentials. In the lower right part of each panel, we zoom in to give more details for small values of Q�.
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single-field cases. In all directions, the farthest ðϕ�; χ�Þ
from the original point represent the case Q� ¼ 0 (cold
inflation). We also find that when Rm ¼ 1 (mϕ ¼ mχ), ns is
the same for all the points ðϕ�; χ�Þ of the same distance
from the original point. However, this property of sym-
metry no longer exists when Rm ≠ 1. In fact, when Rm ¼ 1,
the background evolution trajectory is a straight line in field
space of ðϕ; χÞ, so there is only 1 d.o.f., which is the same
as single-field cases. In the following context, we use this
case to represent an example of single-field warm inflation
for comparison with other cases.
To compare our results with observational data directly,

we also show our results in the ðns; rÞ plane, as illustrated
in Fig. 5. For each Rm, we plot ðns; rÞ in the same plot with
the allowed contour plots of Planck data (68% and
95% C.L. results from Planck 2018 TT,TE,EE+lowE
+lensing) [44]. Note that in the figure we represent
Q� ¼ 0, Q� ¼ 1, and Q ¼ 10 with thick black lines
(the line for Q� ¼ 0 is at the top of the blue-shaded
region, which represents the cold inflation cases). As
described above, we can treat the Rm ¼ 1 case as a single-
field warm inflation example. Comparing Rm ¼ 1 with
other values of Rm, we can conclude that the multifield
effects will make ns distribute in a wide range for every

value of r, rather than a point. Besides, the dissipative
effects have an impact on both the spectral index ns and
tensor-to-scalar ratio r, while the multifield effects have
little influence on r. According to Fig. 5, in single-field
cases, the strong version of warm inflation (Q� > 1) is
disfavored by observation because it predicts too large ns.
However, warm inflation can happen when Q� > 1 in
multifield cases. For all cases we study in Fig. 5, ns shows
oscillatory features when Q� changes, and this interesting
feature also happens in Ref. [37].
We find Q� < 0.0018, r > 0.0090 for Rm ¼ 1, which

means only weak versions of warm inflation are allowed by
observation, and this is consistent with the previous studies
on single-field warm inflation [45]. When Rm ¼ 1.5, the
dissipative strength Q� can take values Q� < 0.0024, and
r > 0.0077. In case of Rm ¼ 2, Q� lies in a slightly wider
range Q� < 0.0044, and r takes values r > 0.0057. For
Rm ¼ 3, Q� can be as large as 100, which means warm
inflation is no longer restricted to weak regimes, and this is
very different from single-field cases. In this case, r has a
lower bound about 10−15.
Another potential discriminator between different infla-

tionary models is the non-Gaussianity produced during
inflation. The nonlinear parameter fNL is given by

FIG. 4. The final spectral index ns is plotted against the initial condition ðϕ�; χ�Þ. In each panel, the dissipative ratio Q� is generally
larger when ðϕ�; χ�Þ are closer the original point (0, 0), and the farthest points in each direction denoteQ� ¼ 0 (cold two-field inflation).
The figure also shows that the dissipative effects will render the power spectrum blue tilted. Meanwhile, multifield effects will make ns
take values in a wider range.
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FIG. 6. The evolution of nonlinear parameter fð4ÞNL. We take Rm ¼ 2, 5 and Q� ¼ 0.1, 10, and the values of fð4ÞNL at the end of inflation
are indicated in each panel. In our numerical examples, turns of the trajectories in field space all occur between N ¼ 10 and N ¼ 30.

FIG. 5. Observational predictions (blue regions) of two-field warm inflation models with differential mass ratio Rm. The gray contours
correspond to the 68% and 95% C.L. results from Planck 2018 TT,TE,EE+lowE+lensing data. Note that when Rm ¼ 1 the results are the
same as in the single-field case. The black lines at the top of blue regions in each panel denote Q� ¼ 0 (cold two-field inflation). The
lower right panel shows that strong dissipative warm inflation is observationally favored due to the multifield effects in warm inflation.
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fNL ¼ fð3ÞNL þ fð4ÞNL; ð4:4Þ

where fð3ÞNL is a slow-roll suppressed term coming from the
intrinsic non-Gaussianity in δϕ and δχ. It has been shown

that fð3ÞNL is much less than unity [46], which is too small to
be observed by the current CMB experiment. Therefore, we

will concentrate on the second term fð4ÞNL, which can be
expressed using the δN formalism [15],

fð4ÞNL ¼ 5

6

P
IJN;IJN;IN;J

ðPIN
2
;IÞ2

; ð4:5Þ

where N;I ¼ ∂N=ð∂φI�Þ, N;IJ ¼ ∂2N=ð∂φI�∂φJ�Þ, and the
indices I and J run over all of the fields.
We have performed some numerical calculations of fð4ÞNL

using Eq. (4.5) and obtained the final value of fð4ÞNL at the
end of inflation. According to our results, the nonlinear

parameter fð4ÞNL ¼ 2.3 × 10−3 for strong dissipative warm

inflation, and fð4ÞNL ¼ 6.9 × 10−3 for weak dissipative warm
inflation. Our results are of the same order of magnitude as
some previous studies on warm inflation and multifield
inflation [13,20,47,48]. In Fig. 6, taking Rm ¼ 2, 5 and

Q� ¼ 0.1, 10 as examples, we give the evolution of fð4ÞNL
from the Hubble exit until the end of inflation. As

illustrated in Fig. 6, fð4ÞNL grows sharply when the heavy
field decays to zero, corresponding to the turn of the
trajectory in field space, but then decreases. After this
moment, there is only one effective field, and the nonlinear
parameter becomes slow-roll suppressed, which is the same
as in single-field inflation. We can also conclude from
Fig. 6 that multifield inflation does not necessarily produce
large non-Gaussianity, and the mass ratio Rm does not have

a significant impact on the final nonlinear parameter fð4ÞNL.

V. CONCLUSIONS

In this work, we have tried to explore the main features
of perturbations in two-field warm inflation and then use
the observational data to constrain our models. We use the
two-field quadratic warm inflation model with a linear-T
dissipative coefficient as a representative example and
carry out exhaustive numerical simulations to reveal the
main features of multifield warm inflation. First, we
derived the full set of equations describing background
dynamics and perturbations. Taking into account the
stochastic noise, these is a set of coupled stochastic
differential equations (SDEs). Then we apply the formula
to an example and get the main features of the evolution of
perturbations by solving the SDEs numerically. We have
shown that the curvature perturbation R ≈Rσ ≈Rr in
superhorizon scales and the isocurvature will decay to zero
before the end of inflation. In the following calculation,
instead of integrating the SDEs to the end of inflation

directly, we take a less computationally intensive method to
get the power spectrum at the end of inflation. We use a,
analytic formula (2.17) to describe PR at horizon crossing,
in which the growing function GðQ�Þ is obtained by a
fully numerical method. After horizon crossing, δN for-
malism is used to get the final power spectrum PR at the
end of inflation. With the observational constraints
PR ¼ 2.2 × 10−9 and Ne ¼ 60, we obtain a set of
ðns; rÞ for every initial condition ðϕ�; χ�Þ, as illustrated
in Fig. 4. At last, we show our results in the ðns; rÞ plane in
Fig. 5 and compare the observational predictions of our
models with the latest Planck data.
According to Fig. 5, we know that in single-field

inflation warm inflation only occurs in the weak dissipative
regime because the strong dissipation will render the
power spectrum blue tilted, which is not compatible with
observation. However, the multifield effects will cause the
spectral index ns to take values in a wide range for every r,
rather than just a point. In this condition, observations are
less effective in constraining ns, and when the multifield
effects are large enough, strong versions of warm inflation
can become favored by observation.
The thick black line in each panel of Fig. 5 represents

Q� ¼ 0 (cold inflation), from which we know the multi-
effects will not change the tensor-to-scalar ratio r very
much. Therefore, the inflationary models ruled out by
observation for predicting too large rmay not be rescued in
the multifield case.
The existence of isocurvature perturbations will lead to

the time evolution of the curvature perturbationR, and this
evolution can happen even in the postinflationary era.
Therefore, multifield inflation is generally not predictive,
unless an adiabatic limit is reached before the end of
inflation. Fortunately, in all the cases we studied, the
isocurvature mode of perturbations decays to zero before
the end of inflation, as illustrated in Fig. 2. However, Fig. 5
shows even in this condition two-field warm inflation
models are not well constrained by the observational results
of ðns; rÞ, especially when the mass ratio Rm is large. In this
case, other observational predictions such as the running of
the spectral index can be used to constrain inflationary
models, and we will leave this to future study. On the
other hand, if two mass scales are widely separated,
inflation tends to be dominated by only the light field.
Under this circumstance, we will go back to single-field
warm inflation.
Compared with single-field cases, slow-roll parameters

may become relatively large in multifield warm inflation.
We have to go beyond the slow-roll approximations, or some
important features will be lost. Figure 2 shows that the
slow-roll parameters ϵ and η have local extremes when the
heavy field χ decays to zero, and this effect becomes more
obvious when the mass ratio Rm is large. If these extremes
occur at horizon crossing by coincidence, the slow-roll
corrections will make the analytic expression (2.17) less
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accurate in describing the power spectrum at horizon
crossing. As demonstrated by Fig. 3, larger Rm will lead
to higher residuals when we use the grow functionGðQ�Þ to
fit the data obtained by numerical simulation. A possible
way to deal with this problem is that we can integrate the
stochastic perturbation equations (2.18), (2.19), and (2.20)
directly to the end of inflation without introducing the
analytic formula (2.17) at horizon crossing, which is a more
computationally extensive method. From this work, we can
conclude that even the simplest two-field warm inflation
models are much more complicated than single-field cases,
and this topic needs further investigations.
Note that in two-field quadratic warm inflation, when

mϕ ¼ mχ , the background trajectory in field space is a
straight line, regardless of the initial conditions. Therefore,
the isocurvature mode of perturbation has no influence on
curvature perturbation according to Eqs. (2.18)–(2.20), so
the perturbation features are the same for the single-field
case, as illustrated in the top left panel in Fig. 5. However,
this property no longer exists in other two-field warm
inflation models. For example, in two-field quartic inflation
with a potential V ¼ 1

4
λϕϕ

4 þ 1
4
λχχ

4, the λϕ ¼ λχ case is
not equivalent to single-field inflation (we describe more
details in Appendix B). Besides, the dissipative coefficient
γ can be different for ϕ and χ in general. In this work, we
use a common γ just for simplicity, and this topic needs
further study.
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APPENDIX A: PERTURBATION EQUATIONS IN
MULTIFIELD WARM INFLATION

In this section, we will present some perturbation
equations in multifield warm inflation. For a multi-
component system consisting of two scalar fields φI
(I ¼ 1, 2) and a radiation fluid, the Einstein equation of
the system is given by [49]

Gμν ¼ TðφÞ
μν þ TðrÞ

μν ; ðA1Þ

where

TðφÞ
μν ¼ ΣI∂μφI∂νφI − gμν

�
1

2
ΣI∂λφI∂λφI þ VðφÞ

�
;

ðA2Þ

TðrÞ
μν ¼ ðρr þ prÞuμuν þ prgμν; ðA3Þ

where Gμν is the Einstein tensor and TðφÞ
μν and TðrÞ

μν are the
energy-momentum tensor of scalar fields and radiation

fluid. For the radiation fluid, pr ¼ 1
3
ρr, δpr ¼ 1

3
δρr, where

pr and ρr are the pressure and energy density of the
radiation and δpr and δρr are their perturbations,
respectively.
For simplicity, we will work in the spatially flat gauge

(E ¼ ψ ¼ 0). According to the perturbation equations
of the Einstein equation, we can represent metric pertur-
bations A and B in terms of perturbations of scalar fields
and radiation [50],

A ¼ −δqr þ ΣI _φIδφI

2H
; ðA4Þ

B ¼ −
a

4k2H2
ð24H2δqr

þ ð4ρr þ ΣI _φI
2Þð−δqr þ ΣI _φIδφIÞ

þ 2Hð3 _δqr þ 4γΣI _φIδφI þ ΣIφ̈IδφI − ΣI _φI
_δφIÞÞ;

ðA5Þ

where δqr ¼ aðpr þ ρrÞðBþ δuÞ is the momentum density
perturbation of radiation. The variation of the scalar field’s
equation of motion is given by [51]

̈δφI þ ð3H þ γÞ _δφI þ
k2

a2
δφI þ ΣJVφIφJ

δφJ þ _φIδγ

¼ −ð2VφI
þ γ _φIÞAþ _φI

�
_A −

k2

a
B

�
: ðA6Þ

After some adaption, the perturbation of energy and
momentum conservation equations of the radiation leads
to [18,52]

̈δqr þ 7H _δqr þ 3

�
7H2 þ _Hþ 1

3

k2

a2

�
δqr

þΣI

�
1

3
_φI
2δγþ ð4Hγþ _γÞ _φIδφI þ γφ̈IδφI þ

5

3
γ _φI

_δφI

�

¼ 1

3

k2

a
ρrB−

16

3
HρrAþ 1

3
γΣI _φI

2A−
4

3
ρr _A: ðA7Þ

Substituting Eqs. (2.7) and (2.10) into Eqs. (A6) and
(A7), we can get

δ̈σ þ ð3H þ γÞ _δσ þ
�
k2

a2
þ Vσσ − _θ2

�
δσ − 2 _θ _δs

þ 2

�
2 _θVσ

_σ
− θ̈

�
δsþ _σδγ

¼ −
k2

a
_σB − ð _σγ þ 2VσÞAþ _σ _A; ðA8Þ
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δ̈sþ ð3H þ γÞ _δsþ
�
k2

a2
þ Vss − _θ2

�
δs

þ 2 _θ _δσ −
2 _θ σ̈

_σ
δσ ¼ 2 _θ _σ A; ðA9Þ

̈δqr þ 7H _δqr þ 3

�
7H2 þ _H þ 1

3

k2

a2

�
δqr

þ 5

3
γ _σ _δσþðγσ̈ þ _γ _σþ4Hγ _σÞδσ þ 1

3
_σ2δγ −

2

3
γ _θ _σ δs

¼ 1

3

k2

a
ρrB −

16

3
HρrAþ 1

3
γ _σ2A −

4

3
ρr _A; ðA10Þ

where

Vσσ ¼ cos2 θVϕϕ þ sin 2θVϕχ þ sin2 θVχχ ; ðA11Þ

Vss ¼ sin2 θVϕϕ − sin 2θVϕχ þ cos2 θVχχ : ðA12Þ

Substituting Eqs. (A4) and (A5) into Eqs. (A8)–(A10)
and expressing the equations in terms of Rσ and Rr using
Rσ ¼ Hδσ= _σ, Rr ¼ −Hδqr=ðpr þ ρrÞ, we get

R̈σ þ
�
3H þ γ þ 4ρr

3H
þ _σ2

H
þ 2σ̈

_σ

�
_Rσ þ

�
k2

a2
þHγ − _θ2 þ 4ρr

3
þ 2γρr

3H
þ 8ρr

2

9H2
−
11γ _σ2

6H
−
γ2 _σ2

ρr
þ 4ρrσ̈

3H _σ

�
Rσ

¼ −
�
γ þ 4ρr

3H

�
_Rr þ

�
Hγ þ 4ρr

3
þ 2γρr

3H
þ 8ρr

2

9H2
−
11γ _σ2

6H
−
γ2 _σ2

ρr
þ 4ρrσ̈

3H _σ

�
Rr

þ 2H _θ

_σ
_δsþ

�
6H2 _θ

_σ
þ 2Hγ _θ

_σ
þ 2Hθ̈

_σ
þ _θ _σþ 2H _θ σ̈

_σ2

�
δs; ðA13Þ

R̈r þ
�
−H þ 4ρr

3H
þ _σ2

H
þ 7γ _σ2

4ρr

�
_Rr þ

�
k2

3a2
þ 3γ _σ2

2H
þ 9Hγ _σ2

4ρr
þ 8ρr _σ

2

9H2
þ _σ4

2H2
þ 7γ _σ4

8Hρr
þ _σ σ̈

H
þ 2γ _σ σ̈

ρr

�
Rr

¼
�

_σ2

3H
þ 5γ _σ2

4ρr

�
_Rσ þ

�
3γ _σ2

2H
þ 9Hγ _σ2

4ρr
þ 8ρr _σ

2

9H2
þ _σ4

2H2
þ 7γ _σ4

8Hρr
þ _σ σ̈

H
þ 2γ _σ σ̈

ρr

�
Rσ

þ
�
−
1

3
_θ _σþHγ _θ _σ

2ρr

�
δs; ðA14Þ

δ̈sþ ð3H þ γÞ _δsþ
�
k2

a2
− _θ2 þ Vss

�
δs ¼ −

2 _θ _σ

H
_Rσ −

4 _θ _σ ρr
3H2

Rσ þ
4 _θ _σ ρr
3H2

Rr: ðA15Þ

Note that in the case of γ ¼ CTT we have
δγ=γ ¼ δT=T ¼ δρr=ð4ρrÞ, and δγ has been eliminated
from perturbation equations. Taking into account the
stochastic noise ξ and changing the time variable from
cosmic time t to e-foldings N, we can obtain the perturba-
tion equations in Sec. II.

APPENDIX B: TWO-FIELD QUADRATIC
INFLATION WITH EQUAL MASSES

According to background equations (2.22) and (2.23), in
the case ofmϕ ¼ mχ ¼ m, for two-field quadratic inflation,
we have

ϕ00 þ ð3þ 3Q − ϵÞϕ0 þm2ϕ=H2 ¼ 0; ðB1Þ

χ00 þ ð3þ 3Q − ϵÞχ0 þm2χ=H2 ¼ 0: ðB2Þ

After some adaption, the above equations can be put in
the form

ðϕ0χ − χ0ϕÞ0 þ ð3þ 3Q − ϵÞðϕ0χ − χ0ϕÞ ¼ 0: ðB3Þ

The solution of the above equation is given by

ðϕ0χ − χ0ϕÞ ¼ Ce−
R

N

0
ð3þ3Q−ϵÞdN; ðB4Þ

whereC is an integration constant. During inflation,Q > 0,
and ϵ < 1; therefore,

jϕ0χ − χ0ϕj < jCje−
R

N

0
2dN ¼ jCje−2N: ðB5Þ

From Eq. (B5), we know ϕ0χ − χ0ϕ will tend to zero
rapidly. When ðϕ=χÞ0 ¼ ðϕ0χ − χ0ϕÞ=χ2 ∼ 0, the trajectory
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in field space will become a straight line, which is the same
as the single-field case.
However, for two-field quartic inflation V ¼ 1

4
λϕϕ

4 þ
1
4
λχχ

4, the effective masses mϕ ¼ Vϕϕ and mχ ¼ Vχχ are

not constants during inflation, and in general, Eq. (B3) is
not valid even for λϕ ¼ λχ. In this case, we cannot reach the
above conclusion, and the background dynamics of two-
field quartic inflation display more complex behavior.
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