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We consider an additional fine-tuning problem which afflicts scalar-driven models of inflation. The
problem is that successful reheating requires the inflaton be coupled to ordinary matter, and quantum
fluctuations of this matter induce Coleman-Weinberg potentials which are not Planck suppressed. Unlike
the flat space case, these potentials depend upon a still-unknown, nonlocal functional of the metric which
reduces to the Hubble parameter for de Sitter. Such a potential cannot be completely subtracted off by any
local action. In a simple model we numerically consider one possible subtraction scheme in which the
correction is locally subtracted at the beginning of inflation. For fermions the effect is to make the Universe
approach de Sitter with a smaller Hubble parameter. For gauge bosons the effect is to make inflation end
almost instantly unless the gauge charge is unacceptably small.
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I. INTRODUCTION

The most recent results for the scalar spectral index ns,
and the limits on the tensor-to-scalar ratio r [1], are still
consistent with certain models of single scalar-driven
inflation:

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

: ð1Þ

However, the allowed models suffer from severe fine-
tuning problems associated with the need to keep the
potential very flat, with getting inflation to start and with
avoiding the loss of predictivity through the formation of a
multiverse [2]. This has led to much controversy within the
inflation community [3–5].
The purpose of this paper is to study a different sort of

fine-tuning problem which is associated with the necessity
of coupling the inflaton to normal matter to make reheating
efficient. It has long been known that the quantum
fluctuations of such matter particles will induce
Coleman-Weinberg corrections to the inflaton effective
potential [6]. These corrections are dangerous for inflation
because they are not Planck suppressed [7].
Until recently the assumption was that cosmological

Coleman-Weinberg potentials are simply local functions of
the inflaton which could be subtracted at will. However,
existing results (from scalars [8], from fermions [9,10], and
from gauge bosons [11,12]) on de Sitter background show

that the corrections actually take the form of the fourth
power of the Hubble constant times a complicated function
of the dimensionless ratio of the inflaton to the Hubble
constant. Simple arguments show that these factors of the
de Sitter Hubble parameter cannot be constant for evolving
cosmologies and are not even local functionals of the metric
[13]. Of course this means that they cannot be completely
subtracted.
In this paper we study one possible partial subtraction

scheme. Because cosmological Coleman-Weinberg poten-
tials are only known for de Sitter we shall make the
instantaneous Hubble approximation in which the de Sitter
Hubble constant is replaced by the evolving Hubble
parameter. Our scheme is to subtract the same term with
the Hubble parameter evaluated at the initial time, so that
the cancellation is perfect at the initial time. Section II of
this paper explains why very weak matter couplings are
disfavored. The appropriate modified Friedmann equations
are derived in Sec. III. In Sec. IV we study the effects of
potentials induced by fermions and by gauge bosons.
Section V presents our conclusions.

II. CONNECTING REHEATING AND
FINE-TUNING

The Universe must reheat before the onset of big bang
nucleosynthesis but this seeming lower bound can only be
achieved through a high degree of fine-tuning. Simple
models of inflation all require much higher reheat temper-
atures. Given any model one can use the observed values of
the scalar amplitude As and the scalar spectral index ns to
compute both the number of e-foldings from when
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observable perturbations experienced first horizon crossing
to now and also the number of e-foldings from first
crossing to the end of inflation. The difference between
these two is the number of e-foldings from the end of
inflation to now, during which reheating must occur. For
example, in the V ¼ 1

2
m2φ2 model we will study, the

difference is [14]

ΔN ¼ 1

2
ln

�
πð1 − nsÞAs

Gk20

�
−

2

1 − ns
; ð2Þ

where k0 is the pivot wave number. With 2015 Planck
numbers [1] this works out to be about ΔN ≃ 61.3
e-foldings.
The number of e-foldings since the end of inflation can

be computed independently and it has long been known to
depend on the reheat temperature TR like − 1

3
lnðTRÞ.

For example, the V ¼ 1
2
m2φ2 model gives [14]

ΔN ¼ 1

3
ln
�
15ð1 − nsÞ2As

128π2G2TRT3
0

�
≃ 63.9 −

2

3
lnðGT2

RÞ; ð3Þ

where T0 is the current temperature of the cosmic micro-
wave radiation.1 The reason that high reheat temperatures
are favored is that continuations of the simple models
which describe the observed power spectrum correspond
to small values of ΔN, which requires large TR. For
example, equating (2) and (3) implies a trans-Planckian
reheat temperature. Of course the uncertainties on TR are
great owing to the exponential dependence on the factor of
2

1−ns
in (2), but the preference for large reheat temperatures

is clear.
Considering more general models in the context of

WMAP data, Martin and Ringeval derived a lower bound
of more than 104 GeV [15]. These results can only be
evaded by decreasing the number of e-foldings between
first crossing and the end of inflation, which requires tuning
the lower portion of the inflaton potential to be steeper than
the portion during which observable perturbations experi-
ence first crossing. That raises obvious questions about
why the potential changed form and why the initial
condition was such that observable perturbations happened
to be generated when the scalar was on the flat portion.
The preceding considerations were purely geometrical

and had nothing to do with specific mechanisms of
reheating. We shall consider two matter couplings between
real and complex inflatons φ:

ΔL1 ¼ −λφψ̄ψ
ffiffiffiffiffiffi
−g

p
;

ΔL2 ¼ −ð∂μ − iqAμÞφð∂ν þ iqAνÞφ�gμν
ffiffiffiffiffiffi
−g

p
: ð4Þ

In the V ¼ 1
2
m2φ2 model inflation ends with an approx-

imately matter-dominated phase during which the scalar
oscillates as energy gradually drains from it into ordinary
matter through one or the other of the couplings (4). With
the ΔL1 coupling the inflaton decays into two fermions at a
rate of Γ ¼ λ2m

8π . Reheating ends when the Hubble parameter
falls below this rate and the reheat temperature can be
estimated as [16]

TR ≃
1

5

�
Γ2

G

�1
4

≃ λ × 1015 GeV: ð5Þ

With the ΔL2 coupling the mechanism of reheating is
through parametric resonance [16]. Estimating the reheat
temperature requires numerical analysis but it is known that
the process cannot be efficient for very small couplings
q2 ≪ 1 [17].

III. THE MODIFIED FRIEDMANN EQUATIONS

The purpose of this section is to work out how
the Friedmann equations change when the scalar
potential is allowed to depend on the Hubble parameter,
VðφÞ → Vðφ; HÞ. Our technique exploits the famous theo-
rem [18,19] that specializing to a class of geometries before
varying the action gives correct equations, even though it
can miss constraints. The restriction to homogeneity and
isotropy give the ij Einstein equation and the scalar
evolution equation, from which we infer the 00 equation.
We then reduce these three equations to a dimensionless
form.
We know the scalar potential model Lagrangian (1) for

arbitrary metric and scalar field configurations gμνðt; x⃗Þ and
φðt; x⃗Þ. This makes it simple to vary the action first and
then specialize to homogeneity and isotropy:

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗; φ ¼ φ0ðtÞ: ð6Þ

The two nontrivial Einstein equations are the 00 and ij
components

3H2 ¼ 8πG

�
1

2
_φ2
0 þ Vðφ0Þ

�
; ð7Þ

−2 _H − 3H2 ¼ 8πG

�
1

2
_φ2
0 − Vðφ0Þ

�
: ð8Þ

The scalar equation is

φ̈0 þ 3H _φ0 þ
∂V
∂φ0

¼ 0: ð9Þ

Note the close relation which exists between the three
equations:

1Note the interesting fact that the number of relativistic species
at the end of inflation drops out of this result.
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d
dt
½Eq:ð7Þ�þ3H½Eq:ð7ÞþEq:ð8Þ�¼8πG _φ0½Eq:ð9Þ�: ð10Þ

Even with the replacement HdS → HðtÞ in our de Sitter
results for Coleman-Weinberg potentials we still do not
know how the Lagrangian depends upon a general field
configuration. What we know is its specialization to
homogeneity and isotropy (6) before variation:

L ¼ 1

2
a3 _φ2

0 − a3Vðφ0; HÞ − 6a3H2

16πG
: ð11Þ

This might be thought to be a debilitating problem but it is
not. We simply appeal to the theorem of Palais [18,19] that
all the equations arising from such a specialized Lagrangian
are at least correct, even though there may be additional
equations. The Euler-Lagrange equation for φ0ðtÞ is iden-
tical to (9). The Euler-Lagrange equation for aðtÞ follows
from the derivatives of (11) with respect to a and _a:

∂L
∂a ¼ 6a2

16πG

�
8πG

�
1

2
_φ2
0 − Vðφ0; HÞ

þ 1

3
H
∂Vðφ0; HÞ

∂H
�
−H2

�
; ð12Þ

∂L
∂ _a ¼ −

6a2

16πG

�
8πG

�
1

3

∂Vðφ0; HÞ
∂H

�
þ 2H

�
: ð13Þ

Hence we arrive at the appropriate generalization of Eq. (8):

−2 _H − 3H2 ¼ 8πG

�
1

2
_φ2
0 − V þH

∂V
∂H

þ 1

3
_φ0

∂2V
∂φ0∂H þ 1

3
_H
∂2V
∂H2

�
: ð14Þ

The homogeneous and isotropic Lagrangian (11) does
not give us the generalization of Eq. (7). However, we can
guess it, guided by three principles:

(i) The generalization must reduce to (7) when the
potential has no dependence on H;

(ii) the generalization must not involve either φ̈0 or
ä; and

(iii) substituting the generalization for (7), and Eq. (14)
for (8), in relation (10) should give the scalar
evolution equation.

The desired generalization of (7) is easily seen to be

3H2 ¼ 8πG

�
1

2
_φ2
0 þ V −H

∂V
∂H

�
: ð15Þ

Relations (9), (14), and (15) define how the scalar and
the geometry of inflation evolve, but they are inconvenient
because the scale of temporal variation changes dramati-
cally over the course of inflation and because the dependent

variables are dimensionful. A more physically meaningful
evolution parameter is the number of e-foldings since the
beginning of inflation:

n≡ ln

�
aðtÞ
aðtiÞ

�
⇒

d
dt

¼ H
d
dn

;
d2

dt2
¼ H2

�
d2

dn2
− ϵ

d
dn

�
:

ð16Þ

The natural dimensionless fields and potential are

ϕðnÞ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
φ0ðtÞ; χðnÞ≡ ffiffiffiffiffiffiffiffiffi

8πG
p

HðtÞ;
Uðϕ; χÞ≡ ð8πGÞ2Vðφ0; HÞ: ð17Þ

With these changes, the modified Friedmann equations (15)
and (14) take the form

3χ2 ¼ 1

2
χ2ϕ02 þ U − χ

∂U
∂χ ; ð18Þ

−2χχ0−3χ2¼1

2
χ2ϕ02−Uþχ

∂U
∂χ þ

1

3
χϕ0 ∂2U

∂ϕ∂χþ
1

3
χχ0

∂2U
∂χ2 :
ð19Þ

And the scalar evolution equation becomes

ϕ00 þ ð3 − ϵÞϕ0 þ 1

χ2
∂U
∂ϕ ¼ 0; ð20Þ

where the first slow roll parameter is

ϵðnÞ≡ −
χ0

χ
¼

1
2
ϕ02 þ ϕ0

6χ
∂2U
∂ϕ∂χ

1þ 1
6
∂2U
∂χ2

: ð21Þ

Finally, note that the leading slow roll approximations for
the scalar and tensor power spectra take the form

Δ2
RðnÞ ≈

1

8π2
×
χ2ðnÞ
ϵðnÞ ; Δ2

hðnÞ ≈
1

8π2
× 16χ2ðnÞ: ð22Þ

IV. THE FATE OF THE m2φ2 MODEL

It is useful to study what Coleman-Weinberg corrections
do to the familiar V ¼ 1

2
m2φ2 model, even though that

model is no longer consistent with the data. In the slow roll
approximation the evolution of the dimensionless scalar
and the first slow roll parameter are independent of the
mass term:

slow roll⇒ ϕðnÞ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2ð0Þ − 4n

q
; ϵðnÞ≃ 2

ϕ2ð0Þ− 4n
:

ð23Þ
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To make inflation last about 100 e-foldings (without
the Coleman-Weinberg correction) we choose the initial
conditions

ϕð0Þ ¼ 20; ϕ0ð0Þ ¼ −
1

10
: ð24Þ

We will continue using these conditions after the Coleman-
Weinberg potential is added, with the initial value of χ
chosen to obey Eq. (18). We parameterize the mass in terms
of a constant k which is chosen to make the amplitude of
the scalar power spectrum agree with observation [1]
(again, without the Coleman-Weinberg correction)2:

m2 ≡ k2

8πG
;

ð202kÞ2
96π2

≃ 2 × 10−9: ð25Þ

This defines the classical model which is being corrected.
We first consider an inflaton which is Yukawa coupled to a
fermion, and then we consider a charged inflaton which is
coupled to a gauge boson. In each case the Coleman-
Weinberg potential has disastrous consequences.

A. Inflaton Yukawa coupled to fermions

If the Yukawa coupling constant is λ, and we subtract the
quantum correction at n ¼ 0, the dimensionless potential is

Uðϕ; χÞ ¼ 1

2
k2ϕ2 −

χ4

8π2
f

�
λϕ

χ

�
þ χ4ð0Þ

8π2
f

�
λϕ

χð0Þ
�
: ð26Þ

Here the scalar-dependent part of the Coleman-Weinberg
potential is [9,10]

fðzÞ ¼ 2γz2 − ½ζð3Þ − γ�z4

þ 2

Z
z

0

dxðxþ x3Þ½ψð1þ ixÞ þ ψð1 − ixÞ�; ð27Þ

where ψðxÞ≡ d
dx ln½ΓðxÞ� is the digamma function. The

small value of k2 ∼ 4 × 10−11 needed to reproduce the
scalar amplitude (25) means that the quantum corrections
tend to overwhelm the classical term in (26), unless the
Yukawa coupling is chosen to be very small. With order
one values of λ there is no evolution at all. This is because
the middle term of (26) decreases relative to the final term
as a function of χ. Hence a putative decrease in χ would
actually increase Uðϕ; χÞ, which is inconsistent with
Eq. (18), unless the classical term dominates the two
quantum corrections.
We did not start to see evolution until values of about

λ ∼ 10−3. Figure 1 shows the result for λ ¼ 5 × 10−4.
Although the model evolves noticeably for the first 100
e-foldings, there are considerable deviations from the
classical result. These deviations become extreme at late
times, for which the figure shows that the quantum-
corrected model approaches de Sitter expansion at a
reduced Hubble parameter.
Figure 2 compares the quantum-corrected model (in red)

with the classical results (in blue) for the even smaller
Yukawa coupling of λ ¼ 1.15 × 10−4. Although the two
models seem to track for about 100 e-foldings, inflation
ends in the classical model whereas the quantum-corrected
model again approaches de Sitter. The numerical analysis
shows that χ is visibly nonzero in this de Sitter phase
whereas ϕ is very small.
To see that the late de Sitter phase is generic, note that

when ϕðnÞ ≪ ϕð0Þ the ratio λϕðnÞ=χð0Þ ≪ 1, so we can
neglect the subtraction term in (26). Now write the
modified Friedmann equation (18) and the scalar evolution
equation (20) under the assumption that ϕðnÞ and χðnÞ are
both constant:

3χ2 ¼ 1

2
k2ϕ2 þ χ4

8π2
½3fðzÞ − zf0ðzÞ�; ð28Þ
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FIG. 1. Plots of the dimensionless scalar ϕðnÞ (on the left), the dimensionless Hubble parameter χðnÞ (middle) and the first slow roll
parameter ϵðnÞ (on the right) for the quantum-corrected model (26) with Yukawa coupling λ ¼ 5 × 10−4. Even with this minuscule value
of λ the geometry approaches de Sitter at a reduced scale.

2The tensor-to-scalar ratio of r ≃ 0.16 does not agree with
observation [1], which is why this model is disfavored. However,
it is very simple and well known, and the robustness of our results
does not justify employing a more viable model.
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0 ¼ 1

2
k2ϕ2 þ χ4

8π2

�
−
1

2
zf0ðzÞ

�
; ð29Þ

where z ¼ λϕðnÞ=χðnÞ. There is no simple way to solve
these equations analytically, but it is easy to generate an
efficient numerical solution. First, subtract (29) from (28)
to infer a relation between χ2ðnÞ and z:

χ2 ¼ 24π2

3fðzÞ − 1
2
zf0ðzÞ : ð30Þ

Now substitute (30) in (29) to derive an equation which
determines z in terms of the parameters k2 and λ:

k2

λ2
¼ 3z−1f0ðzÞ

3fðzÞ − 1
2
zf0ðzÞ : ð31Þ

The right-hand side of (31) is a complicated function of z
but one can check numerically that it is monotonically
decreasing. Further, the known asymptotic forms for
fðzÞ [13],

large z∶ fðzÞ → z4 lnðzÞ þOðz4Þ; ð32Þ
small z∶ fðzÞ → αz6 − βz8 þOðz10Þ; ð33Þ

imply that the right-hand side of (31) diverges like 18α=βz4

for small z and goes to zero like 12=z2 for large z. This
means there is a unique solution for z in terms of k2=λ2.
Hence the desired procedure is
(1) given the parameters k and λ, use expression (31) to

solve for z;
(2) substitute z into (30) to compute χ2; and
(3) compute ϕ2 ¼ z2χ2=λ2.
Because the late de Sitter phase emerges from numerical

analysis it is no doubt stable. Demonstrating this analyti-
cally amounts to studying how ∂U

∂ϕ varies when ϕ is
changed. Note first that altering ϕ induces corresponding
changes in χ through relation (28):

Eq: ð28Þ ⇒ ϕ

χ

dχ
dϕ

¼ −3zf0ðzÞ þ z2f00ðzÞ
6fðzÞ − 5zf0ðzÞ þ z2f00ðzÞ : ð34Þ

[Relation (34) has been simplified using relation (29).]
A straightforward calculation then reveals that the total
derivative of ∂U

∂ϕ is

ϕ2
d
dϕ

�∂U
∂ϕ

�
¼ χ4

8π2
½6fðzf0 − z2f00Þ þ 4ðzf0Þ2�

6f − 5zf0 þ z2f00
: ð35Þ

One can see that this is positive in the small z regime (33)
but not in the regime of large z (32). Because the graphs in
Figs. 1 and 2 suggest the small z regime, we conclude that
the late de Sitter phase is stable.
It is not simple to derive a formula for the effective

cosmological constant of the late de Sitter phase because it
depends so strongly on the dimensionless function fðzÞ
through relation (30). If one assumes the small z form (33),
then the effective cosmological constant is

Λ ¼ 3H2 ¼ 3χ2

8πG
→

2π2βk2

9α2λ4
×m2: ð36Þ

Some of the numbers in relation (36) are fixed: α ≃ 0.11,
β ≃ 0.014 and k2 ≃ 4.6 × 10−11. Using the value
λ ¼ 1.15 × 10−4 of Fig. 2 gives Λ ≃ ð7 × 105Þ ×m2.
However, our formula (36) predicts that decreasing λ
should increase Λ, whereas exactly the opposite trend is
apparent in the transition from Fig. 1, with λ ¼ 5 × 10−4, to
Fig. 2, with λ ¼ 1.15 × 10−4. We attribute the apparent
contradiction to the fact that ratio k2=λ2 is in neither case
large enough (it is about 2 × 10−4 for Fig. 1 and about
3 × 10−3 for Fig. 2) to justify the small z approximation
(33) for fðzÞ.
Finally, we consider whether the small positive cosmo-

logical constant of the late de Sitter phase can be absorbed
by adding a negative constant −K to the potential Uðϕ; χÞ,
which changes (28) to
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FIG. 2. Results from the classical model U ¼ 1
2
k2ϕ2 (in blue) versus the quantum-corrected model (26) (in red) assuming the inflaton

is Yukawa coupled to a fermion. We show the dimensionless scalar ϕðnÞ (left-hand graph), the dimensionless Hubble parameter χðnÞ
(middle graph), and the first slow roll parameter ϵðnÞ (right-hand graph). The value of the Yukawa coupling was chosen to be
λ ¼ 1.15 × 10−4.
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3χ2 ¼ −K þ 1

2
k2ϕ2 þ χ4

8π2
½3fðzÞ − zf0ðzÞ�: ð37Þ

The scalar equation (29) is unchanged so relation (30)
becomes

χ2 ¼ 24π2

3f − 1
2
zf0

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

18π2

�
3f −

1

2
zf0

�s �
: ð38Þ

And the relation which fixes z changes from (31) to

k2

λ2
¼ 3z−1f0ðzÞ

3fðzÞ − 1
2
zf0ðzÞ

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

18π2

�
3f −

1

2
zf0

�s �
:

ð39Þ

Although the function on the right-hand side of (39) still
diverges as z → 0, it no longer vanishes for z → ∞. Hence
one can certainly solve for z when λ is very small, but
making λ larger eventually precludes a solution. When
there is a solution, its value will generally be larger than for
K ¼ 0, and this generally leads to a smaller value of χ.
However, note that any value of K > 0 for which there is a
solution to Eq. (39) will correspond to a nonzero value of χ.
So we conclude that it is only possible to avoid the late de
Sitter phase by making K large enough that (39) has no
solution.

B. Charged inflaton coupled to gauge bosons

The quantum-corrected dimensionless potential for a
charged inflaton (with charge q) is

Uðϕ; χÞ ¼ k2ϕ�ϕþ 3χ4

8π2
f

�
q2ϕ�ϕ
χ2

�
−
3χ4ð0Þ
8π2

f

�
q2ϕ�ϕ
χ2ð0Þ

�
:

ð40Þ

The function fðzÞ appropriate for a gauge boson is [11,12]

fðzÞ ¼ −ð1 − 2γÞz −
�
3

2
− γ

�
z2

þ
Z

z

0

dxð1þ xÞ
�
ψ

�
3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p �

þ ψ

�
3

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p ��
: ð41Þ

Of course a bosonic quantum correction adds to the vacuum
energy, which makes the result opposite to that for
fermions. For order one values of the inflaton charge q
the two quantum corrections totally dominate the classical
term and inflation ends almost instantly. Making inflation
last for 60 e-foldings requires the minuscule value of
q2 ¼ 5.5 × 10−6e2, the effects of which are shown in
Fig. 3. Even with this charge there are noticeable deviations
from the classical model, in particular, a much more sudden
end to inflation.

V. DISCUSSION

Scalar-driven inflation suffers from many fine-tuning
problems. These are exacerbated by the need to couple the
inflaton to normal matter in order to make reheating
efficient. Quantum fluctuations of normal matter induce
cosmological Coleman-Weinberg potentials which are not
Planck suppressed and, for de Sitter, depend in complicated
ways on the dimensionless ratio of the square of the
coupling constant times the inflaton over the Hubble
parameter. Although exact results do not exist for more
general backgrounds, it is possible to show that the factors
of “H2” are not generally constant nor even local func-
tionals of the metric. The absence of locality restricts the
extent to which these corrections can be subtracted off. The
purpose of this paper was to study the consequences to
inflation under two assumptions:
(1) The de Sitter Hubble constant is replaced by the

evolving Hubble parameterHðtÞ in the cosmological
Coleman-Weinberg potentials; and
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FIG. 3. Results from the classical model U ¼ 1
2
k2ϕ2 (in blue) versus the quantum-corrected model (40) (in red) assuming a charged

inflaton (with charge q2 ¼ 5.5 × 10−6e2) is minimally coupled to vector bosons. The left-hand graph shows the scalar ϕðnÞ, the middle
graph gives the dimensionless Hubble parameter χðnÞ, and the right-hand graph depicts the first slow roll parameter ϵðnÞ.
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(2) the potentials are completely subtracted at the begin-
ning of inflation with the de Sitter Hubble constant
replaced by the initial value of the Hubble parameter.

In Sec. III we derived the appropriate generalizations to
the Friedmann equations, andwe cast the formalism in terms
of dimensionless variables evolved with respect to the
number of e-foldings from inflation. In Sec. IV we numeri-
cally evolved the m2φ2 model, assuming first that the
inflaton is Yukawa coupled to a fermion and then that a
charged inflaton is minimally coupled to a gauge boson. The
results were catastrophic. For the case of fermions inflation
never really ends, nomatter how small theYukawa coupling.
For bosons the quantum-corrected effective potential causes
inflation to end almost instantly unless the charge is chosen
so small as to make reheating problematic.
These results are completely unacceptable for scalar-

driven inflation. However, it is not known how much they
depend upon the particular subtraction scheme we studied.
It is worth investigating subtractions based on replacing the
factors ofH2 by 1

12
R. That replacement would be perfect for

the de Sitter approximation to the Coleman-Weinberg
potential, but there is still a difference between any local
subtraction and the nonlocal Coleman-Weinberg potential
it attempts to cancel. To study this difference we would
need a more refined analysis of the nonlocal Coleman-
Weinberg potential. In particular, what is a generally
applicable approximation for the de Sitter factors of H2?
Attempting to answer this question seems worthwhile in
view of the crippling potential problem to the viability of
scalar-driven inflation that the current study has exposed.
Another potential solution is to couple derivatives of the

inflaton to ordinary matter, e.g., − 1
M3 ∂μφ∂νφgμνψ̄ψ

ffiffiffiffiffiffi−gp
,

where M is some mass scale. For small enough M such a

coupling would still be effective at communicating inflaton
kinetic energy to the matter sector, and it has the virtue of
preserving the (approximate) shift symmetry which is
strongly suggested by the data. Of course the quantum
corrections from such a coupling make no change at all in
the inflaton effective potential; however, they do change the
inflaton kinetic energy in ways that may be problematic. On
de Sitter background the induced effective kinetic energy is
closely related to the induced effective potential for
nonderivative couplings:

nonderivative ⇒ −
H4

8π2
f
�
λφ

H

�
; ð42Þ

derivative ⇒ −
H4

8π2
f

�∂μφ∂νφgμν

M3H

�
: ð43Þ

What emerges from (43) is a quantum-induced k-essence
model. Instead of order one changes in the inflaton
potential we must now confront order one changes in
the kinetic energy, which can of course alter the inflationary
geometry, the scalar and tensor power spectra and the
reheat temperature. K-essence models sometimes also
permit superluminal propagation. It would be fascinating
to make a quantitative study of the various consequences.
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