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We apply the holographic principle in the cosmological context through the nonadditive Tsallis entropy
used to describe the thermodynamic properties of nonstandard statistical systems such as the gravitational
ones. Assuming the future event horizon as the infrared cutoff, we build a dark energy model free from
cosmological inconsistencies, which includes standard thermodynamics and standard holographic dark
energy as a limiting case. We thus describe the dynamics of Tsallis holographic dark energy in a flat
Friedmann-Lemaître-Roberson-Walker background. Hence, we investigate cosmological perturbations in
the linear regime on subhorizon scales. We study the growth of matter fluctuations in the case of clustering
dark matter and a homogeneous dark energy component. Furthermore, we employ the most recent late-time
cosmic data to test the observational viability of our theoretical scenario. We thus obtain constraints on the
free parameters of the model by means of Monte Carlo numerical method. We also used Bayesian selection
criteria to estimate the statistical preference for Tsallis holographic dark energy compared to the
concordance ΛCDM paradigm. Our results show deviations from standard holographic dark energy
within the 2σ confidence level. Finally, the analysis of the dark energy equation of state indicates a
quintessencelike behavior with no evidence for phantom-divide crossing at the 1σ level.
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I. INTRODUCTION

The accelerated phase of the late-time cosmic expansion
first observed in the Hubble diagram of type Ia supernovae
[1,2] cannot be explained by assuming matter (baryonsþ
cold dark matter) and radiation as the only constituents in
the energy budget of the Universe. Modifications of general
relativity [3–13] represent one possibility to address the
late-time acceleration problem considered to be of gravi-
tational origin. On the other hand, the observed behavior of
the cosmic fluid can be attributed to the extra degrees of
freedom of new exotic terms in the energy-momentum
tensor, giving rise to the so-called dark energy models
[14–18]. The cosmological constant Λ, while the most
simple dark energy candidate, does not provide a satisfac-
tory solution of the issue due to the fine-tuning and
coincidence problems [19–22]. Also, dynamical dark
energy models characterized by a time-evolving equation
of state are purely based on phenomenological arguments,
which make them unlikely to represent an effective solution
to the cosmological puzzle [23–25].
Alternatively, the origin and nature of dark energy can be

studied through the holographic principle of quantum
gravity [26] applied in the cosmological context. In this
scheme, the vacuum energy from the ultraviolet quantum

cutoff is related to the characteristic length of the Universe,
and all the physical degrees of freedom are described in
terms of some quantities at the Universe’s boundary [27].
The resulting holographic dark energy (HDE) models can
explain the current acceleration and are found to be in
agreement with observations [28–32]. These scenarios
provide also interesting cosmological features being able
to successfully alleviate the fine-tuning and coincidence
problems [33–36]. Moreover, the holographic principle has
been invoked to unify dark matter and dark energy into a
single scheme by relating the scale length to second-order
curvature invariants [37].
Similarly to a black hole, in the cosmological applica-

tions of holography, the entropy of the whole Universe is
proportional to its area. However, the standard Boltzmann-
Gibbs (BG) theory is not valid for gravitational systems,
where the partition function diverges [38]. The fundamental
hypothesis of the BG entropy is the weak probabilistic
correlations between the elements of the system. The BG
entropy is assumed to be an additive function for two
statistically independent systems. However, systems with
long-range interactions, such as gravitational ones, are
nonadditive since the energy between the different parts
of the system is not negligible compared to the total energy.
In this case, the unusual thermodynamic properties require
the use of a generalized formalism known as Tsallis entropy
[39–41], parametrized by a nonadditive exponent β. This*rocco.dagostino@roma2.infn.it
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generalized approach reduces to the standard BG entropy in
the limit β ¼ 1.
Dark energy in the framework of Tsallis statistics was

first investigated in [42]. Later on, a Tsallis holographic
dark energy (THDE) model was proposed in [43], where
standard entropy and the usual HDE are not accounted as a
limiting case. This disadvantage arises from considering the
Hubble horizon as the characteristic length of the Universe,
which leads to unrealistic cosmological scenarios in the
case of standard HDE [44,45]. More recently, the Tsallis
entropy has been considered to investigate the variational
behavior of the nonadditive exponent with the energy
scale [46].
In this work, we assume the future event horizon as the

Universe’s characteristic length. This permits a consistent
generalization of additive entropy which recovers standard
HDE in the limit β ¼ 1.
The structure of the paper is as follows. In Sec. II, we

present the dark energy model built upon the cosmological
application of the holographic principle through the non-
additive Tsallis entropy. In Sec. III, we derive the dynami-
cal equations governing the background evolution of a flat
Friedmann-Lemaître-Roberson-Walker (FLRW) universe
described by the THDE model. Then, in Sec. IV, we
discuss cosmological perturbations of the fluid composed
by matter and HDE in the linear regime on subhorizon
scales. In Sec. V, we describe the experimental data sets we
employ to test our theoretical scenario. In Sec. VI, we
implement a Bayesian Monte Carlo approach to get bounds
on the cosmological parameters, and we study the statistical
performance of the THDE models through the model
selection criteria. Finally, in Sec. VII, we summarize the
obtained results and discuss the future perspectives of
our work.
Throughout this paper, we use physical units such that

ℏ ¼ kB ¼ c ¼ 1.

II. TSALLIS HOLOGRAPHIC DARK ENERGY

The standard derivation of the HDE density is based on
the entropy-area relation of black holes, S ∝ A, being A ¼
4πL2 the area of the horizon [27]. Quantum gravity
considerations, however, show that the above definition
can be actually modified [47]. In fact, a generalization of
the BG theory resulting from the application of nonexten-
sive statistical mechanics leads to the definition of the
Tsallis entropy [39],

ST ¼ γAβ; ð1Þ

where A ∝ L2 is the area of a d-dimensional system with a
characteristic length L. Here, γ is an unknown constant and
β ¼ d=ðd − 1Þ for d > 1, under the hypothesis of equal
probabilities. Equation (1) reduces to the additiveBekenstein
entropy for β ¼ 1 and γ ¼ 2πM2

P, whereMP ¼ ð8πGÞ−1=2 is
the reduced Planck mass.

The holographic principle states that all the degrees of
freedom of a physical system can be projected onto its
boundary [26]. Based on this argument, it was proposed
that the entropy of the system is related to the infrared
cutoff L and the ultraviolet cutoff Λ as [27]

L3Λ3 ≤ S3=4; ð2Þ

which can be combined with Eq. (1) to obtain

Λ4 ≤ ð4πÞβγL2β−4: ð3Þ

Under the holographic hypothesis, Λ4 thus represents the
THDE density, which reads [48,49]

ρde ¼ BL2β−4; ð4Þ

with B ¼ 3c2M2
P, where c2 is a dimensionless quantity,

usually assumed to be constant [50]. We note that standard
HDE is included as the subcase β ¼ 1, while Eq. (4) gives
the standard cosmological constant for β ¼ 2.
To study the cosmological dynamics of THDE, we

consider a flat FLRW metric,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð5Þ

where aðtÞ is the scale factor such that aðt0Þ ¼ 1 at the
present time. In the formulation of a HDEmodel, one needs
to identify the largest length L of the theory. The model
recently proposed in [43] considers the Hubble horizon
H−1 playing the role of L in Eq. (4), where H ≡ _a=a is the
Hubble parameter. Unfortunately, as shown in [44], this
choice leads to cosmological inconsistencies in the case of
standard HDE models. For this reason, the resulting model
does not include standard thermodynamics and standard
HDE as subclasses.
A remedy for this drawback is to consider the future

event horizon [51],

Rh ¼ a
Z

∞

t

dt
a
¼ a

Z
∞

a

da
Ha2

; ð6Þ

which can be used to build a consistent THDE model. One
thus obtains

ρde ¼ BR2β−4
h : ð7Þ

In what follows, we focus on the case β ≠ 2 to explore
dynamics beyond the cosmological constant scenario.

III. BACKGROUND EVOLUTION

For a homogeneous and isotropic universe described by
the metric (5), filled with a perfect fluid of pressureless
matter and a dark energy component, the Friedmann
equation take the form,
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H2 ¼ 1

3M2
P
ðρm þ ρdeÞ; ð8Þ

_H ¼ −
1

2M2
P
ðρm þ ρde þ pdeÞ; ð9Þ

where the “dot” denotes the derivative with respect to the
cosmic time. Here, ρm is the matter energy density, while
ρde and pde are the dark energy density and pressure,
respectively. Introducing the critical density ρc ¼ 3M2

PH
2,

one can define the normalized density parameters of the
cosmic species Ωi ≡ ρi=ρc,

Ωm ¼ ρm
3M2

PH
2
; ð10Þ

Ωde ¼
ρde

3M2
PH

2
; ð11Þ

which satisfy Ωm þ Ωde ¼ 1. Using the above definitions
and combining Eqs. (6) and (7), one obtains

Z
∞

x

dx
Ha

¼ 1

a

�
B

3M2
PH

2Ωde

�
1=ð4−2βÞ

; ð12Þ

where we have introduced the variable x≡ ln a. Assuming
no interaction between the cosmic sectors, the matter
conservation equation reads

_ρm þ 3Hρm ¼ 0; ð13Þ

which gives ρm ¼ ρm0a−3, where the subscript “0” denotes
the value of a quantity at the present time. Then, Eq. (10)
becomes Ωm ¼ Ωm0H2

0=ða3H2Þ, and one can rewrite
Eq. (8) as

1

Ha
¼ 1

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − ΩdeÞ

Ωm0

s
: ð14Þ

Plugging this result into Eq. (12) and differentiating
with respect to x, we obtain the equation describing the
evolution of THDE,

dΩde=dx
Ωdeð1−ΩdeÞ

¼ 2β−1þηð1−ΩdeÞ
1−β

2ð2−βÞΩ
1

2ð2−βÞ
de e

3ð1−βÞ
2ð2−βÞx; ð15Þ

where

η≡ 2ð2 − βÞðH0

ffiffiffiffiffiffiffiffiffi
Ωm0

p
Þ1−ββ−2

�
B

3M2
P

� 1
2ð2−βÞ

: ð16Þ

We note that, in the limit β ¼ 1, Eq. (15) possesses an
analytical solution which coincides with the usual HDE
[33]. For β ≠ 1, it cannot be solved analytically, and only a
numerical approach is possible.

On the other hand, the evolution of the THDE equation
of state parameter wde ≡ pde=ρde can be obtained from the
following conservation equation:

_ρde þ 3Hρdeð1þ wdeÞ ¼ 0: ð17Þ

Differentiating Eq. (7) with the help of Eq. (6), we get

_ρde ¼ 2ðβ − 2ÞBR2β−5
h ðHRh − 1Þ; ð18Þ

and using Eq. (7) to eliminate Rh, from Eq. (17), one finds

2ðβ − 2ÞB
�
ρde
B

� 2β−5
2ðβ−2Þ

�
H

�
ρde
B

� 1
2ðβ−2Þ

− 1

�
þ 3Hρdeð1þ wdeÞ ¼ 0: ð19Þ

Hence, making use of Eqs. (11) and (14) to substitute ρde
and H, we finally obtain

wde ¼
1

3
½1 − 2β − ηΩ

1
2ð2−βÞ
de ð1 − ΩdeÞ

β−1
2ð2−βÞe

3ð1−βÞ
2ðβ−2Þx�: ð20Þ

Once again, for β ¼ 1, the above expression reduces to the
one of standard HDE model [33].
Moreover, an interesting quantity to consider is the

deceleration parameter,

q≡ −1 −
_H
H2

¼ −1þ 3

2
ð1þ wdeΩdeÞ; ð21Þ

which measures the rate of cosmic expansion, namely a
decelerating universe for q > 0 and an accelerating uni-
verse for −1 ≤ q < 0. In particular, the transition between
the two epochs occurs at q ¼ 0.

IV. COSMOLOGICAL PERTURBATIONS

We investigate the theory of linear perturbations in the
HDE framework by considering scalar fluctuations of the
metric in the Newtonian gauge [52],

ds2 ¼ −ð1þ 2ϕÞdt2 þ a2ðtÞð1 − 2ϕÞδijdxidxj; ð22Þ

where ϕ is the Bardeen potential. Introducing the density
contrasts δi ≡ δρi=ρi and the divergences of the fluid

velocities θi ≡ ∇⃗ · v⃗i, we can write the system of evolution
equations for matter and dark energy perturbations in the
Fourier space [53,54],

ϕ̈þ 4H _ϕþ
�
2
ä
a
þH2

�
ϕ ¼ 3

2
H2c2effΩdeδde; ð23Þ

_δm þ θm
a

− 3 _ϕ ¼ 0; ð24Þ
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_δde þ ð1þ wdeÞ
�
θde
a

− 3 _ϕ

�
þ 3Hðc2eff − wdeÞδde ¼ 0;

ð25Þ

_θm þHθm −
k2ϕ
a

¼ 0; ð26Þ

_θde þHð1 − 3c2adÞθde −
k2c2eff

ð1þ wdeÞa
δde −

k2ϕ
a

¼ 0: ð27Þ

Here, c2eff ≡ δpde=δρde is the effective sound speed, while
c2ad ≡ _pde= _ρde is the dark energy adiabatic sound speed,

c2ad ¼ wde −
aw0

de

3ð1þ wdeÞ
; ð28Þ

where the “prime” denotes the derivative with respect to the
scale factor. For c2eff ≃ 1, dark energy perturbations are
suppressed by pressure and cannot grow on subhorizion
scales, while for c2eff ≪ 1, dark energy and dark matter
cluster in a similar way, and this affects the growth of
structure formation [55–59]. In what follows, we analyze
the case of a matter-dominated universe, where ϕ is a
constant.
At subhorizon scales ðk2 ≫ a2H2Þ, the Poisson equation

reads

k2ϕ ¼ −4πGa2ðδρm þ ρde þ 3δpdeÞ; ð29Þ

which can be rewritten as

−
k2ϕ
a2

¼ 3

2
H2½Ωmδm þ ð1þ 3c2effÞΩdeδde�: ð30Þ

Therefore, we use Eqs. (26) and (27) to eliminate θ from
Eqs. (24) and (25) by means of Eq. (30) to eliminate the
k2ϕ terms. Then, from Eqs. (21) and (28) with the help of
the relation d

dt ¼ aH d
da, we obtain the evolution equations

for the dark matter and dark energy perturbations,

δ00m þ Amδ
0
m þ Bmδm ¼ Sm; ð31Þ

δ00de þ Adeδ
0
de þ Bdeδde ¼ Sde; ð32Þ

where

Am ¼ 3

2a
ð1 − wdeΩdeÞ; ð33aÞ

Bm ¼ 0; ð33bÞ

Sm ¼ 3

2a2
½Ωmδm þ ð1þ 3c2effÞΩdeδde�; ð33cÞ

Ade ¼
1

a

�
3

2
ð1 − wdeΩdeÞ −

aw0
de

1þ wde
− 3wde

�
; ð33dÞ

Bde ¼
1

a2

�
3

�
1

2
−
3

2
wdeΩde −

aw0
de

1þ wde
− 3c2eff

�

× ðc2eff − wdeÞ−3aw0
de þ

k
a2H2

c2eff

�
; ð33eÞ

Sde ¼
3

2a2
ð1þ wdeÞ½Ωmδm þ ð1þ 3c2effÞΩdeδde�: ð33fÞ

From the perturbed Einstein equations, it easy to verify
that the following initial conditions hold:

δðiniÞm ¼ −2ϕini

�
1þ k2

3a2iniH
2
ini

�
; ð34Þ

δðiniÞ
0

m ¼ −
2

3

k2ϕini

a2iniH
2
ini

; ð35Þ

while, from the adiabaticity condition, one obtains [60]

δðiniÞde ¼ ð1þ wdeÞδðiniÞm ; ð36Þ

δðiniÞ
0

de ¼ ð1þ wdeÞδðiniÞ
0

m þ w0
deδ

ðiniÞ
m : ð37Þ

In this work, we restrict our analysis to the scenario of
homogeneous THDE (δde ¼ 0, c2eff ¼ 1) in which the
clustering is due only to the corresponding matter compo-
nent. Hence, the equation governing the linear matter
fluctuations on subhorizon scales can be written as

δ00m þ
�
3

a
þ E0

E

�
δ0m −

3ð1 −ΩdeÞ
2a2

δm ¼ 0; ð38Þ

where EðaÞ≡HðaÞ=H0 is obtained from Eq. (14) and
ΩdeðaÞ is given after solving Eq. (15).

V. DATA SETS

To study the observational viability of THDE, we
implemented a Bayesian analysis on low-redshift cosmic
data, such as type Ia supernovae (SN) and observational
Hubble data (OHD), combined with the growth rate factor
(GRF) data of matter fluctuations. We present below the
main features of these data sets and describe how they can
be used to get bounds over the free parameters of the model
presented in the previous section.

A. Supernovae Ia

The unique leverage offered by SN Ia to investigate the
late-time cosmic expansion is testified by the large number
of SN surveys over the last two decades probing from
very low redshifts (0.01 < z < 0.1) up to z > 1 [61–63].
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The most recent Pantheon compilation has been presented
in [64] and consists of a full sample of spectroscopically
confirmed PS1 SN Ia previously cross-correlated in [65]. In
the Pantheon data set, each SN is standardized by means of
the SALT2 light-curve fitter [66], which models the
distance modulus as [67]

μ ¼ mB −M þ αx1 − βcþ ΔM þ ΔB; ð39Þ

wheremB is the apparent magnitude of the SN, and x1 and c
are the stretch and color factors of the light curve,
respectively; the ΔM term accounts for the host-mass
galaxy correction, while ΔB is the distance bias correction.
In this parametrization, α, β, M, and ΔM are all nuisance
parameters to be determined by fitting the data. On
the other hand, the cosmological distance modulus is
defined as

μðzÞ ¼ 5log10

�
dLðzÞ
1 Mpc

�
þ 25; ð40Þ

where dLðzÞ is the luminosity distance which depends on
the cosmological parameters of the assumed model. In a flat
FLRW universe, this reads

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð41Þ

The full Pantheon data set has been used in [68] to construct
six model-independent1 and robust E−1ðzÞ measurements,
which we utilized in our dark energy analysis. In this
approach, all the SN nuisance parameters are properly
marginalized over in the fit. We refer the reader to Table 6
of [68] for the E−1ðzÞ measurements with the correspond-
ing correlation matrix and for the details of the method.
One can thus write the likelihood probability function of
the SN data as

LSN ∝ exp

�
−
1

2
ATC−1

SNA

�
; ð42Þ

where the vector A is given by the difference between the
measurements E−1

i and the corresponding values provided
by the theoretical model,

A ¼ E−1
i;obs − E−1

th ðziÞ; ð43Þ

and C−1
SN is the inverse covariance matrix built from the

correlations between the data points.

B. Observational Hubble data

The differential age method [69] represents a reliable
model-independent approach to measure the evolution of
the dark energy equation of state at redshifts z≲ 2, where
the Universe enters the dark energy-dominated phase. This
method is based on the spectroscopic dating of galaxy ages,
which act as a “clock” measuring the redshift variation of
the Universe’s age. From the age difference between pairs
of nearby passively evolving galaxies, one can infer the
quantity dz=dt and, hence, measure the Hubble parameter
according to

HðzÞ ¼ −
1

ð1þ zÞ
dz
dt

: ð44Þ

In our analysis, we used the 31 OHD measurements
collected in [70]. In this case, the data points are uncorre-
lated, so that the likelihood function reads

LOHD ∝ exp

�
−
1

2

X31
i¼1

�
Hobs;i −HthðziÞ

σH;i

�
2
�
; ð45Þ

where σH;i are the 1σ uncertainties on the measurements.

C. Growth rate factor

The large number of dark energy models proposed over
the last twenty years has made necessary the study of density
inhomogeneities, besides the background evolutionary
dynamics, to discriminate among different cosmologies. In
particular, the growth rate of matter density perturbations is
measured through the quantity fðaÞ≡ aδ0mðaÞ. Redshift-
space distortion observations [71,72] in the interval 0<z< 2
provide measurements of the factor

fσ8ðaÞ≡ fðaÞσ8ðaÞ; ð46Þ

where σ8ðaÞ ¼ σ8δmðaÞ=δð1Þ estimates the linear-density
field fluctuations within a 8h−1 Mpc radius, with σ8 being its
current value. In ourwork,we considered theGold-2017data
set of 18 uncorrelated fσ8 measurements presented in [73].
These measurements can be used to constrain a specific
model only after applying a rescaling procedure with respect
to the assumed fiducial cosmology. To this end, we define the
ratio

rðzÞ ¼ HðzÞdAðzÞ
HfidðzÞdA;fidðzÞ

; ð47Þ

where, in this case, the subscript “fid” refers to the fiducial
ΛCDM model characterized by the following Hubble
expansion rate:

HfidðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ ð1 − Ωm0

q
Þ: ð48Þ1The E−1ðzÞ measurements rely on the only assumption of a

flat universe, which is consistent with our working hypothesis.
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One can thus “correct” the measurements by means of the
vector,

Y ¼ rðziÞfσobs8 ðziÞ − fσth8 ðziÞ; ð49Þ

so that the observed values are rescaled with respect to the
fiducial model. Therefore, the likelihood function is given as

LGRF ∝ exp

�
−
1

2
YTC−1

GRFY

�
; ð50Þ

where CGRF is the covariance matrix of the data points (see
[73] for the numerical values).

VI. OBSERVATIONAL CONSTRAINTS

We obtained observational constraints over the cosmo-
logical parameters of THDE through a Bayesian analysis
on the combined likelihood,

Ltot ¼ LSN × LOHD × LGRF: ð51Þ

We notice that the majority of the measurements employed
in the present study, namely the SN and GRF data, are
insensitive to H0. On the other hand, the inability of the
OHD measurements alone to provide a tight constraint on
the Hubble constant would cause difficulties in getting
proper bounds over the other cosmological parameters. For
these reasons, in our analysis, we fixed the Hubble constant
to the most recent best-fit value obtained by the Planck
Collaboration [74], H0 ¼ ð67.4� 0.5Þ km s−1Mpc−1.

A. Monte Carlo analysis

We obtained the function ΩdeðaÞ by numerically inte-
grating Eq. (15) from the matter-dominated era,
aini ¼ 10−2, to the present epoch, a0 ¼ 1, with initial
condition Ωdeða0Þ ¼ 1 − Ωm0. We thus used this result
in Eq. (14) to find HðaÞ. Then, we integrated Eq. (38) by
setting the initial conditions as δmðainiÞ ¼ 10−2 and
δ0mðainiÞ ¼ 1.
Therefore, we applied the Markov chain Monte

Carlo (MCMC) method through the Metropolis-Hastings

algorithm [75]. In our study, we analyzed two different
cases. In the first scenario, we fixed B ¼ 3 to obtain exact
correspondence with standard HDE model and look for
possible deviations from β ¼ 1. Hence, we performed the
sampling over the parameter space,

P1 ¼ fΩm0; β; σ8g: ð52Þ

In the second scenario, we left B as a free parameter in the
numerical procedure to enhance the capability of THDE to
explain cosmological observations. We thus sampled over
the following parameter space:

P2 ¼ fΩm0; B; β; σ8g: ð53Þ

The sampling has been done assuming uniform priors for
the cosmological parameters,

8>>><
>>>:

Ωm0 ∈ ð0; 1Þ;
B ∈ ð0; 6Þ;
β ∈ ð0.5; 1.5Þ;
σ8 ∈ ð0.5; 1.5Þ:

ð54Þ

We implemented our numerical code by means of the
software Mathematica, while we used the getdist2

package to analyze the chains and produce the contour plots.
We report in Table I the 1σ and 2σ results for the

cosmological parameters of the THDE models under
consideration. Moreover, we display in Fig. 1 the corre-
sponding two-dimensional marginalized confidence level
contours and the one-dimensional posterior distributions.
The results for the first model show that there is no
significant deviation from the standard HDE model with
β ¼ 1. In fact, the two scenarios are only slightly more than
1σ away from each other, in agreement with the previous
findings of [51]. This behavior is confirmed even when B is
allowed to vary. In this case, the data are not able to provide
tight constrains on B, whose estimate is consistent with the
value of the standard HDE model (B ¼ 3).

TABLE I. Mean values and 68% (95%) confidence level uncertainties of the cosmological parameters resulting
from the MCMC analysis of Tsallis holographic dark energy models with fixed B ¼ 3 (THDE 1) and free B
(THDE 2). The ΔAIC and ΔDIC values are calculated with respect to the ΛCDM model, whose results are shown
for comparison. Negative values of ΔAIC and ΔDIC indicate statistical preference for Tsallis holographic dark
energy over the ΛCDM scenario.

Model Ωm0 B β σ8 ΔAIC ΔDIC

THDE 1 0.232þ0.024ð0.052Þ
−0.027ð0.048Þ

3 0.939þ0.053ð0.107Þ
−0.054ð0.101Þ 0.895þ0.060ð0.129Þ

−0.069ð0.117Þ
−1.32 −0.10

THDE 2 0.244þ0.044ð0.079Þ
−0.041ð0.081Þ 2.864þ0.741ð2.405Þ

−1.454ð1.821Þ 0.941þ0.053ð0.104Þ
−0.054ð0.101Þ 0.879þ0.066ð0.195Þ

−0.111ð0.162Þ
0.20 1.51

ΛCDM 0.300þ0.019ð0.039Þ
−0.019ð0.037Þ

� � � � � � 0.768þ0.031ð0.065Þ
−0.031ð0.062Þ

0 0

2https://getdist.readthedocs.io.
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FIG. 1. Marginalized contours at 68% and 95% confidence levels with posterior distributions resulting from the MCMC analysis on
THDE models with B ¼ 3 (top panel) and free B (bottom panel).
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In Fig. 2, we show the evolution of the THDE equation
of state parameter, assuming the numerical values obtained
from the MCMC analysis. Our results indicate a quintes-
sencelike behavior, and no phantom-divide crossing is
found within the 1σ confidence level. It is interesting to
compare our w values with the results found in [64]
combining the CMB and the SN data, which are consistent
with the cosmological constant case. We note that our
outcomes are compatible with those only in the case of
THDEmodel with free B at the lower 1σ bound. As one can
see from Table I, the evidence for w > −1 in our models is
compensated by a shift of the matter densities towards
lower values with respect to the standard scenario, char-
acterized by Ωm0 ≈ 0.3.

We also show in Fig. 3 the behavior of the deceleration
parameter with the redshift. Furthermore, in Fig. 4, we
display the growth rate of matter fluctuations for the THDE
models compared to the ΛCDM scenario.
Finally, to estimate the impact of our a priori assumption

on H0, we repeated the statistical analysis by fixing the
Hubble constant to values that are 1σ away from the central
value obtained in [74]. In the case of the THDE model with
fixed B ¼ 3, we found values of the cosmological param-
eters that differ only by 1%–2% from the results shown in
Table I. In the case of the THDE model with varying B, it
turned out that the differences with respect to the previous
value of B amount to ∼5% with similar relative uncertain-
ties, while the other cosmological parameters are different,
once again, only by 1%–2%. These outcomes demonstrate
the robustness of our results and the accuracy of our
procedure.

B. Bayesian model selection

Wemeasured the statistical evidence of the THDEmodels
by means of information criteria estimators. In particular, we
used the Akaike information criterion (AIC) [76],

AIC≡ −2 lnLmax þ 2p; ð55Þ

where Lmax is the maximum value of the likelihood and p is
the number of parameters of the theoretical model. We also
considered the DIC criterion, which accounts for the number
of parameters that can be effectively constrained by a specific
data set [77],

DIC≡ h−2 lnLi þ peff; ð56Þ

wherepeff ¼ h−2 lnLi þ 2 lnhLi, with h·i denoting average
over the posterior distribution. The best model is the one
characterized by minimum AIC and DIC values.

FIG. 2. Equation of state parameter for Tsallis holographic dark
energy models with fixed B ¼ 3 (THDE 1) and free B (THDE 2)
resulting from our MCMC analysis. The shaded regions around
the mean curves take into account the 1σ errors on β in the case of
THDE 1 and on B in the case of THDE 2, while the other
cosmological parameters are fixed to the mean values.

FIG. 3. Evolution of the deceleration parameter for Tsallis
holographic dark energy models with fixed B ¼ 3 (THDE 1) and
free B (THDE 2). We assumed the mean values of the cosmo-
logical parameters resulting from our MCMC analysis. The
ΛCDM curve is shown for comparison. The points where the
curves intersect the black line indicate the transition from
decelerated to accelerated universe.

FIG. 4. Growth of matter overdensities for Tsallis holographic
dark energy models with fixed B ¼ 3 (THDE 1) and free B
(THDE 2). We assumed the mean values of the cosmological
parameters resulting from our MCMC analysis. The ΛCDM
curve is shown for comparison.
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In our case, we computed AIC and DIC differences with
respect to the ΛCDM model, chosen as the reference
model. The results shown in Table I indicate that the
THDE model with fixed B ¼ 3 performs better than
ΛCDM, albeit with a poor significance level. On the other
hand, allowing B to vary in the fitting procedure does not
increase the Bayesian evidence for the corresponding
THDE model, which appears penalized by the presence
of the extra parameter.

VII. FINAL OUTLOOK AND PERSPECTIVES

In the present work, we assumed the validity the holo-
graphic principle to address the accelerated cosmic expan-
sion. In particular, we discussed the features of a dark
energy model built upon the Tsallis entropy, which repre-
sents a nonadditive generalization of the Boltzmann-Gibbs
entropy that should be used in the statistical treatments of
nonextensive systems, such as gravitational ones. We
considered the future event horizon as the characteristic
length of the Universe. This choice allowed us to avoid
cosmological inconsistencies and include standard holo-
graphic dark energy and standard thermodynamics as
subclasses.
We described the dynamics of Tsallis holographic dark

energy at the level of background cosmology. Furthermore,
we studied linear perturbations on a flat FLRW spacetime
at subhorizon scales. We thus focused on the case of
homogeneous dark energy in a matter-dominated universe
and derived the growth rate of matter density fluctuations.
We analyzed two specific THDE scenarios: a first model

with fixed B ¼ 3, which recovers standard HDE in the limit
β ¼ 1, and a second model with B left as a free parameter.
We thus tested the observational viability of the aforemen-
tioned theoretical models by a comparison with the most

recent cosmological data. Assuming uniform priors for the
free parameters, we performed MCMC numerical tech-
nique implemented through the Metropolis-Hastings algo-
rithm on the combined likelihood of SN Ia data, Hubble
parameter measurements, and growth rate factor data. In the
first scenario, we found that the deviation from standard
HDE is within the 2σ level. In the second scenario, our
results show the inability of the data to provide tight
constraints on the parameter B, and consequently, no
deviation from the value of the standard HDE model
was found. Then, assuming the numerical results of the
MCMC analysis for the cosmological parameters, we
computed the redshift evolution of the dark energy equation
of state and the deceleration parameter. We showed that the
equation of state of THDEmodels behaves as quintessence.
We also compared the growth rate of matter overdensities
with the predictions of the concordance ΛCDM paradigm.
Moreover, we used the AIC and DIC information criteria

to measure the Bayesian evidence for the models under
consideration. We found that the first THDE scenario
performs slightly better than the ΛCDM model, while
the second THDE scenario is statistically penalized by the
additional free parameter.
Possible extensions of this work include the use of high-

redshift data, such as cosmic microwave background
observations, to complement the constraints at late times.
It would be also interesting to consider the effects of
clustering dark energy with c2eff ≃ 0 on the evolution of
matter perturbations. We leave these issues for future
investigations.
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