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It has been recently argued [Phys. Rev.D 98, 045008 (2018)] that the de Sitter phase in cosmologymight be
naturally generated as a result of the dynamics of the topologically nontrivial sectors in a strongly coupled
QCD-like gauge theory in the expandingUniverse. It is known that the de Sitter phase is realized in the history
of our Universe twice: The first occurrence is coined as inflation, while the second time (which is occurring
now) is dubbed as dark energy (DE). The crucial element of the proposal is the presence of a nontrivial gauge
holonomy which is the source of the vacuum energy leading to the de Sitter behavior. It has been also argued
that the anomalous coupling of the systemwith the StandardModel particles leads to the reheating epoch in the
case of the inflationary phase. A similar anomalous coupling of the systemwith theMaxwell electromagnetic
field during the DE epoch generates the cosmological magnetic field. The intensity of the field is estimated on
the level of 10−10 G, while the corresponding correlation length reaches the scale of the visible Universe.
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I. INTRODUCTION

This work is mostly motivated by a recent proposal [1]
where vacuum energy (and accompanying it the de Sitter
phase) is dynamically generated. The proposal [1] can be
viewed as a synthesis of two naively unrelated ideas
discussed previously in Refs. [2–4] and [5–7], correspond-
ingly. On the gravity side [2–4], the nontrivial element of the
construction is represented by theEuclidean spacetimewith a
time compactified to a circle S1. On the gauge field theory
side [5–7], the same S1 plays a crucial role when the gauge
configurations may assume a nontrivial holonomy along S1.
Precisely, the gauge configurations with the nontrivial
holonomy along S1 may serve as a source of vacuum energy
density, which eventually leads to the de Sitter behavior.
The focus of the proposal [1] coined as “holonomy

inflation” was the study of vacuum energy and the
corresponding de Sitter behavior in an application to the
inflationary Universe. It has been also suggested in that
proposal that the holonomy inflation ends as a result of
anomalous coupling of the system with massless Standard
Model (SM) gauge fields with known coefficients.
The present work applies the same ideas on the dynami-

cal generation of vacuum energy to the dark energy (DE)
epoch when the corresponding strongly coupled gauge
theory is well known; it is QCD characterized by a single

dimensional parameter, ΛQCD ∼ 0.1 GeV. A similar
anomalous coupling (which was the source of the reheating
in the holonomy inflation in Ref. [1] when the vacuum
energy is transferred to the massless gauge fields) generates
the cosmological magnetic helical configurations with an
enormous correlation length reaching the size of the entire
visible Universe during the present DE epoch. The focus of
the present work is an analysis of the generation mecha-
nism of such a long-ranged magnetic field.
Before we proceed with the outline of this work, we

make a few remarks on conventional approaches to study
the cosmological magnetic field. We refer to the classical
review papers [8,9] and a more recent review [10] for
details and references. It is normally assumed that magnetic
fields in astronomical structures of different sizes, from
stars R ∼ 1011 cm to galaxy clusters R ∼ 1024 cm are
produced by the amplification of preexisting weaker “seed”
magnetic fields via different types of dynamo. Two broad
classes of models for the origin of the seed fields are
discussed: (i) A primordial magnetic field (seeds) is
produced during different dramatic events in the evolution
of the Universe such as inflation, electroweak phase
transition, and QCD transition, i.e., during the epochs
preceding structure formation; (ii) the process of generation
of the seed magnetic fields accompanies the gravitational
collapse leading to structure formation. We shall not
comment on many problems related to this conventional
picture referring to the reviews in Refs. [8–10].
The unorthodox mechanism we are advocating in the

present work is drastically distinct from previous conven-
tional approaches. Essentially, the magnetic field in our
framework is generated with an enormous scale from the
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moment when it was born, as the source of its energy is the
DE occupying the entire Universe. Therefore, there is no
need for amplification nor for different types of inverse
cascades, as the correlation length of the produced field is
already characterized by the largest possible scale. The
intensity of this correlated magnetic field is estimated on
the level of B ∼ 10−10 G, and the intensity of the field B2 is
proportional to the DE density ρDE ≈ ð2.3 × 10−3 eVÞ4 with
a calculable (in principle) coefficient.
This intensity is very close to the upper limit but not

ruled out. In fact, such fields can be studied by future
ultrahigh-energy cosmic ray (UHECR) telescopes; see
Fig. 14 in Ref. [10].
Our presentation is organized as follows. In Sec. II, we

overview the basic ideas and results on the nature of
vacuum energy from Ref. [1]. The nature of the DE plays a
crucial role in our framework, as it is the source of the
cosmic magnetic field, which is the main subject of the
present work. Therefore, we overview the basic ideas of
Ref. [1] in the context of the present work in great detail for
the benefit of the reader. In Sec. III, we explain how the DE
couples to the electromagnetic (EM) field through the
chiral anomaly. Precisely, this coupling is responsible for
the generation of the long-ranged magnetic field, which is
the subject of Sec. IV, where we estimate its intensity. We
conclude in Sec. V with a few comments on future
development and possible observational tests which may
support or rule out this new paradigm when DE and the
cosmic magnetic field represent two sides of the same coin
and are produced at the same epoch.

II. TOPOLOGY AS THE SOURCE OF THE
GRAVITATING VACUUM ENERGY

The goal here is to overview the basic ideas advocated in
Ref. [1]; see also a number of precursor references therein.
In the approach of Ref. [1], the vacuum energy entering

the Friedmann equation is defined as Δρ≡ ρFRW − ρMink.
This definition for vacuum energy for the first time was
advocated in 1967 by Zeldovich [11], who argued that
ρvac ¼ Δρ ∼Gm6

p must be proportional to the gravitational
constant with mp being the proton’s mass. Later on, such a
definition for the relevant energy Δρ≡ ρFRW − ρflat which
enters the Einstein equations has been advocated from
different perspectives in a number of papers written by
researchers from different fields, including particle physics,
cosmology, and condensed matter physics. This subtraction
prescription is consistent with the conventional subtraction
procedure of the divergent ultralocal bare cosmological
constant, because in the infinitely large flat spacetime the
corresponding contribution is proportional to the δ4ðxÞ
function as explained in Ref. [1]. At the same time, the
nontrivial correction to Δρ as discussed below is a nonlocal
function of the geometry and cannot be renormalized by
any UV counterterms.

In the present work, we consider the geometry R3 × S1

instead of Friedmann-Robertson-Walker (FRW) geometry
to simplify the arguments. The key element in this
framework is the presence of a dimensional parameter
T −1 which plays the role of the Hubble constantH in FRW
geometry which distinguishes FRW geometry from flat
infinite spacetime geometry. In other words, we have a
dimensional parameter T which is assumed to be of the
order of ∼H−1 and which parametrizes the difference
between nontrivial and trivial (flat infinite spacetime R4)
geometries. In computations [1], parameter T is the proper
length of the S1 period. As we already mentioned, this
prescription (when Δρ≡ ½ρFRW − ρflat� is identified with
physical energy, similar to the Casimir effect) is consistent
with the Einstein equations when the vacuum energy
approaches zero, Δρ → 0 for the flat spacetime which
itself may be considered as a limiting case with T → ∞.
The key element of the framework [1] is that the vacuum

energy receives the linear correction T −1 at large T in
contrast with naively expected quadratic corrections T −2

such that the vacuum energy entering the Friedmann
equation assumes the form

ρDE ≡ ðEvac½R3 × S1� − Evac½R3 ×R1�Þ ¼ Λ3
QCD

c̄T
T

; ð1Þ

where the vacuum energy can be represented as follows:

Evac½R3 × S1� ≃ −
32π2

g4
Λ4
QCD

�
1 −

cT
T ΛQCD

�

≃ −
32π2

g4
Λ4
QCD þ Λ3

QCD
c̄T
T

þO
�

1

T 2

�
: ð2Þ

In this expression, we redefined c̄T ≡ 32π2

g4 cT . The coef-

ficient cT ∼ 1 is, in principle, a calculable parameter,1

expected to be of the order of one. The linear dependence
T −1 of the relevant portion of the vacuum energy (1) on
external parameter T −1 ∼H suggests that ρDE numerically
is very close to the observed value today, i.e.,

ρDE ≃ Λ3
QCD

c̄T
T

∼ Λ3
QCDH ∼ ð10−3 eVÞ4: ð3Þ

One should also mention that this numerical coincidence in
estimate (3) was the main motivation to advocate the
proposal [13,14] that the driving force for dark energy is
a nontrivial dynamics of the topological sectors in strongly
coupled QCD (admittedly, without much deep understand-
ing behind the formula at that time).
A few important comments regarding formulas (1) and (2)

are in order.

1It can be, in principle, computed in strongly coupled QCD
using the lattice Monte Carlo simulations, similar to studies [12].
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(1) All computations leading to (2) are performed in the
Euclidean spacetime where the relevant gauge con-
figurations describing the tunneling processes are
defined. Using this technique, one can compute the
energy density ρ and the pressure P in Euclidean
space. As usual, we assume that there is an analytical
continuation to Lorentizan spacetime where the
physical energy density has the same form. In our
context, it means that the parameters P and ρ and
equation of state (EOS) as given by (7) below are
interpreted as the corresponding parameters in
physical Lorentizan spacetime.

(2) The same arguments also suggest that the parameter
T entering (2) is a constant parameter of the system
[not to be confused with observed Hubble HobsðtÞ,
which is time dependent in a FRW universe]. The
cosmological evolution in the Lorentizan spacetime
is determined by the analytic continuation as dis-
cussed in Ref. [1].

(3) What is the interpretation of the parameter T in
physical Lorentizan spacetime? In the system with
a Euclidean signature, the parameter T is determined
by the size ofS1, which normally can be interpreted as
the inverse temperature of the system in Lorentizan
spacetime. We think it is a proper interpretation even
though there are not any thermodynamical processes
which are occurring and characterized by extremely
low temperature T −1 ∼H ∼ 10−33 eV.

(4) The vacuum energy Evac is defined in a conventional
way in terms of the path integral. It has a “non-
dispersive” nature, which implies that the correspond-
ing vacuum energy cannot be expressed in terms
of conventional propagating degrees of freedom
(absorptive part) using the dispersion relations to
compute the dispersive part. Furthermore, all effects
represented by Eq. (2) are obviously nonanalytical in
coupling constant ∼ expð−1=g2Þ and cannot be seen
in the perturbation theory.2 Nonanalytical structure
emerging in Eq. (2) can be easily understood
without precise computations. Indeed, ΛQCD in this
formula appears as a result of tunneling events
which are always proportional toΛ4

QCD ∼ expð−SclÞ∼
expð−1=g2Þ, while four zero modes which accom-
pany everymagneticmonopole constituent (see item5
below) of the classical caloron solutionwith nontrivial
holonomy produce the factor ∼½ ffiffiffiffiffiffi

Scl
p �4 ∼ g−4; see

Ref. [7] for the details and references.

(5) One can view the relevant topological Euclidean
configurations which saturate (2) as the 3d magnetic
monopoles wrapping around the S1 direction. These
configurations are characterized by nonvanishing
holonomy, which eventually generates the linear
(rather than quadratic) correction ∼1=T to the vac-
uum energy density. For the specific geometry (lead-
ing to thedeSitter behavior) considered inRef. [1], the
parametersT andH are related byT ≃ π=H such that
Δρ ∼H when the Hubble parameter is a constant.3

(6) In the cosmological context, such configurations are
highly unusual objects: They obviously describe the
nonlocal physics, as the holonomy is a nonlocal
object. Indeed, the holonomy defines the dynamics
along the entire history of evolution of the system.
This entire gauge configuration is a mere saddle point
in the Euclidean path integral computation, which
describes the instantaneous tunneling event rather
than the propagation of a physical degree of freedom.

(7) The generation of the nondispersive energy Evac is a
highly nonlocal effect, as it is saturated by the gauge
configurations with nontrivial holonomy. Precisely,
this feature of nonlocality implies that the relevant
energy Δρ which enters the Friedmann equation (3)
cannot be expressed in terms of a gradient expansion
in any effective local field theory.

(8) The basic idea of the framework [1] on the dynamical
generation of vacuum energy leading to de Sitter
behavior is that there is a linear correction (with
respect to the inverse size of the system) to the energy

Evac½R3 × S1�
Evac½R3 × R1� ≃

�
1 −

cT
T ΛQCD

�
: ð4Þ

This correction ∼T −1 is generated in spite of the fact
that the system has a gapΛQCD which naively implies
that the system must not be sensitive to the size T of
the system at all. We already mentioned that the
correction T −1 is nevertheless generated because the
vacuum energy (1) and (3) has a nondispersive nature,
not associated with any propagating massive degrees
of freedom, but rather is related to instantaneous
tunneling events (expressed in terms of the Veneziano
ghost, mentioned in footnote 2, as the presence of the
topologically protected pole). Explicit computations
in hyperbolic space S1 × H3 [7] and a simplified

2This nondispersive nature of the vacuum energy is well known
to the QCD community: It appears in the computation of topo-
logical susceptibility (which is expressed as the second derivative
of the vacuum energy with respect to θ). The corresponding
nondispersive contact term was postulated by Witten in Ref. [15],
while the same termwith a “wrong sign” in the correlation function
was saturated by the Veneziano ghost in Refs. [16,17]; see
Appendix A1 in Ref. [1] for references and details.

3A nonzero holonomy for the vacuum configurations saturat-
ing the vacuum energy represents a technical explanation for why
the conventional argument [that the correction in (2) must be
quadratic inH2 in a gravitational background rather than linear in
H] fails. The point is that the holonomy is an independent gauge-
invariant nonlocal characteristic of the system, similar to the
Polyakov line, which cannot be expressed in terms of the local
curvature R, which is indeed quadratic in H as R ∼H2. Explicit
computations in hyperbolic space support this claim; see item 8.
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“deformed QCD” model [18], along with the lattice
simulations [12], support this claim.

What is an intuitive way to understand the effect?
Imagine that we study the Aharonov-Casher effect. We
insert an external charge into a superconductor when the
electric field E is screened, i.e., E ∼Q expð−r=λÞ with λ
being the penetration depth. Nevertheless, a neutral mag-
netic fluxon will be still sensitive to an inserted external
charge Q at arbitrary large distances in spite of the
screening of the physical field. This genuine quantum
effect is purely topological and nonlocal in nature and can
be explained in terms of the dynamics of the gauge sectors
which are responsible for the long-range dynamics.
Imagine now that we study the same effect but in a
time-dependent background. The corresponding topologi-
cal sectors which saturate the vacuum energy will be
modified due to the external background. However, this
modification cannot be described in terms of any local
dynamical fields, as there are not any propagating long-
range fields in the system since the physical electric field is
screened. The effect is obviously nonlocal in nature, as the
Aharonov-Casher effect itself is a nonlocal phenomenon,
and cannot be expressed in terms of the local operator Fμν

but rather is expressed in terms of the gauge-invariant, but
nonlocal operator, the holonomy ∼ expðiQ H

AμdxμÞ.
We conclude this short overview on the generation of

dynamical vacuum energy (as a result of the dynamics of the
topological sectors) with a comment that this type of energy
behaves in all respects as a cosmological constant if
anomalous coupling with other gauge fields is switched
off. Indeed, one can use the conventional thermodynamical
relation

dF ¼ TdS − PdV; P ¼ −
∂F
∂V

����
S
; ð5Þ

to convince yourself that the correction ∼T −1 does not
modify the equation of state. In fact, it behaves exactly in the
same way as the cosmological constant does, i.e.,

P ¼ −
∂F
∂V ¼ þ 32π2

g4
Λ4
QCD

�
1 −

cT
T ΛQCD

�
;

ρ ¼ F
V
¼ −

32π2

g4
Λ4
QCD

�
1 −

cT
T ΛQCD

�
: ð6Þ

Equation (6) implies that the corresponding equation of state
assumes the form

w ¼ ΔP
Δρ

¼ −1; aðtÞ ∼ expðHtÞ; H ∼ T −1; ð7Þ

where ΔP and Δρ are defined by subtracting the constant
value computed in an infinitely large flat spacetime, as
explained above and expressed by (1) and (3).

The regime described by (7) would be the final desti-
nation of our Universe if the interaction of the QCD gauge
configurations (saturating the vacuum energy) with mass-
less EM photons were always switched off. When the
coupling of the QCD vacuum fields with the EM field is
switched back on, the end of de Sitter behavior is triggered
precisely by this interaction, which itself is unambiguously
fixed by the triangle anomaly as we discuss in Sec. III.
The corresponding physics of the energy transfer from the

vacuum energy given by (1) and (3) to the cosmic magnetic
energy is very similar in all respects to the physics of the
reheating epoch at the end of inflation when the vacuum
energy is transferred to the light gauge SMfields as discussed
in Ref. [1]. The technical (very challenging) problemswhich
need to be resolved to address these questions are also very
similar in spirit, as we discuss in next section.

III. COUPLING OF THE VACUUM
ENERGY TO PHOTONS

This section is separated in two parts. In Sec. III A, we
explain the formal procedure (based on the Euclidean path
integral formulation) which, in principle, allows one to
compute the desired rate and other characteristics of the
energy transfer. While the corresponding procedure is well
defined, it is not technically feasible yet. Therefore, in
Sec. III B, we introduce an alternative technique in terms
of the auxiliary topological auxiliary fields to attack the
problem.

A. Formulation of the problem in terms
of the tunneling transitions

The vacuum energy (1) and (3) in our framework is
expressed in terms of the tunneling transitions, which are
normally computed in terms of the Euclidean path integral,
and the corresponding (Euclidean) field configurations,
which describe the interpolation between distinct topologi-
cally jki sectors. In conventional quantum field theory
computations, the corresponding procedure selects a specific
superposition of the jki states which generates the jθi state
with energy EvacðθÞ. In the context of DE, when the back-
ground assumes a nontrivial FRWgeometry (in contrast with
the conventional case described by R4), the corresponding
computations become profoundlymore complicated, though
the corresponding procedure is well defined in principle:
(1) One should describe the relevant Euclidean con-

figurations satisfying the proper boundary condi-
tions for a nontrivial geometry (similar to calorons
with nontrivial holonomy, reviewed in Appendix A2
in Ref. [1]) represented by the parameter H ∼ T −1.

(2) One should compute the corresponding path integral
which includes all possible positions and orienta-
tions of the relevant gauge configurations interpolat-
ing between different topological jki sectors
and physically describing the tunneling transitions
between them.
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(3) The corresponding computations for the vacuum
energy ρ and pressure P must be done with all
massless fields which couple to QCD. In our case,
the only massless particles to be considered are the
photons, as the production of all massive particles is
exponentially suppressed. Precisely, this coupling of
the QCD gauge configurations with an EM field is
responsible for transferring the vacuum energy to the
magnetic energy.

(4) As the last step, one should subtract the correspond-
ing expression (computed on R4) as explained in
Sec. II. Precisely, this remaining portion of the
vacuum energy is interpreted as the relevant energy
which enters the Friedmann equation and which
cannot be removed by any subtraction procedure and
cannot be renormalized by any UV counterterms.
The corresponding formulas for Δρ and ΔP will
depend, in general, on properties of the manifold
(parametrized by H), the relevant coupling constant
α with an EM field, and the environment where the
magnetic field is generated. This procedure will
unambiguously predict the magnetic energy of the
produced field along with its basic features (such as
the correlation length, helical features, etc.).

While these steps are well defined in principle, it is not
feasible to perform the corresponding computations, because
even the first step in this direction, finding the relevant
Euclidean configurations satisfying the proper boundary
conditions for a nontrivial geometry, is yet unknown.
Nevertheless, this procedure, in principle, shows that the
de Sitter behavior (7) in this framework emerges without any
local field ΦðxÞ as explained in Sec. II, because the physics
leading to (7) is not associated with any scalar fields but
related to the tunneling events. This procedure, in principle,
also shows how the vacuum may transfer its energy to the
magnetic field in a time-dependent background.
In many respects, this energy transfer is very similar to

the so-called dynamical Casimir effect (DCE) when the
photons are radiated from the vacuum in a time-dependent
background. The difference with the conventional DCE is
that the photons are emitted in our case not from conven-
tional virtual fluctuating particles which always present in
the system. The key difference with the DCE is that the
photons in our system are emitted from vacuum configu-
rations which describe the tunneling processes between
different topological sectors jki.
This difference (in comparison with the DCE) in the

nature of emission explicitly displays a hard challenging
technical problem in the computation of the corresponding
emission rate. Indeed, our topological configurations inter-
polating between different topological sectors jki are for-
mulated in terms of the Euclidean path integral, while the
emission of real particles on a mass shell represents an
inherentMinkowski process. At the present time, the conven-
tional technical tools developed for Euclidean vsMinkowski
descriptions are very different and designed for different

purposes and different problems. For example, conventional
lattice QCD Monte Carlo simulations are not designed to
compute physical processes such as on-shell scattering
amplitudes but perfectly adapted to compute the
Euclidean correlation functions such as topological
susceptibility, which assumes a nonzero value exclusively
due to the tunneling events between different topological
sectors.

B. Formulation of the problem in terms
of the auxiliary topological fields

Fortunately, the key ingredients which are relevant for
our future studies can be understood in an alternative way,
in terms of the auxiliary topological nonpropagating fields
bðx;HÞ which effectively describe the relevant infrared
(IR) physics representing the key elements of steps 1–4
highlighted in Sec. III A. Parameter H here represents the
deviation of the manifold under consideration (for example,
1=T ) from trivial R4.
The basic idea is to construct the effective Lagrangian for

the auxiliary topological field bðx;HÞ using the Euclidean
conventional formulation. As the next step, one can utilize
the standard formulas to rewrite the corresponding action in
Minkowski spacetime. Finally, one can study the emission
of real particles and generation of a real magnetic field
using the obtained effective Lagrangian written in
Minkowski space. This procedure effectively resolves the
fundamental technical problem formulated at the end of
Sec. III A and originated from the differences in descrip-
tions in Euclidean vs Minkowski spacetimes.
The formal technique we are about to overview is widely

used in the particle physics and condensed matter com-
munities. We refer to Appendix B in Ref. [1] for the
highlights of the main ideas and results of this approach
within the context of the present work. In particular, this
approach is extremely useful in the description of the
topologically ordered phases when the IR physics is
formulated in terms of the topological Chern-Simons–
(CS-) like Lagrangian. One should emphasize that the
corresponding physics, such as the calculation of the
braiding phases between quasiparticles, computation of
the degeneracy, etc., can be computed (and, in fact,
originally had been computed) without a Chern-Simons
Lagrangian and without auxiliary fields. Nevertheless, the
discussions of the IR physics in terms of CS-like effective
action is proven to be very useful, beautiful, and beneficial.
In our case, it is not simply a matter of convenience, but in
fact a matter of necessity, because we cannot proceed with
explicit computations along the lines of 1–4 as explained in
Sec. III A.
In the context of the present work, the auxiliary topologi-

cal nonpropagating fieldbðx;HÞ is introduced in the conven-
tional way as a Lagrange multiplier in the course of inserting
the corresponding δ functional into the path integral which
effectively constrains the relevant degrees of freedom; see
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Appendix B in Ref. [1] for references and technical details.4

The only information we need in what follows is that
auxiliary field bðx;HÞ should be thought of as the source
of the topological fluctuations, similar to the axion field,
because it enters the effective Lagrangian precisely in the
same way as the θ parameter enters the fundamental
Lagrangian. This claim is explained in Appendix B in
Ref. [1] and is based on an analysis of the exact anomalous
Ward identities. Inmany respects, the coupling of thebðx;HÞ
field to the gauge fields is unambiguously determined,
similar to the unique coupling of the η0 field to the gluons,
photons, and gauge bosons in QCD. Because we know
exactly how the θ parameter couples to electromagnetic
(E&M) fields, we can reconstruct exactly the coupling of
the auxiliary topological bðx;HÞ field with Fμν fields.
As a consequence of this fundamental feature, the topo-

logical auxiliary bðx;HÞ field is, in fact, an angular topo-
logical variable, and it has the same 2π periodic properties as
the original θ parameter.5 In other words, the desired
coupling of the bðx;HÞ field with Fμν photons is

LbγγðxÞ ¼
α

4π
N

P
iQ

2
i

Nf
½θ þ bðx;HÞ� · FμνF̃μνðxÞ; ð8Þ

where α is the fine-structure constant, Qi are the electric
charges ofNf light quarks, andN ¼ 3 is thenumber of colors
of the strongly coupled QCD, and everything is written
already in the Minkowski metric. As we already mentioned,
the coupling (8) is unambiguously fixed, because the
auxiliary bðx;HÞ field always accompanies the θ parameter
in the specific combination ½θ þ bðx;HÞ� and describes the
anomalous interaction of the topological auxiliary bðx;HÞ
field with E&M photons.
The next question we want to address is as follows: What

are the typical fluctuation scales of the auxiliary quantum
bðx;HÞ field? The answer is quite obvious: The typical
fluctuations are of the order of ΛQCD, as the bðx;HÞ
effectively describes the tunneling events and, in particular,
saturates the topological susceptibility (which can be
explicitly computed in weakly coupled deformed QCD

as studied in Ref. [21], where all computations are under
complete theoretical control).
What happens when the same system is defined on a

nontrivial manifold characterized by some dimensional
parameters such as H ∼ T −1 ≪ ΛQCD? In this case, the
field bðx;HÞ will continue to fluctuate with typical
frequencies ΛQCD. However, the relevant correlation func-
tions should demonstrate the emergence of linear correc-
tions with respect to these small parameters ∼T −1. In
particular, the topological susceptibility (expressed as the
second derivative of the vacuum energy with respect to θ)
should be of the order of Λ4

QCD with corrections of the order
of ðΛQCDT Þ−1 as expressions (1) and (2) suggest.
It is useful to treat _bðx;HÞ as the axial chemical

potential,6 i.e.,

μ5 ≡ h _bðx;HÞi; ð9Þ

which can be easily understood by performing the Uð1ÞA
chiral time-dependent transformation in the path integral to
rotate away the coupling (8). The corresponding interaction
reappears in the form of a singlet nonvanishing axial
chemical potential μ5 for light Nf flavors as stated in (9).
A few comments are in order. In formula (9), we use

notation for the expectation value h _bðx;HÞi to emphasize
that we treat bðx;HÞ entering (8) as the external parameter,
ignoring a complicated quantum dynamics of the bðx;HÞ
field itself (which would require us to proceed with steps 1–
4 as formulated in Sec. III A). In what follows, we also
neglect the backreaction of the Fμν field on bðx;HÞ. In
other words, we approximate the dynamics of bðx;HÞ by
taking its expectation value h _bðx;HÞi and treating it as an
(almost constant) external thermodynamical parameter of
the system. One should emphasize that μ5 is not a genuine
thermodynamical parameter. Furthermore, μ5 does not
satisfy any classical equation of motion, as there is not a
canonical kinetic term in the Lagrangian for the bðx;HÞ
field itself. Instead, the bðx;HÞ field was introduced as a
Lagrange multiplier to account for the complicated dynam-
ics of the tunneling events.
Our next comment is related to the estimation of the

expectation value h _bðx;HÞi. As we discussed in Sec. II, the
dimensional parameters entering our framework must be
computed by subtracting the corresponding expectation
values computed on R4. This procedure unambiguously
implies7 that h _bðx;HÞi ∼H, as it must vanish atH ¼ 0 and
it must be linear in H as discussed in Sec. II.

4The computations have been performed in a simplified
version of QCD, the so-called weakly coupled deformed QCD
model [19] which preserves all relevant features of the strongly
coupled QCD such as confinement, nontrivial θ dependence,
generation of the nondispersive vacuum energy, etc., [20]. The
corresponding results have been reproduced in Ref. [21] using the
technique of the auxiliary topological fields bðxÞ exploited in the
present work. It is expected that a similar description in terms of
the auxiliary topological field also holds in strongly coupled
QCD. In fact, the Veneziano ghost postulated in Refs. [16,17] can
be identified with the auxiliary topological fields [21].

5As is known, the θ parameter can be promoted to the
dynamical axion field θðxÞ by adding the canonical kinetic term
½∂μθðxÞ�2 to the effective Lagrangian. The difference of the
bðx;HÞ field with the dynamical axion θðxÞ field is that the
auxiliary topological field bðx;HÞ does not have a canonical
axion kinetic term.

6There is a close analogy with heavy ion physics when a large
domain with induced θind ≠ 0 can be formed, resulting in the
generation of the axial chemical potential μ5 ¼ _θind in this θind ¼
μ5t domain. This term may produce a number of interesting P odd
phenomena; see Ref. [22] for review and references.

7For this specific case, h _bðx;H ¼ 0Þi ¼ 0. Therefore, the
subtraction in this case is a triviality.
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Therefore, our problem is now reduced to the study of
the magnetic field generation determined by coupling (8)
with a source which can be parametrized as follows:

μ5 ≡ h _bðx;HÞi ¼ c1H; ð10Þ
where numerical coefficient c1 ∼ 1 is of the order of one,
similar to cT from Eq. (2), and it can be, in principle,
computed from first principles by following steps 1–4 as
highlighted in Sec. III A.
One should also remark here that many other terms may

enter the right-hand side (rhs) in Eq. (10), depending on the
geometry. For example, if one considers another geometry
with extra S1

z along the z direction, one could expect linear
corrections proportional to ∼czT −1

z similar to T −1 ∼H
entering (10). One should also expect the curvature con-
tribution cRR ∼H2

obs representing the conventional quad-
ratic correction; see footnote 3 with a comment. In other
words, any deviation from R4, in general, contributes to the
rhs in Eq. (10). However, to simplify our analysis in
what follows, we limit ourselves with a single parameter
T −1 ∼H characterizing the deviation of the geometry with
nontrivial holonomy8 from the topologically trivial R4. We
assume that c1H is the dominating term in Eq. (10).

IV. GENERATION OF THE MAGNETIC FIELD
THROUGH THE CHIRAL ANOMALY

A. Basic equations

The coupling of the E&M fields with auxiliary topo-
logical field (8) parametrized by (10) generates an addi-
tional source term in the Maxwell equations

∇⃗ × B⃗ ¼ σE⃗þ α

2π
N

P
iQ

2
i

Nf
· ðμ5B⃗Þ; ð11Þ

where σ is the conductivity to be estimated below and the

term ∼h∇⃗bðx;HÞi × E⃗ was neglected as a result of the
spatial isotropy of the tunneling events. The extra induced
nondissipating current j⃗ ∼ B⃗ has been a very active area of
research for many years in a number of different fields,
including heavy ion physics (see reviews [22,23]), axion
searches (see reviews [24–32]), earlier studies in condensed
matter physics [33,34], and more recent studies in con-
densed matter physics [35] to name just a few.
There are also numerous applications of this anomalous

term ∼μ5B⃗ to cosmology related to the topic of the present
work, and we want to mention just a few papers [36–39]
relevant for our future discussions. The drastic difference
with most previous studies is that the source (10) in our
case is not a dynamical field but, rather, an auxiliary field

accounting for the tunneling transitions in a time-dependent
background generating the vacuum dark energy (1) and (3)
as discussed in Sec. II. Nevertheless, for our purposes, we
can use some technical tools from previous studies treating
μ5 as an almost constant thermodynamical parameter.
One should also add that even a constant time-independent

μ5 ≠ 0 is capable to generate the magnetic field in the
system. Indeed, the explicit computations in the cosmo-
logical context [36] and in heavy ion collision physics [40]
support this claim. Our equations (15)–(17) below also
suggest that a time-independent μ5 ≠ 0 generates the mag-
netic field. Naively, this result may look very suspicious.
However, one can easily see that the constant μ5 ≠ 0 can
be treated as the time-dependent phase θ ∼ μ5t; see also
footnote 6. This argument explicitly shows that the time
dependence is, in fact, present in the system through the
observable phase θðtÞ. Therefore, the generation of the
magnetic field for time-independent μ5 should not surprise
the reader.
With these comments in mind, we consider the following

simple ansatz for the magnetic field [38,39]:

B⃗ ¼ BðtÞ½sinðkzÞ; cosðkzÞ; 0�; ð12Þ
while the Bianchi identity ∇⃗ × E⃗ ¼ − ∂B⃗

∂t implies that the
corresponding electric field assumes the form

E⃗ ¼ −
1

k
_BðtÞ½sinðkzÞ; cosðkzÞ; 0� ¼ −

1

k
⃗_B: ð13Þ

The configuration (12) is a special case of the force-free
field which satisfies

∇⃗ × B⃗ ¼ kB⃗; ð14Þ
see Refs. [38,39] for references and details generalizing the
ansatz (12). Substituting (12)–(14) into (11), we arrive to
the following equation for BðtÞ:

kBðtÞ ¼ −
σ

k
_BðtÞ þ α

π
c̄HBðtÞ; c̄≡ c1

N
P

iQ
2
i

2Nf
; ð15Þ

where we introduced c̄, replacing the previously defined
numerical coefficient c1 as given by (10).
We are looking for a solution in the form

BðtÞ ¼ B0 expðγtÞ; ð16Þ
which returns the following formula for the exponent γ:

γ ¼ k
σ

�
α

π
c̄H − k

�
: ð17Þ

The exponential growth of the magnetic field occurs for
very long waves:

γ > 0 ⇒ k <
α

π
c̄H: ð18Þ

8As we mentioned in Sec. II for a specific geometry studied in
Ref. [1] the parameters H and T are related: H ≃ π=T and
describe the de Sitter behavior for constant H.
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The instability with respect to the generation of the
magnetic field BðtÞ ∼ expðγtÞ due to the coupling (8) is
a well-known phenomenon and was discussed previously
in the literature, including cosmological applications
[36–39] and heavy ion collisions [40]. In the context of
the inflationary scenario, the same type of coupling could be
responsible for the reheating epoch as discussed in Ref. [1].
In the context of the present work, Eqs. (16) and (18)

unambiguously imply that the magnetic field will be
generated on the enormous scales of the entire visible
Universe as a result of anomalous coupling of the DE with
the Maxwell field (8). The generation of the magnetic field
obviously implies that there will be an energy transfer from
the vacuum to the magnetic field as a result of the evolution
of the Universe.
One should emphasize that a sample configuration (12)

and (13) considered above is oversimplified example.We, of
course, do not expect the magnetic field to be uniform
running along the z direction through the entire Universe.
Instead,we expect the field to be twisted, as it is highly helical
(which is normally associated with linking and twisting of
magnetic fluxes). Indeed, the magnetic helicity is defined as

H≡
Z

A⃗ · B⃗d3x: ð19Þ

The time evolution of the magnetic helicity is determined
precisely by E⃗ · B⃗ entering Eq. (8), i.e.,

dH
dt

¼ −2
Z

E⃗ · B⃗d3x: ð20Þ

For our configuration (12) and (13) considered above, the
magnetic helicity per unit volumeH=V is directly related to
the magnetic energy density, i.e.,

HðtÞ
V

≈
B2ðtÞ
k

: ð21Þ

Furthermore, the time evolution of both observables is also
the same as Eq. (21) states.
One should comment here that a magnetic field with an

enormous correlation length is known to be present in our
Universe; see the original paper [41] and review [10]. The
mechanism suggested in the present work automatically
generates fields with such large correlation lengths. On
other hand, it is very hard, if at all possible, to generate such
an enormous correlation length within conventional
approaches; see Ref. [10] for review.
The generation of the magnetic field from μ5 is not a very

new idea and was previously discussed in the literature for
different systems. Furthermore, it has been known for some
time that the generation of the helical magnetic field is
normally accompanied by a decrease of μ5, which is the
source of the produced field. In particular, such behavior is
shown to occur in heavy ion systems [40] and also in the
systems relevant for cosmology [38,39].

What is the efficiency of this energy transfer from DE to
magnetic energy in our case? What is the typical time scale
for this energy transfer? What is the intensity of the
magnetic field generated by this mechanism? We have to
estimate σ and other related parameters in order to address
these and many other related questions, which is the topic
of the next subsection.

B. Numerical estimates

This subsection is much more speculative in comparison
with our previous discussions in Sec. IVA, which is
entirely based on the Maxwell equations in the presence
of an additional axion term. Nevertheless, we want to
proceed with our speculations here to argue that all
conventional cosmological assumptions about the environ-
ment lead to estimates for the magnetic field which are
perfectly consistent with presently available observations.
Future studies as discussed in Ref. [10] are capable to
discover these long-ranged fields.
We start with electric conductivity σ entering the

expression (17) for γ. It is normally estimated as follows:

σ ¼ 4πneατ
me

; ð22Þ

where τ is the timescale when a free electron is losing its
coherence. This timescale for a low-density environment is
normally estimated as a result of the interaction of electrons
with cosmic microwave background (CMB) photons
through Thomson scattering:

τ−1 ¼ nγσT; σT ¼ 8πα2

3m2
e
; ð23Þ

where in conventional circumstances nγ ¼ nCMB ∼ T3; see,
e.g., Ref. [9]. However, as we estimate below, in our
framework the number density of the E&M configurations
characterized by B⃗ and E⃗ fields and given by (12) and (13)
correspondingly is much higher than nCMB. Precisely, these
long-wavelength configurations with very low k as given
by (18) will be dominating the electron resistivity in a low-
density environment.
The estimation for the electron density ne entering (22)

strongly depends on the scale under consideration. For
example, if residual free electrons (after recombination
pþ e ↔ H þ γ) dominate the physics, their density is
estimated as [9]

ne ≈ 2 × 10−10ð1þ zÞ3 cm−3: ð24Þ
At the same time, if one assumes that the intergalactic
medium is mostly ionized, then ne is about the average
baryon density [10]:

ne ≈
ρB
mp

≈ 2 × 10−7ð1þ zÞ3 cm−3; ð25Þ

where ρB is the baryon density.
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To proceed with our task, we have to estimate nγ entering
(23). We define the corresponding density nγ as follows:

ℏωk · nγðtÞ≡ B2ðtÞ
2

: ð26Þ

For convenience of the estimates, we also introduce the
dimensionless suppression factor ξðtÞ < 1, which relates
the magnetic energy density in comparison with the DE
density, i.e.,

B2ðtÞ
2

≃ ξðtÞ · ρDEðtÞ; ð27Þ

where ρDEðtÞ is the source of the magnetic energy and it is
defined in our framework by Eqs. (1) and (3). Our goal is to
estimate ξðtÞ and, therefore, the strength of the magnetic
field BðtÞ.
To achieve this goal, we estimate the ratio k=σ entering

the expression for γ in terms of the observable parameters
as follows:

k
σ
¼ meknγσT

4πneα
≃
α

3

�
B2

neme

�
≃ ξ

2α

3

�
ρDE
neme

�
; ð28Þ

where we used previously defined relations (22), (23), (26),
and (27) and for estimates we take ωk ≈ k. Numerically,
one has

k
σ
∼ 2 × 102ξ

�
2 × 10−7 cm3

ne

�
: ð29Þ

This is precisely the dimensionless parameter which enters
expression (17) for γ. It measures, according to (16), the
typical timescale (in Hubble units H−1) when the magnetic
field is generated. In other words, the energy transfer
from DE to magnetic energy becomes highly efficient
when ðγτ̄formÞ ∼ 1.
To proceed with the estimates, we need to make one

more assumption, which is formulated as follows. It is
normally assumed (in strongly coupled systems) that, in
order to form a configuration characterized by a typical
energy ω, one needs a timescale of the order of ð2πÞ=ω,
which is essentially a trivial manifestation of the uncer-
tainty relation. In our (weakly coupled) case, there is an
additional fine-structure coupling constant α=ð2πÞ entering
(8), which suggests that the timescale τform required to form
the magnetic configuration with wavelength k−1 from the
DE source is ð2π=αÞ2 much longer. In addition, the time
which is available for the present Universe isH−1

obs, which is
much shorter than ω−1

k according to (18). This implies that
γτform still cannot reach a magnitude of order one at the
present time; instead, it assumes only a fraction of its value
γτform ∼ ðαc̄π Þγτ̄form, because ωk

Hobs
∼ αc̄

π at the present time
when H ∼Hobs. Collecting all these factors together, we
arrive at our final estimate:

γτform ∼
k
σ

�
α

π
c̄H − k

�
·

�
2π

ωk

�
·

�
2π

α

�
2

∼ 2 × 102ξ ·

�
2 × 10−7 cm3

ne

�
·
ð2πÞ3
α2

≈
�

ωk

Hobs

�
∼
αc̄
π
; ð30Þ

where we approximated ωk ∼ k and used the estimate (29)
for k=σ.
The numerical value for ξ which follows from relation

(30) can be written as follows:

ξ ∼ 10−2
α3c̄
ð2πÞ4

�
ne

2 × 10−7 cm3

�
∼ 10−12c̄; ð31Þ

which implies that the intensity of the magnetic field at the
present time assumes the following value:

B ∼
ffiffiffiffiffiffiffiffiffiffi
ξρDE

p
∼ 10−6 · ð2.3 × 10−3 eVÞ2 ∼ 2.6 × 10−10 G;

ð32Þ

where we expressed eV2 units in terms of conventional
Gauss using the following relation: 1 G ≃ 2 × 10−2 eV2.
This is, of course, an order of magnitude estimate.

However, the important point here is not just that a
relatively strong magnetic field can be generated by this
mechanism. A much more important element of the
proposed mechanism is that the source of this field is
the vacuum dark energy ρDE such that these two (naively
unrelated) cosmological puzzles (the nature of the dark
energy and magnetic coherent field) are intimately related,
because they both originated from the same physics
governed by the dynamics of the QCD topological sectors
as reviewed in Sec. II.
One may wonder if the generation of the magnetic field

at earlier times could produce a larger intensity field in
comparison with estimate (32). The answer is “no,” and the
reason for that is as follows. The wavelength k is deter-
mined by Eq. (18), where parameter H is defined in (3). At
earlier times, the right-hand side of Eq. (30) will have an
additional suppression factor H=Hobs ≪ 1, as the time
formation in physical units is getting shorter for the same
frequency ωk. This implies that parameter ξ, and, therefore,
the intensity of the generated magnetic field, will receive an
additional suppression. This argument implies that the
strongest field is generated last. It should be contrasted
with conventional mechanisms which could produce a very
strong field at the moment of formation but become very
weak due to the Hubble expansion.

V. CONCLUSION AND FUTURE DIRECTIONS

The main claim of this work is that the tunneling
transitions in QCD in the expanding Universe will
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generate the coupling (8) due to the chiral anomaly. This
interaction unambiguously implies that the Maxwell
equations will be modified according to Eq. (11). This
additional nondissipating current j⃗ ∼ B⃗ in the Maxwell
system implies that there will be an energy transfer
from vacuum DE to magnetic energy. The correlation
length of the produced magnetic field is determined
by the DE correlation length as B2 ∼ ρDE in this frame-
work. The intensity of the field generated by this
mechanism is estimated on the level of B ∼ 10−10 G
according to (32).
Can we test some of these ideas in tabletop experiments,

at least, as a matter of principle? We want to argue that the
ultimate answer is “yes.” Therefore, we claim that we are
dealing with a real physics phenomenon rather than with a
joggling of formal equations (such as insertions of the
Lagrange multipliers, introduction of the auxiliary fields,
subtractions of the UV counterterms, and other formal
elements which may look very suspicious for some
readers).
The basic idea for a tabletop experiment goes as

follows. The fundamentally new type of energy discussed
in Sec. II can be, in principle, studied by measuring
some specific corrections to the Casimir vacuum energy
in the Maxwell theory as suggested in Refs. [42–46].
This fundamentally new contribution to the Casimir
pressure emerges as a result of tunneling processes
rather than due to the conventional fluctuations of the
propagating photons with two physical transverse polar-
izations. Therefore, it was coined as the topological
Casimir effect. The extra energy computed in
Refs. [42–46] is the direct analog of the QCD non-
dispersive vacuum energy (1) and (2), which is the key
player of the present work as it explicitly enters the EOS
(7). In fact, an extra contribution to the Casimir pressure
emerges in this system as a result of nontrivial holonomy
for the Maxwell field. The nontrivial holonomy in the
E&M system is enforced by the nontrivial boundary
conditions imposed in Refs. [42–46] and related to the

nontrivial mapping π1½Uð1Þ� ¼ Z relevant for the
Maxwell Abelian gauge theory.9

Furthermore, the emission of real physical photons from
the Euclidean vacuum configurations describing the tun-
neling events in the Abelian Maxwell system (representing
the direct analog of the non-Abelian system discussed in
Sec. III A) can also be studied in the Maxwell theory as
argued in Ref. [45].
In fact, the same obstacle (related to the formulation of

the tunneling transitions in terms of the Euclidean path
integral, while the emission of real particles on a mass shell
represents an inherent Minkowski process) can be also
resolved by introducing the auxiliary topological fields in
the Maxwell system, similar to the discussions in Sec. III B;
see Ref. [45] for the details.
To recapitulate the main point, the long-range magnetic

field with an intensity of the order of B ∼ 10−10 G can be
generated as a result of the variation of the QCD tunneling
transition rate in the time-dependent background related to
the Universe expansion. The two naively distinct phenom-
ena are, in fact, closely related, as the DE is the source for
the magnetic energy in this framework, B2 ∼ ρDE. This
novel effect can be, in principle, tested in a tabletop
experiment and in many respects is similar to the dynamical
Casimir effect. What is more important is that such fields
(correlated on the enormous scale of the visible Universe)
can be studied by future UHECR telescopes; see Fig. 14 in
Ref. [10]. We finish this work on this optimistic note.
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