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We revisit the efficiency of the Schwinger mechanism in creating charged pairs during inflation.
We consider a minimal setup of inflation in which the inflaton field is a complex scalar field charged under
a Uð1Þ gauge field. There is a time-dependent conformal coupling which pumps energy from the inflaton
field to the gauge field to furnish a nearly constant background electric field energy density to drive the
Schwinger mechanism. The coupling between the gauge field and the scalar field induces a time-dependent
effective mass for the inflaton field. The requirement of a long period of slow-roll inflation causes the
Schwinger mechanism to be highly inefficient during inflation. The nonperturbative Schwinger mechanism
can be relevant only toward the end of inflation and only on very small scales. This is in contrast to
hypothetical models studied in literature in which the complex scalar field is a test field and a constant
electric field is imposed on the dS background by hand. We calculate the number of pairs of charged
particles created perturbatively during inflation. We show that it is proportional to the amplitude of the
quadrupolar statistical anisotropy and it is very small. Consequently, the backreactions of created particles
on magnetogenesis on large scales are negligible.
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I. INTRODUCTION

The time dependent nature of the background, whether
originating from gravitation or electric fields, leads to
particle creation from vacuum [1]. In cosmology, the
presence of a time-dependent background in an expanding
Friedmann-Lemaître-Robertson-Walker universe leads to
the spontaneous creation of particles out of the vacuum [2],
while Hawking radiation is another example which is
driven by the gravitational field in spacetimes with horizon
such as black holes [3]. Moreover the existence of a strong
enough electric field can create pairs of charged particles
from vacuum by the Schwinger mechanism [4]. Therefore,
the investigation of particle creation in the presence of both
the gravitational and the electromagnetic (EM) fields is
important for our understanding of the evolution of the
universe, from the early time up to the late-time stages [5].
Pair production phenomenon with a background electric

field in a de Sitter (dS) geometry has been extensively
discussed using non-perturbative methods [6,7] (see also

[8]), besides the perturbative ones [9]. More specifically, the
Schwinger effect in Minkowski spacetime is a nonpertur-
bative phenomenon which is exponentially suppressed
below a critical electric field of about 1.3 × 1018 V=m, so
the direct evidence of this process has not been observed yet.
This effect can be dynamically assisted by using additional
EM fields revealing perturbative features of pair production
[10]. While in the flat spacetime the perturbative compu-
tation of QED pair production has zero transition amplitude
[11], but the perturbative pair production in dS in the
presence of external EM fields is allowed.
The Schwinger effect in dS background has attractedmuch

attentions in the past years. In the case of 1þ 1-dimensional
dS space, Schwinger effect revealed some quite different
features thanks to the curvature of the spacetime [6,12]. It
turns out that the current created by pair production increases
as the electric field decreases which is different than our
intuition of the Schwinger effect in the flat space. The
extension of the setup to the case of 3þ 1 dS background
showed further unexpected results [7,13,14]. It is shown that
the Schwinger effect has the similar aspects even in D-
dimensional dS spacetime [15]. However, recently it is
claimed that the unusual infrared (IR) behavior (negative
conductivity) of the Schwinger current in dS background
might be an artifact of regularization schemes [14]. The
created pairs during the Schwinger process can backreact to
the electromagnetic field in curved spacetime, causing some
constraints on inflationarymagnetogenesismodels [7,16,17].
The created pairs move along the electric field and produce
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current and then change the conductivity of the ambient
medium. The Schwinger effect is also explored as a reheating
mechanism in the context of a relaxion model for infla-
tion [18].
Apart from the backreaction of Schwinger pairs to the

background EM fields, the time dependent nature of the
background electric field in dS space has to be taken into
account. While the constancy of the energy density in a
homogeneous field configuration violates the second law of
thermodynamics [19], most of the previous studies assume
a constant electric field to consider Schwinger effect in dS
space. In order to develop a more realistic model one may
consider Schwinger pair production during an inflationary
era. In this framework, besides the quasi-dS geometry
which is implied by inflation, we need an electric field
which is present during the inflationary period. In order to
present such a setup we need to overcome several issues
such as: (i) The existence of a background electric field and
the associated induced charge current of the Schwinger
process manifestly break the de Sitter invariance of the
background geometry; (ii) Any vector field, like the electric
field, is rapidly diluted because of the exponential expan-
sion of the inflationary background. Providing the appro-
priate setup in order to tackle these problems is the main
goal of the present paper.
The anisotropic inflation model provides a proper setup

in which a persistent electric field can be maintained
during inflation through a time-dependent gauge kinetic
coupling, pumping energy continuously from the inflaton
sector to the gauge field sector [20]. As a result, one has
an attractor solution in which the energy density of the
gauge field is a small and a nearly constant fraction of the
total energy density which can last for a long enough
period of inflation.
Recently several attempts were made in order to study

Schwinger pair production by electric field coupled to
inflaton and its backreaction to the background geometry
[17,21,22]. This leads to some difficulties in solving the
equations of motion of a charged scalar field to find the
mode functions and interpret them in terms of positive and
negative frequency modes [21]. Moreover, it is shown that
the Schwinger effect during inflation will cause an angular
dependence on the primordial power spectrum and bispec-
trum [23]. In fact the charged particle production rate
depends on the direction of these particles with respect to
the background electric field and therefore leaves a unique
angular dependence on the primordial spectra.
In all of these studies the complex scalar field, which is

responsible for the pair production, is considered to be a
test field during inflation while the dS spacetime is driven
by the real inflaton field. In other words, the Schwinger
mechanism of pair creation is decoupled from the infla-
tionary sector. In addition, in most of these models, no
mechanism is provided to generate the background con-
stant electric field to drive the Schwinger mechanism.

To address these shortcomings, in this work we present a
minimal setup in which both the inflaton field and the
charged scalar field are the same. We employ the charged
extension of the anisotropic inflation [20] presented in
[24,25] where the inflaton is charged under a Uð1Þ gauge
field. At the background level, the model is physically the
same as the anisotropic inflation. In this model the inflaton
field drives the quasi-de Sitter expansion through the slow-
roll conditions while simultaneously pumping energy into
the gauge field sector to furnish a nearly constant back-
ground electric field. At the level of perturbations, the pairs
are naturally produced from the quantum fluctuations of the
complex inflaton field. We show that the conventional
nonperturbative Schwinger effect is important only at the
late stages of inflation. Since in most of the inflationary era
the electric field energy density is required to be small to
allow slow-roll inflation, pair production can only happen
perturbatively. Note that the particle creation by a cosmo-
logical anisotropic Bianchi I universe in the presence of a
constant electric field has been considered before in [26].
Since the quantum fluctuations of the inflaton field

also generate the curvature perturbations [25], the param-
eters space of the model are tightly restricted by the CMB
observations [27]. Moreover, the anisotropic inflation
model predicts quadrupolar statistical anisotropies in the
CMB angular power spectrum which are highly con-
strained by CMB observations [28]. Therefore some of
the unusual aspects of the Schwinger mechanism in dS
space which were obtained in previous studies (as sum-
marized above) may be the results of a large and unrealistic
parameter space in which no links between observations
and theoretical results were made.
The rest of the paper is organized as follows. In Sec. II we

review the model of charged anisotropic inflation and
explain how a nearly constant electric field in quasi–de
Sitter background arises in this model. In Sec. III the
perturbation analysis of the model are presented. In
Sec. IV we compute the charged pair production rate while
in Sec. V the power spectra of the curvature and isocurvature
modes are presented, followed by summaries and discus-
sions in Sec. VI.

II. THE MODEL

In order to study the Schwinger process during inflation,
we consider the model studied in [24], containing a charged
complex scalar field as the inflaton field and a Uð1Þ gauge
field Aμ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
DμφDμφ

−
1

2
m2φφ̄ −

1

4
f2ðφ; φ̄ÞFμνFμν

�
; ð1Þ

where the field strength tensor Fμν ¼ ∂μAν − ∂νAμ and the
covariant derivative is given byDμ ¼ ∂μ þ ieAμ in which e
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is the gauge coupling constant. This model is an extension
of the anisotropic inflation model [20] to the case of
complex inflaton field where its perturbation analysis were
studied in [25,27]. The isotropic version of the model is
also recently proposed in Ref. [29] where the inflaton is
charged under a triplet of Uð1Þ gauge fields.
Here we briefly review the main results in this setup at

the background level which are studied in detail in
[24,25,27].
In the model (1) the gauge kinetic coupling f breaks the

conformal invariance such that the background gauge field
survives the exponential expansion. While this coupling
represents a nonrenormalizable interaction, this kind of
term is usually used for inflationary model buildings in low
energy expansions in the spirit of the effective field theory.
For the sake of simplicity, we assume an axially symmetric
structure in field space and therefore the coupling function
becomes only a function of the amplitude of the complex
field φφ̄ ¼ jφj2 so fðφ; φ̄Þ ¼ fðjφjÞ. Taking this assump-
tion into account, it is better to write the complex field in
the polar coordinates as

φ ¼ ρeiθ; ð2Þ

where ρ represents the amplitude while θ is the phase.
Working with the above polar coordinates makes the
calculations simpler. The coupling function then is only
a function of the radial coordinates, fðjφjÞ ¼ fðρÞ.
Varying the action (1) with respect to the gauge field Aμ,

we find the Maxwell equations

∇μð
ffiffiffiffiffiffi
−g

p
f2FμνÞ ¼ eJν; ð3Þ

where we have defined the 4-current as

Jν ≡ ρ2
ffiffiffiffiffiffi
−g

p ð∂νθ þ eAνÞ; ð4Þ

which satisfies the continuity equation ∇μJμ ¼ 0.
The existence of a background gauge field clearly breaks

the isotropy and we have to consider a Bianchi spacetime
for the background geometry. However, when studying the
cosmological perturbations, we can neglect the effects of
the anisotropy in geometry as far as the size of anisotropy is
sufficiently small. The statistical anisotropies in cosmo-
logical observables are predominantly induced from the
matter (electric field) perturbations [25,27]. Therefore, we
consider the isotropic Friedmann-Lemaître-Robertson-
Walker background geometry

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð5Þ

where aðtÞ is the scale factor. For the gauge field, we take
the following time-dependent configuration

Aμ ¼ ð0; AðtÞ; 0; 0Þ; ð6Þ

which preserves homogeneity while breaking the isotropy.
Using Eqs. (2) and (6), the time component of the

Maxwell equation (3) implies _θ ¼ 0 which shows that the
phase θ does not play any role at the level of background.
This is the advantage of working with the polar variables ρ
and θ rather than the original fields φ and φ̄.
The spatial components of the Maxwell equations (3)

yields

∂tðf2a _AÞ ¼ −e2aρ2A: ð7Þ

In comparison with the standard anisotropic inflation [20],
the right-hand side of the Maxwell equation has the
nonzero current coming from the induced mass term by
the gauge field. This term also induces an effective mass
e2AμAμ for the inflaton field. However, in order not to
destroy the slow-roll condition, i.e., the inflaton mass to be
small compared to the Hubble expansion rate during
inflation, the induced mass term should be negligible
during most of the period of inflation [25]. The background
is therefore similar to the case of standard anisotropic
inflation setup while interesting features of the models with
the effects of e2 appear at the level of perturbations [27].
The 0–0 component of the Einstein equations yields the

Friedmann equation

3M2
PH

2 ¼ 1

2
_ρ2 þ 1

2
m2ρ2 þ 1

2
a−2f2 _A2 þ 1

2
e2a−2ρ2A2; ð8Þ

where HðtÞ ¼ _a=a is the Hubble parameter and a dot
indicates the derivative with respect to the cosmic time.
Combining the above result with the i − i component of the
Einstein equations, we find the time evolution of the
Hubble parameter as

M2
P
_H ¼ −

1

2
_ρ2 −

1

3
a−2f2 _A2: ð9Þ

Since the charged mass term 1
2
e2a−2ρ2A2 behaves as a

potential term giving a mass to the inflaton field, it did not
appear in the time evolution of the Hubble parameter.
The right-hand side of (8) is the total energy density

where the first two terms are the standard energy density of
the inflaton. The third term is the kinetic energy of the
gauge field coming from the coupling between the inflaton
and the Maxwell terms while the last term comes from the
charged mass term which, as we discussed above, is only
important at the final stages of inflation. As soon as the
induced mass term by the gauge field (e2AμAμρ2) domi-
nates, it terminates inflation quickly.
Taking the variation with respect to φ, we obtain the

Klein-Gordon equation as
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ρ̈þ 3H _ρþm2ρ ¼ a−2ff;ρ _A
2 − e2a−2ρA2; ð10Þ

where f;ρ ¼ ∂ρf. The above equation shows the direct
coupling between the inflaton and gauge field in this
model.
Our model describes two different phases: (i) inflationary

stage when the effects of the charged mass term are
negligible and the setup is very similar to the standard
anisotropic inflation model containing a real inflaton field
[20]. (ii) When the charged mass term dominates, for
instance the last term in Eq. (8), so it quickly terminates
slow-roll inflation. During the first stage, which is most of
the period of inflation, we can neglect the charged mass
term in all the background equations (7), (8), and (10).
Now, we should choose an explicit functional form for

the coupling function fðρÞ. In the case of coupling of axion
with gauge fields, the desired symmetry of the system
under consideration uniquely fixes the functional form so
that the coupling function is linearly proportional to the
axion (see Refs. [30]). Here, however, we deal with a
phenomenological inflationary scenario and, as shown in
[20], with an appropriate form of the conformal coupling
fðρÞ, the gauge field drags energy continuously from the
inflaton sector which prevents the dilution of the vector
field in the exponentially expanding universe. This is an
attractor solution in which the electric field energy density
reaches a small but a nearly constant fraction of the total
energy density. Let us elaborate more on this effect. During
most of the period of inflation the effects of the induced
mass term e2AμAμρ2 are negligible so we can easily
integrate the Maxwell equation (7) obtaining

_A ¼ q0
af2

; ð11Þ

where q0 is an integration constant.
Note that the functional form of the gauge coupling

function fðρÞ determines the time dependence of the
electric field in the model. The third term in the right-
hand side of Friedmann equation (8) is the energy density
of the vector field which in the case of f ¼ 1 decays like
a−4. In order to prevent this dilution, using Eq. (11), it can
be seen that if we choose f ∝ a−2, the energy density of the
vector field remains constant. This result at background
level determines the functional form of fðρÞ [20]

fðρÞ ¼ exp

�
cρ2

2M2
P

�
; ð12Þ

where c ≥ 1 is a parameter. With this form of fðρÞ, the
system reaches the attractor regime in which the gauge
field’s energy density becomes a constant fraction of the
total energy density [20].
Alternatively, the time-dependence of fðρÞ can be

written as

f ¼
�
τ

τe

�
2c
; ð13Þ

where τ is the conformal time defined as τ ¼ R
dt=aðtÞ and

τe denotes the time of the end of inflation.
Substituting the above result, the energy density of the

vector field turns out to be

ρE ≡ 1

2
a−2f2 _A2 ¼ 1

2
q20H

4τ4ce τ4ð1−cÞ: ð14Þ

From the above relation we see that the energy density
of the vector field is almost constant during the inflation.
Now, it is easy to interpret the integration constant q0.
Demanding ρEjτ¼τe

¼ E2
0=2, we find

q0 ¼
E0

H2τ2e
; ð15Þ

where E0 is the amplitude of the electric field at the end of
inflation. Substituting Eqs. (13) and (15) in Eq. (11) and
then integrating, we find that

AðτÞ ¼ 1

−4cþ 1

E0

H2τ

�
τe
τ

�
4c−2

: ð16Þ

During the final stages of inflation when τ ∼ τe we find
AðτÞ ≈ − E0

H2τ
which is the same as the ansatz supposed in

[7]. However, note the important difference that during
most of period of inflation AðτÞ scales like AðτÞ ∼ τ−3

which is quite different from the ansatz employed in [7] and
in other works dealing with setup similar to [7]. This is the
key difference which significantly reduces the efficiency of
the Schwinger mechanism during inflation.
During the attractor phase, the contribution of the gauge

field to the total energy density of the model is given by the
ratio [20]

R≡ ρE
ρϕ

¼ E2
0f

−2a−4

m2ρ2 þ _ρ2
¼ c − 1

2c
ϵ ¼ I

2
ϵ; ð17Þ

where we have introduced the anisotropy parameter I ≡
ðc − 1Þ=c and ϵ is the slow-roll parameter which is given by

ϵ ¼ −
_H
H2

¼ 1

2c

�
V;ϕ

V

�
2

: ð18Þ

It is worth mentioning that there are no limitations on the
values of c and I at the background level except that c ≥ 1.
However, at the perturbation level, in order to satisfy the
observational constraints on CMB anisotropies [28] one
requires that I ≲ 10−7 [25,31,32].
To make the qualitative behavior of the model more

transparent, in Fig. 1(a) we have plotted the phase space
diagram of ðρ; _ρÞ for the fixed value of e ¼ 0.01 and for
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different values of c ¼ 2, 2.2 and 2.5. As it is clear from
this figure the starting time of the attractor phase depends
on the value of c parameter. The larger values of c
correspond to pumping more energy into the gauge field
and, consequently, the attractor phase happens earlier. In
Fig. 1b, the phase space diagram of ðρ; _ρÞ for the fixed
value of c ¼ 2 but for different values of e ¼ 0; 10−2 and
10−3 are plotted. As can be seen from this figure, the role of
e becomes important only at the final stage of inflation.
This is because the gauge field scales like A ∝ 1=τ3 [see
Eq. (16)] so the induced mass term e2AμAμρ2 becomes
important only toward the end of inflation when the
inflaton field become massive, violating the slow-roll
conditions.

III. PERTURBATION ANALYSIS

In this section, we present the cosmological perturba-
tions of the model. For the purpose of Schwinger pair
creation, we are interested only in the scalar perturbations.
The scalar perturbations around the background geom-

etry (5) are given by

ds2 ¼ −a2ð1þ 2N1Þdτ2 þ 2aB;idτdxi

þ a2ðð1þ 2ψÞδij þ E;ijÞdxidxj; ð19Þ

where N1, B, ψ , and E are the scalar modes.
Scalar perturbations in the matter sector are given by

φ → ρþ δφ; Aμ → Aμ þ δAμ; with

δAμ ¼ ðδA0; δAx; ∂yM; 0Þ; ð20Þ

where δφ, δA0, δAx, and M are the scalar modes in the
matter sector.
In total, we have nine scalar modes. However, not all of

these modes are physical degrees of freedom. The space-
time diffeomorphism invariance fixes two scalar modes.
We choose to work in the spatially flat gauge with

ψ ¼ E ¼ 0: ð21Þ
Moreover, the Uð1Þ invariance of the matter sector fixes
one of the scalar modes. We work in Coulomb gauge
∂iδAi ¼ 0, which implies

∂xδAx ¼ −∂y∂yM: ð22Þ
From the above relation, one of the scalar modes can be

solved in terms of the other. Fixing the gauges, then we
have six scalar modes. The direct calculations show that the
modes N1, B, and δA0 are nondynamical which can be
solved from a set of algebraic equations of motion and then
substituted back into the quadratic action of the remaining
perturbations. As shown in [25,27] these non-dynamical
modes are slow-roll suppressed [27] and their contributions
can be neglected to leading orders in slow-roll parameters.
Note that the perturbation analysis for the gauge fields and
the charged inflaton without neglecting the nondynamical
constraint equations has been considered in [33].
Going to the Fourier space and using the two-

dimensional rotational symmetry in y–z plane in the small
anisotropy limit and considering k ¼ ðkx; ky; 0Þ ¼ kðcos θ;
sin θ; 0Þ, from the Coulomb gauge condition Eq. (22) we find
M ¼ −i kxk2y δAx. After substituting this in Eq. (20), we obtain

FIG. 1. (a) The phase space plot with e ¼ 0.01 for different values of c ¼ 2; 2.2 and 2.5 from top to bottom, respectively. We have also
setm ¼ 10−6MP; ρð0Þ ¼ 12MP and _ρð0Þ ¼ 0. (b) The phase space plot with c ¼ 2 for different values of e ¼ 0; 10−2 and 10−3 from top
to bottom, respectively. As in left plot, m ¼ 10−6MP; ρð0Þ ¼ 12MP and _ρð0Þ ¼ 0.
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δAμ ¼ δAx

�
0; 1;−

kx
ky

; 0

�
: ð23Þ

The gauge field excitations δAμ can also be decomposed
into the transverse mode D1 and the longitudinal mode D2,
which are related to δAx and M as

D1 ≡ δAx − ik cos θM; ð24Þ

D2 ≡ cos θδAx þ iksin2θM: ð25Þ

Using the Coulomb gauge (22), it is easy to show that

D1 ¼
δAx

sin2θ
; D2 ¼ 0; ð26Þ

which shows that the longitudinal mode does not propagate
in the Coulomb gauge (22).
In summary, neglecting the contributions of the non-

dynamical modes, we have only three dynamical scalar
modes ðδφ; δφ; D1Þ which propagate in a quasi–dS back-
ground.
Implementing the following field redefinitions for the

canonically normalized fields q and D,

qk ≡ aδφk; Dk ≡ f sin θD1k; ð27Þ

and after performing some integration by parts, the quad-
ratic action to leading orders in terms of the small
parameters I and ϵ is obtained to be

S2 ¼
1

2

Z
d3kdτ

�
jq0kj2 −

�
k2 −

2þ 6I
τ2

þ 3ϵ

τ4H2
þ e2Iϵ
3τ2H2

�
τe
τ

�
4
�
jqkj2

þ 3I
τ2

ðq2k þ q̄2kÞ þD02
k −

�
k2 −

2

τ2
þ 2e2

τ2H2ϵ

�
τe
τ

�
4
�
D2

k

− 2

ffiffiffiffiffi
2I
3

r
sin θ
τ2

�
6 −

e2

H2

�
τe
τ

�
4
�
ðqk þ q̄kÞDk þ 2

ffiffiffiffiffi
6I

p sin θ
τ

ðqk þ q̄kÞD0
k

�
; ð28Þ

where we have set MP ¼ 1 and a prime denotes derivative
with respect to the conformal time. To obtain the above

action, we have used ρ ¼
ffiffi
2
ϵ

q
and A ¼

ffiffiffi
Iϵ
3

q
a τ2e

τ2
which are

obtained from the background equations.
The complex scalar modes q̄k and qk are responsible for

the Schwinger pair production process in our formalism.
The corresponding equation of motion for q can be
obtained from the action (28) as follows

q00k þ
�
k2 −

2

τ2
þ m2

H2τ2
þ e2E2

0

9H4τ2

�
τe
τ

�
4
�
qk

¼ −4
ffiffiffi
2

p E0ffiffiffi
ϵ

p
H
sin θ

��
1 −

e2τ4e
6H2τ4

�
Dk

τ2
−
D0

k

2τ

�
: ð29Þ

It is instructive to compare Eq. (29) with Eq. (2.13) of
Ref. [7]. The authors in Ref. [7] looked at a test complex
scalar field in a dS background in the presence of a constant
background electric field. Here, however, the quantum
fluctuations of the inflaton field are responsible for the
Schwinger pair production process. Moreover, in Ref. [7], a
constant electric field in a dS spacetime is imposed by hand
while in our model the electric field is driven by the
dynamics of the model. Besides, in our inflationary setup,
the slow-roll conditions provide a quasi–dS setup and the
gauge kinetic coupling fðρÞ prevents the electric field from
being diluted during inflation. Here, a constant background
electric field can be obtained via f ∝ a−2 (i.e., with c ≃ 1).

In this regard, our inflationary scenario is more natural with
a minimum number of parameters to study the Schwinger
process during an inflationary era.
Now let us elaborate more on the Mukhanov-Sasaki

equation (29) to study the Schwinger process and charged
particle production in ourmodel. Our Eq. (29) is different than
the corresponding equation used in previous works, e.g.,
Eq. (2.13) of [7] and those in [14,17,21–23] studying the
Schwinger effect in cosmological scenarios, in two aspects:
(i) In our case the quantum fluctuations of the electric field,
encoded in the scalarmodeDk, source thequantumfluctuation
of the complex field and therefore they indirectly contribute to
the pair production process. (ii) The last term in the left-hand
side of Eq. (29) is the effects of the background field in pair
production process which is proportional to a6 while it was
proportional toa2 inRef. [7]. The later result is also included in
Refs. [21,22] where a complex test field is considered in the
context of anisotropic inflation [20]. Note that in our model,
the quantum fluctuations of the inflaton field are responsible
for the Schwinger process of generating charged pair particles.
In this paper, we have two types of charged pair

production: those coming from the background electric
field which are encoded in the last term in the left-hand side
of Eq. (29) and those coming from the quantum fluctua-
tions of the gauge field in the right-hand side of Eq. (29).
The first is similar to what usually arise in nonperturbative
analysis of the Schwinger effect (see for instance Eq. (2.13)
of Ref. [7]) while the latter is a new type of perturbative
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source for the charged pair production. In previous studies,
the last term in the left-hand side of Eq. (29) which was
imposed by hand in the strong electric field regime, was
responsible for the nonperturbative Schwinger mechanism
in a dS background. However, in our analysis this term is
small during most of the period of inflation. In other words
we are working in the weak electric field regime.
Note that the last term in the left-hand side of Eq. (29) is

proportional to τ−6 and it dominates toward the end of
inflation τ → 0. So, there is a critical time τc beyond which
the perturbative approximation breaks down and Eq. (29)
is no longer applicable. Though we should consider the
nonperturbative Schwinger effect after τc but the time range
is very short and inflation ends quickly once we cross τc. In
order to find the critical time τc, let us work with the real
and imaginary parts of the complex field q:

q≡ vþ iu; q̄≡ v − iu: ð30Þ
In terms of the new fields defined in Eq. (30), the quadratic
action (28) takes the following form

S2¼
1

2

Z
d3kdτ

�
u02k−

�
k2−

2þ3ϵ

τ2

þ 3ϵ

τ4H2
þ e2Iϵ
3τ2H2

�
τe
τ

�
4
�
u2k

þv02k−
�
k2−

2þ3ϵþ12I
τ2

þ 3ϵ

τ4H2
þ e2Iϵ
3τ2H2

�
τe
τ

�
4
�
v2k

þD02
k−

�
k2−

2

τ2
þ 2e2

τ2H2ϵ

�
τe
τ

�
4
�
D2

k

−4
ffiffiffiffiffi
6I

p
sinθ

�
2Dk

τ2
−
D0

k

τ
þ e2

3H2

�
τe
τ

�
4Dk

τ2

�
vk

�
: ð31Þ

One advantage of working with these new variables is that
the quantum fluctuations of the electric field only couples
with v since qþ q̄ ¼ 2v and the imaginary component u
decouples completely.
The equations of motion for the modes v and D can be

obtained from the action (31) as follows

v00k þ
�
k2 −

2þ 12I
τ2

þ 3ϵ

H2τ4
þ Iϵe2M2

P

3H2τ2

�
τe
τ

�
4
�
vk

¼ 2
ffiffiffiffiffi
6I

p
sin θ

�
2Dk

τ2
−
D0

k

τ
−
e2M2

P

3H2

�
τe
τ

�
4Dk

τ2

�
; ð32Þ

and

D00
k þ

�
k2 −

2

τ2
þ 2e2M2

P

ϵH2τ2

�
τe
τ

�
4
�
Dk

¼ 2
ffiffiffiffiffi
6I

p
sin θ

�
vk
τ2

þ v0k
τ
−
e2M2

P

3H2

�
τe
τ

�
4 vk
τ2

�
: ð33Þ

We will estimate the critical time τc as the time in which
the system of coupled equations (32) and (33) cannot be

treated perturbatively. In order to do this, we should
compare the interaction terms with each other in both
equations. Let us first look at the modeD in Eq. (33). There
are two types of interaction terms. The self-interaction term

containing 2e2M2
P

ϵH2τ2
ðτeτ Þ4 in the left-hand side of Eq. (33) and

the interaction with the mode v in the right-hand side of

Eq. (33) giving rise to 2
ffiffiffiffiffi
6I

p
sin θ e2M2

P
3H2τ2

ðτeτ Þ4. Comparing

these terms with each other, and noting that
ffiffiffiffi
2I
3

q
ϵ ≪ 1, we

find that the self-interaction term dominants earlier.
Therefore, the critical time at which the mode D starts
to show nonperturbative behavior is determined by the self-
interaction term, given by

τD ¼ τe

�
e2M2

P

ϵH2

�1
4 ¼ τe

�
e2

8π2ϵ2PR

�1
4

; ð34Þ

where PR ¼ H2

8π2M2
Pϵ
∼ 2.1 × 10−9 is the curvature perturba-

tion power spectrum.
In the same manner, for the mode v we should compare

the two types of interactions in Eq. (32) such as Iϵe2M2
P

3H2τ2
ðτeτ Þ4

and 2
ffiffiffiffiffi
6I

p
sin θ e2M2

P
3H2 ðτeτ Þ4. The ratio of these interaction

terms is
ffiffi
8
3

q
sin θffiffi
I

p
ϵ
. Therefore we define the critical time

associated to these interactions as

τv ¼ τe

�
Ie2

48π2PR

�1
4

: ð35Þ

From Eqs. (35) and (34), we find

τv ¼ τD

�
Iϵ2

6

�1
4

: ð36Þ

As discussed before, the anisotropic inflationary
models generate statistical anisotropies which are tightly
constrained by the CMB data [28]. In order not to
generate large statistical anisotropy we require I ≲ 10−7

[24,25,31,32]. In addition, in order for the tensor pertur-
bations to be perturbatively under control, we require e≲
10−3 [27]. Taking the slow-roll parameter to be ϵ ∼ 10−2,
we find (note that during inflation τ < 0)

τD < τe ≲ τv: ð37Þ

This is an interesting result indicating that we can study
the mode v perturbatively from the past infinity to the end
of inflation ð−∞; τe�, while the mode D becomes non-
perturbative near the end of inflation. On the other hand,
the mode v is responsible for the charged pair production.
This analysis shows that the nonperturbative Schwinger
pair production does not take place during most of period of
inflation and may be relevant only towards the end of
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inflation. This conclusion is the key difference of our model
compared to other less realistic scenarios studied in
previous works on Schwinger mechanism during inflation.
This is because we took the complex scalar field to be the
inflaton field itself which is responsible for curvature
perturbations, and not a hypothetical test field decoupled
from inflation.

IV. PAIR PRODUCTION

In this section, we quantize the fields and find the
number of charged pairs which are produced perturbatively
during inflation.
From the action (28) we obtain the conjugate momenta

for the charged quantum fluctuations as Πq ¼ q̄0 and
Π̄q ¼ q0. Then promoting q to quantum operator and
expanding them in terms of the mode functions, we have

q̂ðτ;xÞ ¼
Z

d3k
ð2πÞ3 ða−kqkðτÞ þ b†kq̄−kðτÞÞe−ik:x; ð38Þ

in which the mode function qk satisfies Eq. (29)
accordingly.
Demanding the commutation relations ½q̂ðτ;xÞ;Π̂ðτ;x0Þ�¼

iδð3Þðx−x0Þwhile all other commutation relations being zero,
we find the following well-known commutation relations
between the annihilation and creations operators

½ak; a†k0 � ¼ ½bk; b†k0 � ¼ ð2πÞ3δð3Þðk − k0Þ: ð39Þ

In the same manner, we quantize the quantum fluctuation
of gauge field as

D̂ðτ;xÞ ¼
Z

d3k
ð2πÞ3 ðc−kDkðτÞ þ c†kD̄kðτÞÞe−ik:x; ð40Þ

with

½ck; c†k0 � ¼ ð2πÞ3δð3Þðk − k0Þ; ð41Þ

in which the mode function Dk satisfies Eq. (33).
The correlation functions (power spectra) for the free

parts of the modes v, u, andD can be simply obtained if we
neglect the effects of gauge field in background dynamics
by setting I ¼ 0. More precisely, we can solve the mode
functions vðτÞ, uðτÞ and DðτÞ for the limit I ¼ 0. Then we
take into account the effects of the gauge field on the
inflaton field and the pair production perturbatively in
terms of small parameters I and e.
Before going further it is useful to express u and v in

terms of the annihilation and creation operators. Sub-
stituting Eq. (38) in definition (30), we find

v̂ðτ;xÞ ¼
Z

d3k
ð2πÞ3 v̂kðτÞe

−ik:x

¼ 1

2

Z
d3k
ð2πÞ3 ½ða−k þ b−kÞqkðτÞ

þ ðb†k þ a†kÞq̄kðτÞ�e−ik:x; ð42Þ

and

ûðτ;xÞ ¼
Z

d3k
ð2πÞ3 ûkðτÞe

−ik:x

¼ 1

2i

Z
d3k
ð2πÞ3 ½ða−k − b−kÞqkðτÞ

þ ðb†k − a†kÞq̄kðτÞ�e−ik:x: ð43Þ

In order to implement the perturbative analysis,
we decompose the quadratic action (31) to the free
and interaction parts. Correspondingly, the interaction
Hamiltonians are obtained to be

Hint
uu ¼ −

3

2
Iϵ

Z
d3k
ð2πÞ3

�
1 −

e2

9H2

�
τe
τ

�
4
�
û2k
τ2

; ð44Þ

Hint
vv ¼ −

3

2
I
Z

d3k
ð2πÞ3

�
ϵþ 4 cos 2θ −

ϵe2

9H2

�
τe
τ

�
4
�
v̂2k
τ2

;

ð45Þ

Hint
vD ¼ 2

ffiffiffiffiffi
6I

p
sin θ

Z
d3k
ð2πÞ3

�
−
2D̂k

τ
þ D̂0

k

þ e2

3H2

�
τe
τ

�
4 D̂k

τ

�
v̂k
τ
; ð46Þ

Hint
DD ¼ 1

ϵ

Z
d3k
ð2πÞ3

e2

H2

�
τe
τ

�
4 D̂2

k

τ2
: ð47Þ

It is important to note that the interactions (44), (45), and
(46) become large after the time τv defined in (35) while
from Eq. (37) we see that they remain small till the end of
inflation. The interaction (47), however, becomes large
after the time τD given in Eq. (34) and from Eq. (37) it is
clear that it cannot be treated perturbatively for τ ∈ ðτD; τe�.
Therefore, we should be careful about the time interval in
which the interaction term (47) plays role in our subsequent
analysis. It is worth mentioning that this interaction will not
contribute to the pair production process and curvature
perturbation power spectrum. It only contributes to the
power spectrum of the isocurvature mode D.
Starting with the Bunch-Davies initial condition, the free

mode functions are given by
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vk ¼ uk ¼ Dk ¼
ie−ikτffiffiffiffiffiffiffi
2k3

p
τ
ð1þ ikτÞ: ð48Þ

Now, we have all we need in hand to calculate the number
of produced pairs. Before doing this, it is useful to clarify the
relation between the standard procedure of pair production
by the Schwinger mechanism through computing the
Bogoliubov coefficients and the perturbative analysis that
we apply here. It is well known that a nontrivial background
geometry, such as a time-dependent cosmological back-
ground, leads to a mixing between positive and negative
frequency modes. In other words, the positive frequency
mode function qk at asymptotic past τ → −∞ is given by a
linear combination of the positive and negative frequency
modes at asymptotic future τ → 0. Choosing the vacuum jΩi
in the asymptotic future by ãkjΩi ¼ b̃kjΩi ¼ 0, where

ãk ¼ αkak þ β̄kb
†
−k; b̃k ¼ β̄−ka

†
−k þ α−kbk; ð49Þ

with αk and βk being the Bogoliubov coefficients, and
assuming the usual commutation relations between ãk and
ã†k, we have jαkj2 − jβkj2 ¼ 1. By simple algebra one can
express ak and bk in terms of ãk and b̃k as follows

ak ¼ ᾱkãk − β̄kb̃
†
−k; bk ¼ ᾱ−kb̃k − β̄−kã

†
−k: ð50Þ

The number of the charged pairs produced from the
infinite past to infinite future is

N k ¼ hΩja†kakjΩi ¼ hΩjb†−kb−kjΩi ¼ jβkj2: ð51Þ

The associated Feynman diagrams giving nonzero contri-
butions to Eq. (51) are shown in Fig. 2. In order to calculate
N k in Eq. (51), we can implement the in-in formalism
instead of computing the Bogoliubov coefficient through
the equation of motion (29). This is because the interaction
terms are small during inflation, allowing for a perturbative
in-in analysis.
The in-in formula for the correlation functions of a

typical scalar mode δX is [34,35]

ΔhδX2ðτcÞi ¼
Z

τc

τ0

dτ̃1

Z
τc

τ0

dτ1h0jHIðτ̃1ÞδX2ðτcÞHIðτ1Þj0i

− 2Re
�Z

τc

τ0

dτ1

Z
τ1

τ0

dτ2

× h0jδX2ðτcÞHIðτ1ÞHIðτ2Þj0i
�
þ � � � ; ð52Þ

in which HI are the interaction Hamiltonians in the
interaction picture and j0i is the free vacuum defined in
the absence of the interactions. Looking at (51), in order
to find the number of pairs, one can easily calculate
hΩja†kak0 jΩi by means of Eq. (52). The second term in
the above formula vanishes since the effect of the creation
operator on the free vacuum from the left vanishes and we
simply have

hΩja†kak0 jΩi¼
Z

τe

−∞
dτ̃1

Z
τe

−∞
dτ1h0jHint

vDðτ̃1Þa†kak0Hint
vDðτ1Þj0i

≡N kð2πÞ3δ3ðk−k0Þ; ð53Þ

with

N k ¼
�
3

2
−
4e2M2

Pk
4τ4e

35H2
þ 8e4M4

Pk
8τ8e

3675H4

�
I sin2 θN2

k; ð54Þ

where Nk ¼ − lnð−kτeÞ is the number of e-folds counted
from the time when the mode of interest k has left the
horizon till the time of end of inflation. Note that the
integrals are taken from the past infinity to the end of
inflation. This is because the interaction Hamiltonian Hint

vD
becomes nonperturbative only after τv ≳ τe and therefore
we are allowed to perform the integrals from the past
infinity to the end of inflation.
The scale dependent of N k is clear from the last two

terms in bracket in Eq. (54). To quantify this more
appropriately, let us define the scale kD for modes which
leave the horizon at τ ¼ τD, corresponding to kDτD ¼ −1.
Then using the expression for τD given in Eq. (34), we
obtain

N k ¼
�
3

2
−
4ϵ

35

�
k
kD

�
4

þ 8ϵ2

3675

�
k
kD

�
8
�
Isin2θN2

k: ð55Þ

For observable CMB scales where kτe ∼ k=kD → 0, the
dominant term in N k is the first term in the bracket in
Eq. (54). In next section, we relate this to the amplitude of
quadrupolar statistical anisotropy. On the other hand, for
modes which leave the horizon only toward the end of
inflation corresponding to k≳ kD, N k can start to grow.
However, this period is short and inflation ends quickly
afterward. In addition, these scales are exponentially small
compared to observable scales and cannot have any
interesting observables effects. In a sense, the possible

FIG. 2. Feynman diagrams corresponding to interaction
Hamiltonian (46) giving rise perturbative pair production in
(53). These transfer vertices show the interactions between the
charged scalar field q and its complex conjugate q̄with the gauge
field excitation D.

SCHWINGER MECHANISM DURING INFLATION PHYS. REV. D 99, 103525 (2019)

103525-9



nonperturbative pair creations for scales smaller than k−1D
becomes entangled with preheating mechanism of particle
creations on small scales at the end of inflation.
In addition, we see that the number density of produced

pairs is anisotropic, being proportional to sin2 θ where θ is
the angle between mode number k and a preferred direction
in the sky (the direction of anisotropy determined by the
background electric field, which in our case is along the
x-direction).

V. CURVATURE AND ISOCURVATURE
POWER SPECTRA

In this section, we calculate the power spectra of the
scalar modes in our model. We deal with a multiple field
scenario with the scalar modes u and v coming from the
quantum fluctuations of the complex inflaton field while
the scalar mode D coming from the quantum fluctuation of
the electric field.
The comoving curvature perturbation is given by R ¼

−ψ þHδu where δu is the velocity potential which is
defined as δTt

i ¼ ∂iδu. In the spatially flat gauge (21), the
curvature perturbation reduces to R ¼ Hδu with

δu ¼ −
qþ q̄
2ϕ0 ¼ −

v
ϕ0 : ð56Þ

The above result shows that only the real part of the
quantum fluctuations of the inflaton contribute to the
curvature perturbations, yielding

R ¼ Hδu ¼ −
�
H
_ϕ

�
v
a
: ð57Þ

The associated two-point correlation function is given by

hR†
kRk0 i ¼

�
H
_ϕ

�
2 hv†vi

a2
¼ 2π2

k3
PRð2πÞ3δðk − k0Þ; ð58Þ

where PR is the dimensionless power spectrum of the
curvature perturbations.
To find the power spectrum, first we need to find the two-

point correlation function for the real part of the scalar
mode v which is given by

hv†kvk0 i ¼ H2

2k3
ð2πÞ3δðk − k0Þ þ Δhv†kvk0 i; ð59Þ

where the first term is obtained using Eq. (48) coming from
the free theory in the absence of interaction between the
gauge field and the inflaton field. The second term in (59),
Δhv†kvk0 i, represents contributions from the interactions
listed in Eqs. (44), (45), (46), and (47). The leading
contributions in Δhv†kvk0 i come from the off-diagonal
interaction Eq. (46) which are shown in the Feynman
diagrams in Fig. 2, yielding

Δhv†kvk0 i ¼ H2

k3

�
1 −

e2

42H2Nk
þ e4

4312H4N2
k

�

× 12Isin2θN2
kð2πÞ3δ3ðk − k0Þ: ð60Þ

Substituting Eq. (60) into Eqs. (59) and Eq. (58) we find
the curvature perturbations power spectrum to be

PR ¼ H2

8π2ϵM2
P
ð1þ 24FðβÞIsin2θN2

kÞ; ð61Þ

where we have defined the dimensionless parameter β and
the function FðβÞ as follows

β≡ e2M2
P

42H2Nk
; FðβÞ≡ 1 − β þ 9

22
β2: ð62Þ

The above result coincides with the result obtained in [27]
using a different gauge. Assuming MP=H ∼ 105 in chaotic
inflation model, we would have β ≳ 1 for e≳ 10−4.
However, as shown in [27], in order to keep the anisotropies
in tensor sector under perturbative control one actually
requires e≲ 10−3, so in practice β is not much bigger than
unity.
Conventionally, the statistical anisotropies in curvature

perturbation power spectrum can be parametrized in terms
of quadrupole amplitude g�, defined via

PR ¼ Pð0Þ
R ð1þ g� cos2 θÞ; ð63Þ

where Pð0Þ
R is the isotropic power spectrum in the absence

of gauge field. Comparing the above definition with our
result obtained in Eq. (61), we have

g� ¼ −24IN2
kFðβÞ: ð64Þ

There are tight observational constraints on the amplitude
of g�, requiring jg�j < 10−2 [28]. With Nk ≃ 60 for CMB
scales, we conclude that I ≲ 10−7.
We can now relate the number density of the created

pairs to the amplitude of quadrupole anisotropy g�. Using
Eqs. (55) and (64), and assuming β ∼Oð1Þ, we find
N k ∼ g�. This is an interesting result, providing a direct
link between the amplitude of quadrupole anisotropy and
the number density of the created pairs. As discussed
before, the conventional nonperturbative Schwinger
mechanism will not take place during inflation and it is
only the perturbative pair creation which operates during
most of the period of inflation. However, the key difference
in our model compared to previous works is that the
complex scalar field is the inflaton field itself which at
the same time is responsible for curvature perturbation. As
a result, there is not much room for the efficiency of
charged pair creation. This is unlike other hypothetical
setups where the complex scalar field assumed to be a test
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field decoupled from the inflationary sector and also where
the electric field was given as a background field with no
dynamical mechanism for its generation.
To continue, we calculate the power spectra of the

isocurvature modes which were not calculated in [27].
With the quadratic action (31) at hand we can easily
calculate the power spectra of the other scalar modes as
well. We note that the scalar mode u is completely
decoupled from the other modes and therefore it is an
isocurvature mode. One can directly solve the full equation
of motion for the mode u from Eq. (31). However, the
deviations from the standard free action are encoded in
the interaction Hamiltonian (44) and it is easier to find the
corrections through the in-in formula (52). The corrections
in the power spectrum of u come only from the interaction
Hamiltonian (44) with the Feynman diagrams shown in the
second row of Fig. 3. Performing the in-in integral, the
correction in the power spectrum of u is obtained to be

Δhu†kuk0 i ¼ −
H2

k3

�
1 −

e2

84H2Ne

�
IϵNkð2πÞ3δ3ðk − k0Þ:

ð65Þ

Consequently, the corresponding dimensionless power
spectrum is

Pu ¼
�
H
2π

�
2

ð1 − ð2 − βÞÞIϵNk: ð66Þ

What remains is the scalar modeD, the fluctuation of the
gauge field. This mode couples to the curvature perturba-
tion through the off-diagonal interaction (46). Therefore, it
is an entropy mode. Following Ref. [36], the entropy mode
interacts with the curvature perturbations so we should
calculate their cross correlation. It is easy to see that the
associated two-point function only receives contribution

from the one-vertex Feynman diagrams between v
and D which are shown in the third row of Fig. 3.
Correspondingly, the cross correlation between v and D
modes is given by

Δhv†kDk0 i

¼ H2

k3

�
1 −

e2

42H2Nk

� ffiffiffiffiffi
6I

p
sin θNkð2πÞ3δ3ðk − k0Þ;

ð67Þ

yielding the dimensionless correlation function

PvD ¼ 2ð1 − βÞ
ffiffiffiffiffi
6I

p
sin θNk: ð68Þ

Finally, we calculate the power spectrum of the mode D.
For this purpose, we should be careful about the IR limit of
the in-in integrals in Eq. (52) since the mode D is
perturbative only till the time τ ¼ τD given in Eq. (34).
The free wave function is given by the Bunch-Davies
vacuum (48) and is the same as the mode v shown in
Eq. (59). The corrections in the power spectrum of D come
from the last Feynman diagrams in Fig. 3, yielding

ΔhD†
kDk0 i ¼ −

H2

k3

�
1þ e2

4H2ND
−

3e4

1232H4ND

�

×
8

7
Isin2θNDð2πÞ3δ3ðk − k0Þ; ð69Þ

where ND ¼ − lnð−kτDÞ. The dimensionless power spec-
trum for the entropy mode D then will be

PD ¼
�
H
2π

�
2
�
1 −

16

7

�
1þ 21

2
β −

189

44
β2ND

�
Isin2θND

�
:

ð70Þ

We note that the contribution from the interaction
Hamiltonian (47) becomes nonperturbative after the time
τD while the mode v is still perturbative. The duration
between τD and τe, however, cannot be too large since we
need about 60 e-folds of inflation to solve the flatness and
the horizon problems. Note that this difference originates
from the induced mass term e2AμAμρ2. However, as argued
before, this mass term should be negligible during most of
the period of inflation to allow for slow-roll inflation.
Consequently, the time difference between τe and τD is
about 1–2 e-folds and we can practically set ND ≃ Nk.

VI. SUMMARY AND DISCUSSIONS

In this work, we studied the efficiency of the Schwinger
pair production in a minimal setup of inflation in which the
inflaton field is a complex scalar field charged under the
Uð1Þ gauge field. We have shown that there are severe
constraints on the efficiency of the Schwinger mechanism

FIG. 3. The Feynman diagrams representing direct vertices
originating from the interaction Hamiltonians listed in Eqs. (44),
(45), (46), and (47).

SCHWINGER MECHANISM DURING INFLATION PHYS. REV. D 99, 103525 (2019)

103525-11



in this scenario. In our setup the nearly constant electric
field and a quasi–de Sitter background are natural attractor
solutions of the field equations, in contrast to the previous
considerations where a constant and uniform electric field
in a fixed dS background geometry has been imposed by
hand. Due to the smallness of the electric field energy
density during much of the period of inflation, charged pair
production could only occur perturbatively in this setup.
The standard Schwinger pair production can become
efficient only when the induced mass term e2AμAμρ2

becomes significant. But in this limit a large effective
mass is induced for the inflaton field which violates the
slow-roll condition, ending inflation abruptly. Therefore,
the nonperturbative Schwinger pair creation may take place
only toward the final stages of inflation and on very small
scales.
We have shown that the pair production in our infla-

tionary model is negligible since the number of pairs in
Eq. (54) turned out to be proportional to the anisotropic
parameter I which is tightly constrained by the CMB
observations, I ≲ 10−7. More specifically, we have shown
that the number of the created pairs is related to the
amplitude of quadrupolar statistical anisotropy g� which
is tightly constrained by cosmological observations. One
may wonder if the extension of the setup to the case of
isotropic model would yield significantly larger values of
pair numbers. It is easy to see that this cannot be the case.
The isotropic extension of our model was studied in [29]
containing a triplet of Uð1Þ gauge field charged under
complex scalar fields. There is no constraint from statistical
anisotropy in the isotropic extension of the current model.
However, the condition that the curvature perturbation
power spectrum is nearly scale invariant requires that
I < 10−4. Although this is about three orders of magnitude
larger than the bound on I in our anisotropic model,
nonetheless the number of created pairs is small.
Recently it is shown that, in contrast to the Abelian U(1)

case, when the Schwinger effect is driven by an SU(2)
gauge field coupled to a charged scalar doublet, both the
Schwinger pair production and the induced current
decrease as the interaction strength increases [37,38]. It
is argued that the isotropy of the SU(2) model plays a

crucial role in suppression of the particle production rate
and also the reduction of the induced current in the strong
field limit.
It seems that if the inflaton field itself is a complex field

(as in our model) and its quantum fluctuations to be
responsible for the Schwinger pair production, then we
cannot achieve significant number of pairs. One extension
beyond our work is to apply the idea of quasisingle field
inflation [35]. In this scenario the charged scalar field
responsible for Schwinger pairs is a semiheavy charged
scalar field while the inflaton field is a real scalar field
coupled to the gauge field. This idea is a combination of
[21,23]. Another option can be to look at the Schwinger
mechanism in the model of charge hybrid inflation [39]. In
this model the inflaton field is a real scalar field while the
complex scalar field is the waterfall field which terminates
inflation. The waterfall field is coupled to the Uð1Þ field
which may lead to Schwinger pair production. In this setup,
the sector responsible for generating curvature perturbation
(the inflaton field) is different than the sector responsible
for the pair creation (the waterfall field), so the CMB
constraints may be relaxed and there may exist a corner of
parameter space where the Schwinger mechanism may be
efficient. We plan to come back to this question in the
future.
Since the pair production in this minimal inflationary

model is unmeasurably small on large (CMB) scales,
therefore there is no need to consider the backreaction
effects of these particles. Consequently, the Schwinger
effect cannot have any large scale effects such as con-
straining inflationary magnetogenesis scenarios as envis-
aged in [7].

ACKNOWLEDGMENTS

We thank Jiro Soda for correspondences and comments
on the draft and S. A. Hosseini Mansoori for assistance in
XACT code. M. A. Gorji thanks the Yukawa Institute for
Theoretical Physics at Kyoto University for hospitality
during the “2019 YITP Asian-Pacific Winter School and
Workshop on Gravitation and Cosmology”where this work
was in its final stage.

[1] J. Martin, Lect. Notes Phys. 738, 193 (2008).
[2] L. Parker, Phys. Rev. Lett. 21, 562 (1968); Phys. Rev. 183,

1057 (1969); Phys. Rev. D 3, 346 (1971); 3, 2546(E) (1971).
[3] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,

206(E) (1976).
[4] F. Sauter, Z. Phys. 69, 742 (1931); W. Heisenberg and H.

Euler, Z. Phys. 98, 714 (1936); J. S. Schwinger, Phys. Rev.

82, 664 (1951); F. Gelis and N. Tanji, Prog. Part. Nucl. Phys.
87, 1 (2016).

[5] R. Sharma and S. Singh, Phys. Rev. D 96, 025012 (2017);
A. Ferreiro, J. Navarro-Salas, and S. Pla, Phys. Rev. D 98,
045015 (2018).

[6] J. Garriga, Phys. Rev. D 49, 6327 (1994); 49, 6343 (1994);
V. M. Villalba, Phys. Rev. D 52, 3742 (1995); M. B. Frb,

SHAKERI, GORJI, and FIROUZJAHI PHYS. REV. D 99, 103525 (2019)

103525-12

https://doi.org/10.1007/978-3-540-74353-8
https://doi.org/10.1103/PhysRevLett.21.562
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRevD.3.346
https://doi.org/10.1103/PhysRevD.3.2546
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/j.ppnp.2015.11.001
https://doi.org/10.1016/j.ppnp.2015.11.001
https://doi.org/10.1103/PhysRevD.96.025012
https://doi.org/10.1103/PhysRevD.98.045015
https://doi.org/10.1103/PhysRevD.98.045015
https://doi.org/10.1103/PhysRevD.49.6327
https://doi.org/10.1103/PhysRevD.49.6343
https://doi.org/10.1103/PhysRevD.52.3742


J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka, and A.
Vilenkin, J. Cosmol. Astropart. Phys. 04 (2014) 009.

[7] T. Kobayashi and N. Afshordi, J. High Energy Phys. 10
(2014) 166.

[8] W. Fischler, P. H. Nguyen, J. F. Pedraza, and W. Tangarife,
Phys. Rev. D 91, 086015 (2015).

[9] I. I. Cotescu and C. Crucean, Phys. Rev. D 87, 044016
(2013); C. Crucean, Phys. Rev. D 85, 084036 (2012); C.
Crucean and M. A. Bloi, Phys. Rev. D 93, 044070 (2016).

[10] A.Di Piazza, E. Lotstedt, A. I.Milstein, andC. H.Keitel, Phys.
Rev. Lett. 103, 170403 (2009); G. V. Dunne, H. Gies, and R.
Schutzhold, Phys. Rev. D 80, 111301 (2009); G. Torgrimsson,
C. Schneider, J. Oertel, andR. Schtzhold, J. High EnergyPhys.
06 (2017) 043; H. Taya, Phys. Rev. D 99, 056006 (2019); G.
Torgrimsson, Phys. Rev. D 99, 096002 (2019).

[11] S. Weinberg, The Quantum Theory of Fields. Vol. 1:
Foundations (Cambridge University Press, Cambridge,
England, 2005).

[12] S. P. Kim and D. N. Page, Phys. Rev. D 78, 103517 (2008);
C. Stahl, E. Strobel, and S. S. Xue, Phys. Rev. D 93, 025004
(2016).

[13] T. Hayashinaka, T. Fujita, and J. Yokoyama, J. Cosmol.
Astropart. Phys. 07 (2016) 010; T. Hayashinaka and J.
Yokoyama, J. Cosmol. Astropart. Phys. 07 (2016) 012; T.
Hayashinaka and S. S. Xue, Phys. Rev. D 97, 105010
(2018).

[14] M. Banyeres, G. Domnech, and J. Garriga, J. Cosmol.
Astropart. Phys. 10 (2018) 023.

[15] E. Bavarsad, C. Stahl, and S. S. Xue, Phys. Rev. D 94,
104011 (2016).

[16] R. Sharma, S. Jagannathan, T. R. Seshadri, and K. Sub-
ramanian, Phys. Rev. D 96, 083511 (2017); C. Stahl, Nucl.
Phys. B939, 95 (2019); S. Chakraborty, S. Pal, and S.
SenGupta, arXiv:1810.03478; T. Kobayashi and M. S.
Sloth, arXiv:1903.02561.

[17] O. O. Sobol, E. V. Gorbar, M. Kamarpour, and S. I.
Vilchinskii, Phys. Rev. D 98, 063534 (2018).

[18] W. Tangarife, K. Tobioka, L. Ubaldi, and T. Volansky, J.
High Energy Phys. 02 (2018) 084; W. Tangarife, K.
Tobioka, L. Ubaldi, and T. Volansky, arXiv:1706.00438.

[19] M. Giovannini, Phys. Rev. D 97, 061301 (2018).
[20] M. A. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett.

102, 191302 (2009).

[21] J. J. Geng, B. F. Li, J. Soda, A. Wang, Q. Wu, and T. Zhu, J.
Cosmol. Astropart. Phys. 02 (2018) 018.

[22] H. Kitamoto, Phys. Rev. D 98, 103512 (2018).
[23] W. Z. Chua, Q. Ding, Y. Wang, and S. Zhou, J. High Energy

Phys. 04 (2019) 066.
[24] R. Emami, H. Firouzjahi, S. M. Sadegh Movahed, and M.

Zarei, J. Cosmol. Astropart. Phys. 02 (2011) 005.
[25] R. Emami and H. Firouzjahi, J. Cosmol. Astropart. Phys. 10

(2013) 041.
[26] V. M. Villalba, Phys. Rev. D 60, 127501 (1999); V. M.

Villalba and W. Greiner, Mod. Phys. Lett. A 17, 1883
(2002).

[27] X. Chen, R. Emami, H. Firouzjahi, and Y. Wang, J. Cosmol.
Astropart. Phys. 08 (2014) 027.

[28] J. Kim and E. Komatsu, Phys. Rev. D 88, 101301 (2013); P.
A. R. Ade et al. (Planck Collaboration), Astron. Astrophys.
594, A20 (2016); A. Durakovic, P. Hunt, S. Mukherjee, S.
Sarkar, and T. Souradeep, J. Cosmol. Astropart. Phys. 02
(2018) 012.

[29] H. Firouzjahi, M. A. Gorji, H. Mansoori, A. Karami, and T.
Rostami, arXiv:1812.07464.

[30] M. Peloso, L. Sorbo, and C. Unal, J. Cosmol. Astropart.
Phys. 09 (2016) 001; A. Papageorgiou, M. Peloso, and C.
Unal, J. Cosmol. Astropart. Phys. 09 (2018) 030.

[31] M. a. Watanabe, S. Kanno, and J. Soda, Prog. Theor.
Phys. 123, 1041 (2010); N. Bartolo, S. Matarrese, M.
Peloso, and A. Ricciardone, Phys. Rev. D 87, 023504
(2013).

[32] A. A. Abolhasani, R. Emami, J. T. Firouzjaee, and H.
Firouzjahi, J. Cosmol. Astropart. Phys. 08 (2013) 016.

[33] K. D. Lozanov and M. A. Amin, J. Cosmol. Astropart. Phys.
06 (2016) 032.

[34] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[35] X. Chen and Y. Wang, J. Cosmol. Astropart. Phys. 04

(2010) 027.
[36] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Phys.

Rev. D 63, 023506 (2000).
[37] K. D. Lozanov, A. Maleknejad, and E. Komatsu, J. High

Energy Phys. 02 (2019) 041.
[38] A. Maleknejad and E. Komatsu, arXiv:1808.09076.
[39] A. A. Abolhasani, R. Emami, and H. Firouzjahi, J. Cosmol.

Astropart. Phys. 05 (2014) 016.

SCHWINGER MECHANISM DURING INFLATION PHYS. REV. D 99, 103525 (2019)

103525-13

https://doi.org/10.1088/1475-7516/2014/04/009
https://doi.org/10.1007/JHEP10(2014)166
https://doi.org/10.1007/JHEP10(2014)166
https://doi.org/10.1103/PhysRevD.91.086015
https://doi.org/10.1103/PhysRevD.87.044016
https://doi.org/10.1103/PhysRevD.87.044016
https://doi.org/10.1103/PhysRevD.85.084036
https://doi.org/10.1103/PhysRevD.93.044070
https://doi.org/10.1103/PhysRevLett.103.170403
https://doi.org/10.1103/PhysRevLett.103.170403
https://doi.org/10.1103/PhysRevD.80.111301
https://doi.org/10.1007/JHEP06(2017)043
https://doi.org/10.1007/JHEP06(2017)043
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1103/PhysRevD.99.096002
https://doi.org/10.1103/PhysRevD.78.103517
https://doi.org/10.1103/PhysRevD.93.025004
https://doi.org/10.1103/PhysRevD.93.025004
https://doi.org/10.1088/1475-7516/2016/07/010
https://doi.org/10.1088/1475-7516/2016/07/010
https://doi.org/10.1088/1475-7516/2016/07/012
https://doi.org/10.1103/PhysRevD.97.105010
https://doi.org/10.1103/PhysRevD.97.105010
https://doi.org/10.1088/1475-7516/2018/10/023
https://doi.org/10.1088/1475-7516/2018/10/023
https://doi.org/10.1103/PhysRevD.94.104011
https://doi.org/10.1103/PhysRevD.94.104011
https://doi.org/10.1103/PhysRevD.96.083511
https://doi.org/10.1016/j.nuclphysb.2018.12.017
https://doi.org/10.1016/j.nuclphysb.2018.12.017
http://arXiv.org/abs/1810.03478
http://arXiv.org/abs/1903.02561
https://doi.org/10.1103/PhysRevD.98.063534
https://doi.org/10.1007/JHEP02(2018)084
https://doi.org/10.1007/JHEP02(2018)084
http://arXiv.org/abs/1706.00438
https://doi.org/10.1103/PhysRevD.97.061301
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1088/1475-7516/2018/02/018
https://doi.org/10.1088/1475-7516/2018/02/018
https://doi.org/10.1103/PhysRevD.98.103512
https://doi.org/10.1007/JHEP04(2019)066
https://doi.org/10.1007/JHEP04(2019)066
https://doi.org/10.1088/1475-7516/2011/02/005
https://doi.org/10.1088/1475-7516/2013/10/041
https://doi.org/10.1088/1475-7516/2013/10/041
https://doi.org/10.1103/PhysRevD.60.127501
https://doi.org/10.1142/S0217732302008289
https://doi.org/10.1142/S0217732302008289
https://doi.org/10.1088/1475-7516/2014/08/027
https://doi.org/10.1088/1475-7516/2014/08/027
https://doi.org/10.1103/PhysRevD.88.101301
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1088/1475-7516/2018/02/012
https://doi.org/10.1088/1475-7516/2018/02/012
http://arXiv.org/abs/1812.07464
https://doi.org/10.1088/1475-7516/2016/09/001
https://doi.org/10.1088/1475-7516/2016/09/001
https://doi.org/10.1088/1475-7516/2018/09/030
https://doi.org/10.1143/PTP.123.1041
https://doi.org/10.1143/PTP.123.1041
https://doi.org/10.1103/PhysRevD.87.023504
https://doi.org/10.1103/PhysRevD.87.023504
https://doi.org/10.1088/1475-7516/2013/08/016
https://doi.org/10.1088/1475-7516/2016/06/032
https://doi.org/10.1088/1475-7516/2016/06/032
https://doi.org/10.1103/PhysRevD.72.043514
https://doi.org/10.1088/1475-7516/2010/04/027
https://doi.org/10.1088/1475-7516/2010/04/027
https://doi.org/10.1103/PhysRevD.63.023506
https://doi.org/10.1103/PhysRevD.63.023506
https://doi.org/10.1007/JHEP02(2019)041
https://doi.org/10.1007/JHEP02(2019)041
http://arXiv.org/abs/1808.09076
https://doi.org/10.1088/1475-7516/2014/05/016
https://doi.org/10.1088/1475-7516/2014/05/016

