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In this paper, we study inflation in the α-attractor framework with an exponential potential in the
Randall-Sundrum (RS) braneworlds, where high-energy corrections to the Friedmann equation facilitate a
slow roll. In this scenario, we numerically investigate the inflationary parameters and show that the high-
energy brane corrections have a significant effect on the parameter α; namely, the lower values of the
parameter are preferred by observation in this limit. The latter substantially reduces the tensor-to-scalar
ratio of perturbations, making the RS braneworld inflation compatible with observation. We also point out
that sub-Planckian values of the field displacement can be achieved by suitably constraining the brane
tension.
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I. INTRODUCTION

In the standard framework, a slowly rolling scalar field
à la a shallow field potential may account for inflation [1].
A slow roll along a steep potential is also possible due to
Hubble damping caused by high-energy brane corrections.
Indeed, in the braneworld scenario, our four-dimensional
space-time dubbed brane is supposed to be embedded in a
higher-dimensional bulk [2,3] such that the Einstein equa-
tions on the brane are modified. The corresponding
Friedmann equation includes an extra term [4,5], quadratic
in density, which facilitates a slow roll in the high-energy
regime at early times even in the case of a steep potential
[6–9]. Thus, the braneworld scenario allows a steep
potential to support inflation [10–12], which is not possible
in the standard case.
In standard cosmology, an exponential potential [13]

does not give viable inflationary and postinflationary
behavior. The situation changes significantly in the brane-
world case [10–12]. However, the steep braneworld infla-
tion gives a ratio of tensor-to-scalar perturbation, r, around
0.4 for 60 e-folds of inflation [12,14], which is not tenable
observationally [15–18]. A similar problem in standard
cosmology can successfully be addressed in the α-attractor
scenario [19–24]. In this framework, the kinetic term in the
Lagrangian has a specific noncanonical form. The canon-
icalization of such a term gives rise to some flat regions or
plateaus in the potential [19–22] which are suitable for the
study of inflation favored by observational data [15–18].
This feature can also be suitable for the study of late time
behavior, namely, quintessence [20–22,25–31].

It should be mentioned here that a super-Planckian
displacement of the scalar field may spoil the flatness of
the quintessential region of the potential and may generate
an unwanted fifth-force problem [20–22,32]. On the other
hand, it is impossible to evolve to quintessence starting
from the inflationary region without invoking super-
Planckian values of the field and not making the potential
too curvy during inflation [33]. The α-attractor solves this
problem; namely, the canonicalization of the potential
makes it possible for the canonical scalar field to have a
super-Planckian excursion while keeping its noncanonical
counterpart under sub-Planckian.
In view of the aforesaid, we are led to consider the

α-attractor construct in the framework of Randall-
Sundrum (RS) braneworlds [3], which might give new
insights related to the sub-Planckian nature of the nonca-
nonical field.1

The structure of this paper is as follows. In Sec. II, we
discuss how we obtain our effective α-attractor potential
and suggest some approximations to check for analytical
behavior. In Sec. III, we put the effective potential on a
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1Let us emphasize that, in the RS scenario, the TeV scale
associated with the electroweak scale has a significance. Since the
LHC did not see new excitations around this scale à la Kaluza
Klein and no deviations to Newtonian potential were seen at the
submillimeter scale, one could think that the scenario is ruled out.
We should, however, remember, that the requirement of TeV is
inspired by the naturalness problem. Let us note that the standard
model of electroweak interactions is also plagued with the
naturalness problem [34]; in that case, we think that there is
some unknown UV completion mechanism required to tackle the
issue. Thus, in the RS scenario the fundamental scale could well
be higher than 1 TeV, and we can still use the scenario using
similar reasoning.
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brane and perform a full numerical study of different
parameters related to inflation. Numerical analysis is done
because of the complexity in solving the problem analyti-
cally. In this section, we also show some important features
our model exhibits. Next, in Sec. IV, we show some
approximated analytical results for our model. Next, in
Sec. V, we compare our results with current observational
bounds, and, with the results obtained, we constrain our
different model parameters, especially the parameter α.
Next, in Sec. VI, we briefly discuss the late time behavior
followed by conclusions in Sec. VII.

II. THE EFFECTIVE α-ATTRACTOR MODEL

Considering the formal α-attractor Lagrangian density
with an exponential potential in four-dimensional space-
time [19–22]2

L ¼
1
2
ð∂ϕÞ2

ð1 − ϕ2

6αm2
p
Þ2

þ V0e−κϕ=mp; ð1Þ

where α > 0 is a parameter featuring a pole in the kinetic
energy, mp ¼ 1ffiffiffiffiffiffi

8πG
p is the four-dimensional reduced Planck

mass, G is Newton’s constant, κ is the parameter determin-
ing the steepness of the potential, and V0 is a constant with
the dimension of energy density. The modulus value of ϕ
will remain less than

ffiffiffiffiffiffi
6α

p
mp for any finite value of α,

because the kinetic energy becomes singular at this value.
This allows the scalar field to remain under sub-Planckian
values as long as α ≲ 1=6. The same theory can be
described in terms of a canonicalized inflaton field
φ related to the noncanonical scalar field ϕ via the
transformation

ϕ ¼
ffiffiffiffiffiffi
6α

p
mp tanh

�
φffiffiffiffiffiffi
6α

p
mp

�
: ð2Þ

From Eq. (2), it is clear that the canonical field φ can take
any value, keeping the noncanonical ϕ sub-Planckian. By
this transformation, the potential given in Eq. (1) is
described now in terms of the canonical field of the form

VðφÞ ¼ V0e
−κ
ffiffiffiffi
6α

p
tanhð φffiffiffi

6α
p

mp
Þ
: ð3Þ

This potential corresponds two plateaus; see Fig. 1. The
inflationary regime featured by a plateau corresponds to
ϕ → −

ffiffiffiffiffiffi
6α

p
mp, or, equivalently, by φ → −∞, and the other

plateau is featured by ϕ →
ffiffiffiffiffiffi
6α

p
mp, or, equivalently, by

φ → ∞, featuring quintessence. For the inflationary limit
potential, Eq. (3) becomes

VðφÞ ¼ M4 exp
�
−2ne

2
ffiffiffi
8π

pffiffiffi
6α

p
MPl

φ
�
; ð4Þ

where M4 ¼ V0eκ
ffiffiffiffi
6α

p
is a constant representing the energy

scale for inflation, M has the dimension of mass, MPl ≡
mp

ffiffiffiffiffiffi
8π

p
is the four-dimensional Planck mass, and n ≡

κ
ffiffiffiffiffiffi
6α

p
.

III. THE EFFECTIVE α-ATTRACTOR POTENTIAL
IN THE BRANEWORLD SCENARIO

We place our effective potential on the Randall-Sundrum
II (RSII) brane [3] to study the inflationary scenario. The
matter fields are confined to the brane only for the RSII
model, so our scalar field will remain on the brane only. For
a flat Friedmann-Lemaître-Robertson-Walker background
on the brane with a zero four-dimensional cosmological
constant, the Friedmann equation becomes [4,10,11,14]

H2 ≡
�
_a
a

�
2

¼ 8π

3M2
Pl

ρ

�
1þ ρ

2λ

�
; ð5Þ

where a is the scale factor, H is the Hubble parameter, ρ is
the energy density of the matter field on the brane, and λ is
the 3-brane tension relating the 4D Planck mass MPl with
5D Planck mass M5 via

λ ¼ 3

4π

M5
6

MPl
2
: ð6Þ

For high energies, the ρ2 term become significant and plays
a crucial role in the dynamics of the scalar field and, hence,
of the Universe. The scalar field or the inflaton field φ,
confined on the brane, satisfies the Klein-Gordon equation

φ̈þ 3H _φþ V 0ðφÞ ¼ 0: ð7Þ

FIG. 1. Potential of the α-attractor after canonicalization (3)
(n is taken to be 1).

2In Refs. [20,21], a negative cosmological constant is consid-
ered in the Lagrangian to make the vacuum energy density of the
Universe zero, but we do not consider this here as its contribution
is insignificant during inflation.
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VðφÞ is the potential driving the inflation. The prime
denotes a derivative with respect to φ. The presence of
the quadratic term ρ2 enhances the value of Hubble
parameter (5), hereby gives extra friction to the scalar field
(7), and makes its evolution slower. Combining Eqs. (5)
and (7), one gets the evolution equation [6,14]

ä
a
¼ 8π

3M2
Pl

�
ðV − _φ2Þ þ _φ2 þ 2V

8λ
ð2V − 5 _φ2Þ

�
: ð8Þ

The inflationary condition ä > 0 is reduced to the standard

form V > _φ2 for _φ2þ2V
8λ ≪ 1. In the high-energy scenario, the

condition becomes 2V > 5 _φ2. This condition may used for
characterizing the end of inflation [14], 2VðφendÞ ≃ 5 _φ2

end.
Using the slow-roll approximation (V ≫ _φ2, φ̈

3H _φ ≪ 1), we
can write Eqs. (5) and (7), respectively, as

H2 ¼ 8π

3M2
Pl

V

�
1þ V

2λ

�
ð9Þ

and

3H _φþ V 0ðφÞ ¼ 0: ð10Þ

These two equations (9) and (10) make the condition for the
inflation end to be

V3ðφendÞ
V 02ðφendÞ

≃
5λM2

Pl

24π
: ð11Þ

The amplitudes of scalar and tensor perturbation in the RSII
inflationary scenario are given, respectively, as [6,14,35,36]

A2
S ¼

512

75M6
Pl

V3

V 02

�
1þ V

2λ

�
3
				
k¼aH

; ð12Þ

A2
T ¼ 4

25π

H2

M2
Pl

F2ðxÞ
				
k¼aH

; ð13Þ

where

x ¼ HMPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4πλÞ

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V
λ

�
1þ V

2λ

�s
; ð14Þ

FðxÞ ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

− x2sinh−1ð1=xÞ
i
−1=2

: ð15Þ

The≃ is used under the slow-roll approximation.Amplitudes
AS and AT are evaluated at the horizon exit, k ¼ aH, with k
being the comoving wave number. The two slow-roll
parameters on the brane are given by

ϵ≡M2
Pl

16π

�
V 0

V

�
2 1þ V

λ

ð1þ V
2λÞ2

; ð16Þ

η≡M2
Pl

8π

V 00

V
1

1þ V
2λ

; ð17Þ

which indicates that, in the high-energy regime (V=λ ≫ 1), a
slow roll is possible even if the potential is steep. The spectral
indices of scalar and tensor perturbations are

nS − 1≡ d lnAS
2

d ln k

				
k¼aH

; ð18Þ

nT ≡ d lnAT
2

d ln k

				
k¼aH

: ð19Þ

Under slow-roll conditions, we get

nS ¼ 1 − 6ϵþ 2η: ð20Þ

The number of e-folds during inflation is given by
R tend
t� Hdt,

which under the slow-roll condition can be written as

N ≃ −
8π

M2
Pl

Z
ϕend

φ�

V
V 0

�
1þ V

2λ

�
dϕ; ð21Þ

where � denotes the value at the horizon exit. We define the
ratio of tensor-to-scalar perturbation r as [14]

r≡ 16

�
A2
T

A2
S

�
: ð22Þ

In the high-energy limit V=λ ≫ 1, one finds from Eq. (15)
F2 ≃ 3V

2λ ; using this togetherwith the slow-roll approximation
(ρ ∼ V), and using Eqs. (9), (12), and (13), we get

r ¼ M2
Pl

π

�
V 0

V

�
2 1

ð1þ V=2λÞ2 F
2

¼ 3M2
Pl

2π

�
V 0

V

�
2 V=λ
ð1þ V=2λÞ2 ≃ 24ϵ: ð23Þ

One can easily show that, in the low-energy limit (V=λ ≪ 1),
r ¼ 16ϵ, which is the standard expression.
To study inflation, we start with the potential (4).

The condition for inflation end (11) gives

3αM4M2
Pl

64πn2
exp

�
−
8
ffiffi
π
3

p
φendffiffiffi

α
p

MPl
− 2ne

4
ffiffi
π
3

p
φendffiffi

α
p

MPl

�
≃ 5

λM2
Pl

24π
: ð24Þ

The total number of e-foldings of inflation is given by
Eq. (21) for the high-energy limit (Vλ ≫ 1):
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N≃
Z

φend

φ�

ffiffiffiffiffiffi
3π

p ffiffiffi
α

p
M4

2nλMPl
exp

�
−
4
ffiffi
π
3

p
φffiffiffi

α
p

MPl
−2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

�
dφ: ð25Þ

The two slow-roll parameters in the high-energy limit
become

ϵ ≃
16n2λ
3αM4

exp

�
8
ffiffi
π
3

p
φffiffiffi

α
p

MPl
þ 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

�
; ð26Þ

η ≃
8nλ
3αM4

 
2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl − 1

!
exp

�
4
ffiffi
π
3

p
φffiffiffi

α
p

MPl
þ 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

�
: ð27Þ

We do solve Eqs. (24) and (25) numerically, and, using (26)
and (27), we compute r and nS from the expressions (23)
and (20).
The value of the tensor-to-scalar ratio r is found to be

24=N, which is 0.4 for N ¼ 60 for the standard braneworld
scenario [12,14] without an α-attractor part; our numerical

results show a correction for the tensor-to-scalar ratio.
We found that r is depending on the ratio of potential
strength M4 to λ, i.e., M4

λ and the parameter α; it does not
depend on the absolute value of M4 and λ, which can also
be seen in the crude analytical result [see Eq. (35)]. The
following numerical result will confirm the fact:
r ¼ 0.0990187, for M4

λ ¼ 100, α ¼ 1, κ ¼ ffiffiffi
3

p
for both

values of M equal to 0.1 and 0.01, respectively, where
the value of λ is correspondingly chosen. Now we will
discuss some important results of our analysis one by one.

(i) N vs r.—From Fig. 2(a), we see that we have a clear
improvement for the value of r from those compared
to the case of the standard exponential potential on
the brane.

(ii) Asymptotic value for α.—In the limit α → ∞,
α-attractor correction becomes irrelevant [19,20],
and we get the usual exponential potential. From
Fig. 2(b), it canbe seen that r approaches its asymptotic
value as we increase the value of the parameter α.

(iii) It is worth noting that the value of r is insensitive
to κ in the original exponential potential, i.e., n
for the potential (4), which we found to be the same
from the result we obtained in the analytical
approximation (35).

IV. APPROXIMATED ANALYTICAL RESULTS

An oversimplified approximation for the potential (4)
can help us to get an approximate analytical result which
we can use as a reference. To do so, we further simplify the
potential in the limit φ → −∞ as

VðφÞ ≃M4

�
1 − 2n exp

�
2
ffiffiffiffiffiffi
8π

pffiffiffiffiffiffi
6α

p
MPl

φ

��
: ð28Þ

The condition for the end of inflation (11) gives

3αM4M2
Ple

−
8
ffiffi
π
3

pffiffi
α

p
MPl

φend

64πn2
≃
5λM2

Pl

24π
: ð29Þ

The slow-roll parameters (26) and (27) under this approxi-
mation become, respectively,

ϵ ≃
16λn2e

8
ffiffi
π
3

p
φffiffi

α
p

MPl

3αM4

 
1 − 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

!
3
≃
16λn2e

8
ffiffi
π
3

p
φffiffi

α
p

MPl

3αM4
; ð30Þ

η ≃ −
8λne

4
ffiffi
π
3

pffiffi
α

p
MPl

φ

3αM4

 
1 − 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

!
2
≃ −

8λne
4
ffiffi
π
3

pffiffi
α

p
MPl

φ

3αM4
: ð31Þ

The amplitude of the scalar perturbation (12)
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FIG. 2. The top shows the variation of r with N, the red
(dashed) line for a normal exponential potential on a brane and
the blue (solid) line for the exponential potential on the brane with
α correction for parameter values M4=λ ¼ 50 and α ¼ 0.5. The
bottom shows the asymptotic behavior of r as α increases, for
N ¼ 55 and M4=λ ¼ 100.
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A2
S ≃

M16α

25λ3M4
Pln

2
e
−
8
ffiffi
π
3

p
φffiffi

α
p

MPl

 
1 − 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

!
6
					
k¼aH

≃
M16αe

−
8
ffiffi
π
3

p
φffiffi

α
p

MPl

25λ3M4
Pln

2

						
k¼aH

: ð32Þ

The number of e-foldings under this approximation is
evaluated to be

N ≃
Z

φend

φ�

ffiffiffiffiffiffi
3π

p ffiffiffi
α

p
M4

2nλMPl
e
−
4
ffiffi
π
3

p
φffiffi

α
p

MPl

 
1 − 2ne

4
ffiffi
π
3

p
φffiffi

α
p

MPl

!
2

dϕ

≃
Z

φend

φ�

ffiffiffiffiffiffi
3π

p ffiffiffi
α

p
M4e

−
4
ffiffi
π
3

p
φffiffi

α
p

MPl

2nλMPl
dφ: ð33Þ

Using the condition of inflation end (29), we express N in
terms of the field value at the horizon exit:

N ≃

3αM4

 
e
−
4
ffiffi
π
3

p
φ�ffiffi

α
p

MPl − 2n
ffiffiffiffi
10

p ffiffi
λ
α

p
3M2

!

8λn
: ð34Þ

Using Eq. (34) and the fact that r ¼ 24ϵ, we find the tensor-
to-scalar ratio from Eq. (30):

r ≃
288αλM4

ð ffiffiffiffiffi
10

p ffiffiffiffiffi
αλ

p
M2 þ 4NλÞ2 ≃

288

10

�
1þ 4Nffiffiffiffiffiffi

10α
p ffiffiffiffi

M4

λ

p �
2
: ð35Þ

The amplitude of scalar perturbation (32) is found to be

A2
S ≃

4M8ð ffiffiffiffiffi
10

p
M2

ffiffiffiffiffi
αλ

p þ 4λNÞ2
225αλ3M4

Pl

≃
8ðM4

λ Þ2M4

45M4
Pl

 
1þ 4Nffiffiffiffiffiffiffiffi

10α
p ffiffiffiffiffi

M4

λ

q
!

2

: ð36Þ

It should be mentioned here that the relations given by
Eqs. (28)–(36) represent only approximate expressions for
the respective quantities. We see from Eqs. (4) and (28) that
this approximation breaks down for small values of φ or
α < 1, which is also confirmed by numerical results.

V. CONSTRAINING MODEL PARAMETERS
FROM OBSERVATIONS

In order to constrain the parameters of our model, we
stick to our numerical results. First, we find that r is
independent of M and κ and depends only on the ratio M4

λ
and α.
The observational constraint on the parameter, r≲ 0.06

[15,17,18], allows us to constrain the parameter α and the

1 2 3 4 5 6
0

50

100

150

200

M
4
/

FIG. 3. allowed region for α and M4=λ for r ≤ 0.06.
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(b)

FIG. 4. The 68% (red) and 95% (black) contour regions
(nS-r plane) taken from Planck 2018 results (TT, TE, EEþ
lowEþ lensingþ BK14þ BAO) [18]; we overlay our model’s
result on it. We obtain our results by varying α from 0.16 to 10.
For both figures, the black dot and green dot correspond to α ¼ 5
and 0.5, respectively. The solid blue line is for N ¼ 60. For the
top, M4

λ ¼ 40, and for the bottom, M4

λ ¼ 20.
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ratioM4=λ. Theoretically, the high-energy limit corresponds
to M4

λ ≫ 1, but this ratio is highly dependent on the other
parameterα under the observational bound.Ahigher value of
the parameterα limits the parameterM4=λ to a lower value, in
other words, a decent limit of the assumption that during
inflation M4=λ ≫ 1 pushes α to a lower value. The bound
α ≤ 39.6 in Ref. [20] is reduced to α≲ 3.6 for a value of
M4=λ≳ 7. In Fig. 3, we show the allowed values of α against
M4=λ. In Fig. 4, we compare our results for different
parameters’ values with Planck 2018 results [18].
The noncanonical scalar degrees of freedom ϕ remains

sub-Planckian as long as α≲ 1
6
[Eq. (2)]. We can obtain this

bound in a more compelling way in our model if we
consider M4

λ ≳ 150 along with the observational bound

r≲ 0.06. In other words, the value of M4

λ , nearly bigger
than 150, will always keep the noncanonical scalar degree
of freedom within a sub-Planckian value.
The COBE normalization corresponds to the amplitude

of the scalar perturbations [see Eq. (12)] AS ≃ 2 × 10−5

[37], which along with the bound on α determines the
energy scale of inflation. We found that (Table I) it is near
the grand unification scale, almost the same as the one in
standard inflationary cosmology. Consequently, after infla-
tion ends, the field will have a large overshoot below the
background freezing itself for a long time; only at late times
will it evolve, mimicking cosmological-constant-like
behavior.

VI. LATE TIME BEHAVIOR

Let us briefly comment on the postinflationary features
of the model. First, the brane corrections to the
Friedmann equation are insignificant in the postinfla-
tionary era. Second, it is interesting that, irrespective of
the nature of the original exponential potential, the α-
attractor effective potential (see Fig. 1) has a generic
form; namely, it has a plateau followed by a sharp steep
behavior like a waterfall settling fast to a constant value
thereafter. In this case, the tracker [38–41] behavior is
inherently absent, which makes the dynamics of the
scalar field sensitive to its initial conditions. The thawing
behavior in the model under consideration can be under-
stood analytically. Actually, the important features of
dynamics are encoded in a quantity dubbed Γ, which for
the potential (3) is given by

ΓðφÞ≡ VðφÞ00VðφÞ
VðφÞ02

¼ e−n

n

8<
:en − e

n tanh

�
2
ffiffiffiffiffi
2π=3

p
MPl
ffiffi
α

p φ

�9=
;

×



nþ sinh

�
4
ffiffiffiffiffiffiffiffiffiffi
2π=3

p
MPl

ffiffiffi
α

p φ

��
: ð37Þ

Equation (37) tells us that Γ increases fast with ϕ and
crosses zero and approaches unity thereafter, mimicking the
exponential behavior (see Fig. 5). On the other hand, to
realize tracker behavior, it is necessary that Γ being greater
than unity stays close to one for a long time such that the
field approximately mimics the background. In the present
case, the slope of the potential, starting from a large value,
gradually diminishes, pushing the system to the slow-roll
regime at late times. Thus, owing to the behavior of Γ in
Fig. 5, the field energy density would witness the large
overshoot with respect to the background in a short span of
time, freezing the field on its potential due to large Hubble
damping. Field evolution would commence only at late
stages when the background energy density becomes
comparable to the field energy density, allowing the slow
roll of a field giving rise to late time acceleration; slow roll
is characterized by shallow exponential-like behavior.
Hence, the present scenario gives rise to thawing behavior
as noticed in Refs. [20,22].

VII. CONCLUSION

In this paper, we have considered an inflationary
scenario in the α-attractor framework for an exponential
potential on a RS brane. We have carried out a full
numerical analysis and presented approximated analytical
results. We have found that our results pass the observa-
tional constraint for suitable parameter values. The obser-
vational bound on the parameter tensor-to-scalar ratio

TABLE I. Values of M for different α; λ is taken as allowed
by r.

α M (GeV)

0.167 1.69 × 1015

1 4.15 × 1015

10 1.31 × 1016
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FIG. 5. The figure shows the behavior of Γ with φ, for potential

(3) with a residual vacuum energy density V0e−κ
ffiffiffiffi
6α

p
subtracted

from the standard exponential potential in (1) as taken in
Refs. [20,21]; the dashed line represents a constant value 1.
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r ≤ 0.06 [17,18] is easily satisfied by our model for a range
of parameters—α≲ 3.6 with M4=λ≳ 7. We found that a
lower value of the parameter α gives rise to a large range
of the parameter M4=λ, falling within the window allowed
by observations (Fig. 3). The lower bound on α, related to
the inflation scale α ≳ 10−7 [20], is not considered here to
compare with observational consistency. The significance
of the brane correction underlies with the assumption that
V=λ ≫ 1 or, equivalently, M4=λ ≫ 1 during inflation,
which automatically pushes α toward lower values in
order to meet observational constraints. We numerically
found that, for consistency with observation, M4=λ≳ 150
corresponds to α < 1=6, which keeps the noncanonical
scalar field to be sub-Planckian. It is worth mentioning
that we do not attempt to constrain here the parameters V0

and κ directly as done in Refs. [20,21]; however, con-
straining M4

λ and α puts some indirect constraints on these
parameters. In Ref. [21], a rather tight bound is given on
the parameter α based on the dark energy observations and
the super-Planckian issue, 1.5 ≤ α ≤ 4.2. Our analysis is
compatible with this value, as we can see from Fig. 3.

We also find that our inflation scale is near the grand
unification scale, the same as the case for standard
inflationary models. As for the postinflationary evolution,
we have argued based upon our analytical expressions that
the scenario under consideration should give rise to
thawing behavior; see Fig. 5 and the discussion in
Sec. V noticed numerically in Refs. [20,21]. The present
work, with high numerical precision, can be extended to
obtain more accurate bounds on the parameters. The other
aspects associated with inflation like reheating can also
be investigated for the model under consideration. The
investigation of alternative reheating suitable to the
present framework is left for future work.
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