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We study the quantum corrections to an inflationary model, which has the attractive feature of being
classically scale-invariant. In this model, quadratic gravity plays along a scalar field in such a way that
inflation begins near the unstable point of the effective potential, and it ends at a stable fixed point, where
the scale symmetry is broken and a fundamental mass scale naturally emerges. We compute the one-loop
corrections to the classical action on the curved background of the model, and we report their effects on the
classical dynamics with both analytical and numerical methods.
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I. INTRODUCTION

The recent Planck survey [1] provided a wealth of
observational data that allowed putting severe constraints
on the space of inflationary models. Among these, the
Starobinskymodel [2] results to be one of themost consistent
with observations. This model is attractive because inflation
is driven by a scale-invariant termR2, in linewith the fact that
scalar and tensor perturbations are nearly scale-invariant.
When inflation ends, the quadratic term becomes subdomi-
nant with respect toM2R, and so we are left with a Universe
which has a (Planck) mass scaleM, in agreement with what
we observe today [3].
In this paper we investigate quantum corrections to a

quadratic derivative model of inflation, which is presented
in [4,5], in order to see whether its viability is preserved.
This classical model is particularly attractive because it
describes a scale-invariant inflationary phase, which ends
in a scale-dependent fixed point of the action, as first
explored by [6]. This is particularly convenient for the same
reasons that are given above for the Starobinsky model;
although, here, the scale-dependence is achieved dynami-
cally via spontaneous symmetry breaking. An analysis of
the inflationary phase for the case of the Higgs field in place
of a scalar field has been investigated in [7]; in particular, a
renormalization group driven quartic coupling has been
considered. Other relevant contributions can be found in
[8–13] and references therein, focusing on various aspects
of the quantum corrections to inflation, like quantum
anomalies, the influence of gauge fields, dark matter, or
fðRÞ. Scale-invariant gravity in fðRÞ was investigated also
in the context of classical black holes [14,15].

Quantum corrections are known to break the conformal
symmetry [16,17] and, in particular, scale symmetry, since
a regulation scheme necessarily introduces mass scales in
the action. A detailed study showing the effect of gauge
degrees of freedom in forming a symmetry breaking scalar
condensate has been recently presented in [18]. To make
the model described in [4] more robust, we need to check
that the one-loop contributions are suppressedwith respect to
the classical action and so the breaking of scale symmetry is
mild, at least on-shell, during inflation. We should note that
conflicting claims about a conformal anomaly exist, since
scale-invariant regulators have been used in recent articles,
e.g., the new approach presented in [19] and the field-
dependentmass scale in [20] or [21]. Calculations are carried
out on curved spacetime, in which gravity is kept classical
(including theR2 term) and all other fields are quantized: this
theory has proven to be very effective in predicting physical
phenomena such as the Hawking radiation and the formation
of large-scale structures in the Universe [17,22]. However,
as we will see, the presence of tachyonic instabilities in the
conditions required for inflation may actually restrict the
validity of the method.
We end this introduction with few considerations on the

origin of the additional scalar field in the action (1).We think
that it can be motivated more strongly from low energy
particle physics, rather than inflation, because the Standard
Model Lagrangian is exactly scale invariantwere it not for the
Higgs mass, an old remark probably due toW. Bardeen [23].
This suggested to him the idea that the Higgs mass could
emerge via broken scale invariance due to the vacuum
expectation value of one or more scalar fields, in such a
way that the smallness of the Higgs mass would be
technically natural. The preferred scalar field is not neces-
sarily the Higgs itself. Another hint comes from the nearly
scale invariant spectrum of primordial fluctuations.
However, the most natural framework where the appearance
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of a low energy scalar field is actually predicted is string
theory, with its dilaton field. The low energy effective action
of string theory actually contains all the terms (plus many
more) of the action (1), inwhat it is called the stringmetric by
string theorists, and the Jordan framemetric by cosmologists.
The Brans-Dicke theory can also be considered as another
instance of the dilaton field, but with a different coupling to
the metric. The dilaton field is always part of the string low
energy action, and as a consequence there is, strictly speak-
ing, no equivalence principle and thus no way to single out
a preferred metric. This is one motivation to include the
scalar field as the conformal part of a new metric, known to
everybody as the Einstein frame metric. The stringy stuff
accompanying the dilaton is omitted in this paper, on the
grounds that inflation generically ends so fast that all
interactions, except the gravity-scalar sector, are frozen
because the corresponding rates are much slower than the
expansion rate (the Gamow argument).
This paper is organized as follows. In Sec. [4] we give a

brief introduction to the classical model presented in [4],
in order to highlight the principal results, which are to be
compared with the quantum ones. Then, in Sec. III we
compute the one-loop correction along with renormaliza-
tion group equations. We numerically study the dynamics
and use a method presented in [24], which allows the
finding of approximate quantitative results. As long as we
need qualitative bounds, this approximation suffices. To go
beyond this approximation, we will use numerical methods.
We finally discuss our findings and future work in Sec. V.
Most cumbersome formulae are contained in the Appendix.

II. THE CLASSICAL MODEL

We consider the model presented in [4] with action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
α

36
R2 þ ξϕ2R

6
−
1

2
ð∂ϕÞ2 − λ

4
ϕ4

�
; ð1Þ

where ξ > 0, λ > 0. This action is scale-invariant, i.e.,
invariant under the transformations

ḡμνðxÞ ¼ gμνðlxÞ; ϕ̄ðxÞ ¼ lϕðlxÞ: ð2Þ

It is also invariant under the internal Weyl symmetry

ḡμνðxÞ ¼ L2gμνðxÞ; ϕ̄ðxÞ ¼ L−1ϕðxÞ: ð3Þ

From now on we choose, as a background metric, a flat
Robertson-Walker line element with signature ð−;þ;
þ;þÞ. The three parameters α, ξ, λ are dimensionless free
parameters.
The effective classical potential

VðϕÞ ¼ −
ξϕ2R
6

þ λ

4
ϕ4 ð4Þ

has two stationary points at ϕ ¼ 0 and ϕ ¼ �2

ffiffi
ξ
λ

q
H1 for

some constant H1. From the equations of motion (which
are of second order in ϕ and H), we find that the stationary
points are also fixed points of the dynamical system in
the phase space ðϕ; HÞ. In particular, it turns out that the
first is a saddle point and the second is a stable attractor.
When the point in phase space reaches the stable fixed point
scale-symmetry spontaneously breaks, in the sense that the
scalar field settles at a nonvanishing value. If we further
impose the constraint α ¼ ξ2=λ the quadratic curvature
term exactly cancels the quartic potential at the stable fixed
point. Here, (1) reduces to the usual Einstein-Hilbert action
with a mass scale determined by the value of scalar field at
the minimum of the potential. This mass can naturally be
identified with the Planck mass.
We can solve the linearized system of equations near the

fixed points in terms of the number of e-foldings
N ¼ loga. Close to the saddle point we find

HðNÞ ¼ c1 þ c2e−3N; ð5Þ

ϕðNÞ ¼ c3eð−
3
2
þ1

2

ffiffiffiffiffiffiffiffiffiffi
9þ16ξ

p ÞN þ c4eð−
3
2
−1
2

ffiffiffiffiffiffiffiffiffiffi
9þ16ξ

p ÞN: ð6Þ

Close to the stable attractor instead we have

HðNÞ ¼ c1 þ c2e−3N þ e−3=2Nðc3SðNÞ þ c4CðNÞÞ; ð7Þ

ϕðNÞ ¼ ξ

λ

�
2c1 þ

c2
2
e−3N þ ξ

2ð1þ 2ξÞ
× e−3=2Nðð2Kc4 − 5c3ÞSðNÞ

− ð5c4 þ 2Kc3ÞCðNÞÞ
�
; ð8Þ

where K ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 64ξ

p
and SðNÞ ¼ sinðKNÞ, CðNÞ ¼

cosðKNÞ.
With these approximations it becomes clear that, in the

proximity of the saddle point, the evolution of the Universe
is quasi–de Sitter and one finds the following relation
between the number of e-foldings required by inflation
(ΔN) and the initial values for the dimensionless ratio Hi

ϕi
:

ΔN ¼ 1

2
ln

�ð2ξ − 3ÞH2
i

λϕ2
i

�
⇒

Hi

ϕi
≃ expðΔN − 9Þ: ð9Þ

The latter relation is obtained, in particular, if we assume
“physical” values of the couplings ξ ¼ 1 and λ ¼ 10−8 [25].
With these values, we ensure that, when the system settles at
the stable fixed point, ξ

3
ϕ2 ¼ M2

p ¼ ð8πGÞ−1. The observa-
tional constraint ΔN ≥ 60, needed to solve the flatness and
horizon problems [26], is satisfied if inflation begins at a
point in the phase space close enough to the unstable fixed
point. Moreover, numerical computations show that, after
inflation ends, the system settles in the stable fixed point in

VICENTINI, VANZO, and RINALDI PHYS. REV. D 99, 103516 (2019)

103516-2



few e-foldings, during which bothH and ϕ undergo damped
oscillations, able to give rise to reheating (see [4] for details).
To obtain an approximate value for the inflationary

spectral indices, we transform the action into the more
familiar Einstein frame. Let us consider the Lagrangian

L ¼ χR −
ð∂ϕÞ2
2

−
αφ2

36
−
λ

4
ϕ4

¼ χR −
ð∂ϕÞ2
2

−
λ

2
ϕ4 þ 3

ξχϕ2

α
−
9

α
χ2; ð10Þ

where

χ ¼ α

18
φþ ξ

6
ϕ2: ð11Þ

This is the same as Eq. (1), since the equation of motion for
φ gives φ ¼ R. We reparametrize the fields with a con-
formal transformation ḡμν ¼ 2

M2
∂L
∂R gμν [27]. All other ten-

sors transform accordingly (as given in [29]). One then
finds the Einstein frame action

S ¼
Z

d4x
ffiffiffiffiffi
jḡj

p �
M2

2
R̄ −

ð∂μψÞ2
2

−
ð∂μϕÞ2

2

× exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
−Wðϕ;φÞ

�
; ð12Þ

where the potential is given by

Wðϕ;φÞ ¼ 9λM4

4ξ2
þ λϕ4

2
exp

�
−
2
ffiffiffi
2

p
ψffiffiffi

3
p

M

�

−
3λM2ϕ2

2ξ
exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
;

andwherewe redefined the “scalaron” fieldψ ≡ ffiffiffi
6

p
M lnΩ.

Note that the mass parameter M is completely arbitrary
and, although it is not apparent, scale invariance can be
preserved in the Einstein frame ifM → L−1M under scale
transformations. The Einstein frame action (12) describes
the dynamics of two scalar fields besides the Einstein term;
this can be reduced to single field inflation, as in [5,30].
As in the Jordan frame, there are two stationary points.

Interestingly, they satisfy a universal scaling between the
Hubble functions calculated at the two fixed points given
by H̄unst

H̄st
¼ ffiffiffi

2
p

. The slow roll parameters are

ϵ ¼ −
dH̄=dt̄
H̄2

∼
M2

2

�∂W
∂ψ

1

W

�
2

; ð13Þ

η ¼ d2ψ=dt2

H̄dψ=dt
∼ ϵ −

M2

W
∂2W
∂ψ2

; ð14Þ

and the number of e-foldings is

N̄ ¼
Z

H̄dt̄ ∼ −
1

M2

Z
dψW

�∂W
∂ψ
�

−1
: ð15Þ

Since inflation occurs near the unstable fixed point we can
expand the potential for ϕ

M ≪ 1 and we find

ϵ∼
3

4N2
;

η∼ ϵþ 1

N
⇒ ns ¼ 1−2η−4ϵ∼1−

2

N
þO

�
1

N2

�
; ð16Þ

as in the Starobinskymodel [3]. Formore detailed results, see
[5] and also, for a more comprehensive class of models, [31].
In this brief summary we have described an inflationary

model where scale invariance is broken dynamically and
classically. The spectral indices are very similar to the ones
predicted by the Starobinsky model but with a different
scale invariance breaking mechanism. We now turn to the
quantum corrections that are expected to arise in the scalar
field sector.

III. ONE-LOOP EFFECTIVE ACTION

We now compute quantum corrections to the classical
model and we choose the Jordan frame, where calculations
are simpler. This choice implicitly amounts to consider the
“scalaron” degree of freedom as classical. Thus, calcula-
tions are carried out in the framework of semiclassical
gravity, which is introduced in [17,22] (see also the
comprehensive DeWitt’s book [32]).
The usual approach to divergences that appear in an

effective action computed on curved spacetime is to treat
them with dimensional regularization, which is known to
break scale symmetry, as anyother commonlyused regulator.
We consider the action

Γ½gμν;ϕ� ¼ Γ½0�½gμν;ϕ� þ Γ½1�½gμν;ϕ�; ð17Þ

where

Γ½0�½gμν;ϕ� ¼ Sm½gμν;ϕ� þ Sg½gμν;ϕ� þ δS½gμν;ϕ� ð18Þ

is the tree level action (Sg þ Sm) plus the counterterm
action (δS). The term

Γ½1�½gμν;ϕ� ¼ −
i
2
ℏTr lnð−Gðx; x0ÞÞ ð19Þ

is the one-loop correction, which depends on the biscalar
propagator Gðx; x0Þ in the background fields ðgμν;ϕÞ [33].
The propagator is expanded in Riemann normal coordi-
nates and (19) can be evaluated with standard techniques
to give

SCALE-INVARIANT INFLATION WITH ONE-LOOP QUANTUM … PHYS. REV. D 99, 103516 (2019)

103516-3



Γ½1�½gμν;ϕ� ¼
Z

dnxjgðxÞj1=2 1

2ð4πÞn=2
�
M2

μ2

�ðn−4Þ=2

×
Xþ∞

j¼0

ajðx; xÞðM2Þn=2−jΓðj − n=2Þ ð20Þ

in n spacetime dimensions. Here, μ is the external mass
scale that appears due to dimensional regularization andM2

is the mass associated with the quantum perturbation,
determined below. As stated in [17,32], M2 should have
the Feynman prescription M2 − iϵ as long as it is positive,
to make the integral representation of the semiclassical
propagator expansion converge. Equation (20) is valid
when spacetime is slowly expanding, meaning that

ð _a=aÞ2
M2

≪ 1;
ä=a
M2

≪ 1; ð21Þ

where aðtÞ is the scale factor in a flat Robertson-Walker
metric.
The propagator associated with quantum fluctuations

satisfies�
−□þ 3λϕ2 −

ξ

3
R

�
Gðx; x0Þ ¼ δðx − x0Þffiffiffiffiffiffi−gp ; ð22Þ

and, since the scalar field is massless, we set

M2 ¼ 3λϕ2 −
ð2ξþ 1Þ

6
R; ð23Þ

so that the quantum fluctuation satisfies�
−□þM2 þ R

6

�
φ ¼ 0: ð24Þ

The R
6
term in (23) is introduced because it allows one to

sum part of the Riemann expansion of the propagator when
given in terms of M2 þ R

6
(R-summed propagator [17]).

Actually, the classical evolution implies that M2 changes
from being negative to positive when going from the
unstable point to the stable one.
It is unclear to us how to proceed in this case. Going back

in time, the scalar effective mass M2 becomes negative
when ϕ2 drops below a quantity of order R=λ ∼H2=λ (with
ξ ∼ 1), which may happen to be close to the unstable fixed
point, and the field disturbances become tachyonic during
few e-foldings of order 2N ∼ logðH2=λϕ2

0Þ, where ϕ0 is the
initial value of the field, so we have to keep this number
well below that required for inflation (N ≥ 50). Comparing
with Eq. (9), this is barely satisfied in the growing field
regime. As a qualification, the term tachyonic has nothing
to do here with superluminal propagation. Rather, it refers
to an instability, since tachyonic fields have unbounded
energy from either side. Indeed, it is exactly this tachyonic

instability that makes the field grow exponentially until
the minimum of the potential. In the crossover region
M2 ∼ 0, the disturbances are nearly massless. Classically, a
tachyonic field is not seriously problematic. Quantum
mechanically things are very different, and indeed it has
been argued that this provides a very efficient preheating
process [34,35]. However, it is true that we have here a
variable mass, and the effects of the R2 term, that make all
the difference.
Unless otherwise stated, it is understood in the following

that our analysis applies only outside the region of tachyonic
instability in the field space, and consequently we will judge
the results from the consistency requirement that the one-
loop expansion really can be applied. The quantum treat-
ment of the tachyonic regime is nevertheless very interesting
and deserves further work. It is known that these theories are
not unitary unless due care is taken of the interactions, and
even quantization of the free tachyon field may result in a
violation of Einstein causality over macroscopic scales.
That said, we may come now to the heat kernel expansion.
The coefficients of the expansion in Eq. (20) up to

second order are taken from [36] and are reported in the
Appendix A. Up to second order we find

Γ½gμν;ϕ� ¼ Γ½0�½gμν;ϕ� þ
Z

dnx
ffiffiffiffiffiffi−gp

64π2

×

�
−M4

�
log

�
M2

μ2

�
−
3

2
þ 1

n − 4

�
þ

− 2a2ðx; xÞ
�
log

�
M2

μ2

�
þ 1

n − 4

��
; ð25Þ

where the Euler-Mascheroni constant has been absorbed
into μ2. Divergences are canceled by counterterms in δS in
the MS-scheme, giving

L½gμν;ϕ� ¼
α

36
R2 þ ξ

6
ϕ2R −

ð∂μϕÞ2
2

−
λ

4
ϕ4 þ ϵ1RαβRαβ

þ ϵ2RαβμνRαβμν þ 1

64π2

�
−M4

�
log

�
M2

μ2

�
−
3

2

�

þ RμνRμν − RαβμνRαβμν

90

�
log

�
M2

μ2

���
: ð26Þ

We see that we should add two new couplings ϵ1, ϵ2 at tree-
level to account for all divergences and that the Lagrangian
is well defined for positive M2, picking an imaginary part
for negative M2 if the one-loop result could be trusted.
In passing, we note that the sign of the imaginary part is

determined if we remember that M2 really is M2 − i0, so
we must approach the cut of the logarithm from below,
which would give the imaginary part of the effective action
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ℑðΓÞ ¼
Z

M4

64π
dμ −

Z
RμνRμν − RαβμνRαβμν

5760π
dμ;

dμ ¼ ffiffiffiffiffiffi
−g

p
dnx; ð27Þ

and exp½−ℑðΓÞ� indicates the quantum instability we men-
tioned before. The first term cannot be trusted though. The
curvature term possibly can, but should be supplemented
with the metric curvature fluctuations due to theR2 term (it is
negative anyway in a Friedmann-Robertson-Walker back-
ground). General results for curvature perturbations in
modified gravity can be found in [37] and for a constant
curvature background in [38]. We emphasize that the
divergent part must always be real, and that the imaginary
part is finite. In this regard, one should remember thatEq. (26)
does not provide a faithful description when conditions (21)
are not met, which surely happens whenM2 ∼ 0. This means
that Eq. (20) is not valid when M2 is vanishing, but we can
expect its real part to have a smoothmassless limit [17]which
would be valid in the crossover region.
The modified equations of motion thus are

αH2ð2HH00 þH02 þ 6HH0Þ þ 2ξH2ϕϕ0 −
ϕ02

2
H2

þ ϕ4

4
ð4ξH2 − λϕ2Þ þ Q1 ¼ 0; ð28Þ

and

H2ϕ00 þ ðHH0 þ 3H2Þϕ0 − 2ξϕHH0 − ϕð4ξH2 − λϕ2Þ
þ Q2 ¼ 0; ð29Þ

where Q1 and Q2 contain all the quantum corrections and
are explicitly given in Appendix B.
Since the effective action should be independent on the

mass scale μ, we have μ dΓ
dμ ¼ 0, from which we retrieve the

energy dependence of the renormalized couplings. These
are expressed in terms of the beta functions βqi ≡ μ dqi

dμ ,
where qi is a generic coupling constant. We then find

βλ ¼
9λ2

8π2
; βξ ¼

3λð2ξþ 1Þ
16π2

; βα ¼ −
ð2ξþ 1Þ2
32π2

;

βϵ1 ¼
1

2880π2
; βϵ2 ¼ −

1

2880π2
: ð30Þ

As a check, the first beta function matches exactly the
standard beta function of the quartic interaction and does
not feel the curvature in this approximation. Taking the
classical reference value λ0 ¼ 10−8 and solving Eq. (30) for
the couplings (see Appendix C), we see that the running of
ξðμÞ and αðμÞ is suppressed by λ0. Moreover, a factor 1

2880π2

appears in the running of ϵ1ðμÞ and ϵ2ðμÞ, which are then
also suppressed for sufficiently small values of μ. βϵ1;2 are
the residues of the poles in the one-loop effective action, as
predicted by [16]. Moreover, we recover asymptotic

freedom conditions, in the infrared for λ, ϵ1 and ξ, in
the ultraviolet for α and ϵ2: as energy grows (μ → þ∞), the
self coupling λ runs toward a Landau pole, ξ flows to its
conformal value ξ ¼ −1=2, and the gravitational couplings
α and ϵ2 become weaker and weaker. Due to different
runnings, the constraint α ¼ ξ2=λ no longer holds. The
divergences for μ → 0 of αðμÞ, ϵ1ðμÞ, and ϵ2ðμÞ reflect the
infrared divergences that typically appear in a massless
theory.

A. Numerical solution

We choose the external mass scale as

μ2 ¼ M2ðϕ; λðμÞ; ξðμÞ; RÞ; ð31Þ
so it is time-dependent. This choice is very convenient
since it makes all logarithms vanish, but it also makes the
renormalization group Eq. (30) time-dependent and so it
has to be solved along with the equations of motion.
Moreover, it makes the whole system of equations implicit,
making quantitative predictions very difficult [39]. We
choose, as initial conditions near the unstable de Sitter
phase, the classical initial values ðH0;ϕ0Þ and the classical
values for the couplings. The new couplings ϵ1 and ϵ2 are
taken to be zero at the reference scale.
The numerical solution of the system shows that the

dynamical evolution is very similar to the classical one, as
shown in Fig. 1. In particular, fields in the second de Sitter
phase vary at most ∼1% with respect to the classical case
and couplings stay around their reference value. The mass
scale changes little, staying in the range 0.4μ0 ≤ μ ≤ 1.5μ0
when the adiabatic approximation is valid. In this range, we
have that the derivatives of a generic coupling qi in the
number of e-foldings satisfy the constraint				 q0iqi

				≲ 0.05; ð32Þ

for each coupling qi.
We now consider the same energy scale (31), but we set

it in the Lagrangian before taking the variation of the action
to derive the equations of motion. This is the pseudo-
optimal energy scale choice introduced in [24], and it is an
approximation since it gives dΓ

dμ ≠ 0. We find that the pseudo-
optimal energy scale choice is a good approximation (as can
be seen in Fig. 1) and that fields in the second de Sitter phase
vary at most ∼5% with respect to the classical case.
To test the validity of the approximation introduced by

the pseudo-optimal energy scale choice, the authors of [24]
propose to verify that μ dΓ

dμ ≪ 1, but actually we find that
μ dΓ

dμ ≫ 1 for most of the evolution, as can be seen in Fig. 1.
We verified numerically when the adiabatic condition

(21) is met during the inflationary phase: as can be seen
from Fig. 1, if we take 0.05 as critical value for the adiabatic
condition Eq. (21), we see that it is violated when the mass
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scale goes to zero (N ∼ 2 in Fig. 1), and mildly once after
(N ∼ 2.3). In this regime we can not make any prediction
since the form of the effective action itself depends on this
approximation. Whenever computing observables in the
following, we ensure that they do not fall in these two
lapses of time. Out of the adiabatic regime particles are
created by the changing spacetime: these particles will
decay in StandardModel particles in the oscillations around
the stable fixed point. In principle they have a backreaction
on the geometry [17], but this is neglected here.

B. Fixed points

In the following we use the pseudo-optimal energy scale
choice in order to compute some quantitative results. We
can also neglect the running of the couplings, as seen in the
last paragraph. We find that the two fixed points are still
present and are given by

ðH0; 0Þ;
 
H1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðξ

3
− 3

64π2
λð2ξþ 1ÞÞ

ðλ − 27
32π2

λ2Þ

s
H1

!
: ð33Þ

These analytic expressions match up to 3% with the ones
computed numerically in the full one-loop case. Moreover,
they are a saddle (unstable) fixed point and a minimum,
respectively. Near the unstable point we have

HðNÞ ¼ c1 þ c2e−B=AN; ð34Þ
where

B ¼ 3þ 48ϵ1 þ 84ϵ2 þ
9

128π2
ð2ξþ 1Þ2; ð35Þ

A ¼ 1þ 12ðϵ1 þ ϵ2Þ þ
3

128π2
ð2ξþ 1Þ2: ð36Þ

The solution is close to the classical one due to the weak
energy dependence of the couplings. Anyway, the stability
of the fixed points is preserved for arbitrary real values of ξ
as long as ϵ1 and ϵ2 are non-negative. ϕðNÞ is as in Eq. (6),
but with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16ξ

p
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ

�
16ξ −

9

4π2
λð2ξþ 1Þ

�s
: ð37Þ
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FIG. 1. Top left: validity of the adiabatic approximation. The peak around N ¼ 2 denotes that the approximation fails. Top right: plot
of dΓ

dμ in the pseudo-optimal energy scale choice as a function of the number of e-foldings. Bottom left: evolution of HðNÞ from the
unstable point to the stable one. The blue line is the classical evolution, the green line is the one-loop corrected one, and the red line is the
one-loop corrected one implemented with the pseudo-optimal energy scale. In the classical numerical solution, couplings are chosen as

ξ ¼ 15, λ ¼ 0.1, and α ¼ ξ2

λ , and these are the initial values to solve the renormalization group equations. Bottom right: evolution of
ϕðNÞ, with the same conventions as in the bottom left plot.
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Growing and decaying modes could be spoiled by
sufficiently large values of λ. Oscillatory modes appear
when

ξ <
9
4π2

λ − 9

16 − 9
2π2

λ
: ð38Þ

This is never verified for ξ > 0 and λ ≪ 1. In particular,
taking ξ > 0, oscillatory modes may appear when

−9þ 9
4π2

λ

16 − 9
2π2

λ
> 0; ð39Þ

that is, when λ ∈ ð32π2; 36π2Þ. For λ ¼ 0.1, which is used
in the numerical solution, we obtain ξ ≤ −0.5 as a critical
value, so this point has the same stability of the “physical”
one. Concerning the stable fixed point, we linearized and
diagonalized numerically the system of differential equa-
tions, finding that only small deviations appear with respect
to the classical result.

C. Inflation

We can compute the dependence of the number of
e-foldings on the value of the fields in the unstable fixed
point, as in Eq. (9). We consider

ϵ1 ¼
−H0

H
¼ H2ϕ00 þ 3H2ϕ0 þ λϕ3 − 4ξϕH2 − 3

128π2
ð36λ2ϕ3 − 24λð2ξþ 1ÞH2ϕÞ

H2ðϕ0 − 2ξϕ − 36
128π2

λð2ξþ 1ÞÞ ; ð40Þ

and, by imposing ϵ1 ¼ 1 at Ne (end of inflation) and by
using Eqs. (5), (6) for Ne − Ni, we find

Ne − Ni ∼
1

2
ln

�
H2ð−3 − 108λ

128π2
ð2ξþ 1Þ þ 2ξÞ

ðλ − 108
128π2

λ2Þϕ2

�
; ð41Þ

so the number of e-foldings for inflation has the same
dependence onH

ϕ as in the classical case, and, in a sufficiently
small neighborhood of the unstable point, the condition
ΔN ≥ 60 can always be met. Thus, also with quantum
corrections, inflation can last long enough to satisfy the
observational constraints.
Finally, we have numerically verified that the deviations

from a null cosmological constant (with the constraint

α ¼ ξ2

λ ) around the stable fixed point are small, since they
are just 4% the value of the cosmological constant in the
unstable de Sitter one.

D. Spectral indices

Regarding the computation of the spectral indices, the
easiest way is to rely on the same method that has been used
in the previous section. The problem, however, is that the
correspondence among the Einstein and Jordan frame is not
completely assessed at the quantum level. Nevertheless, it
can be argued that the two descriptions should match on-
shell in order to have the correct S-matrix elements; see,
e.g., [40–42] (on the equivalence of the two frames in the
space of solutions, see, however, [43]). With the pseudo-
optimal energy scale choice the Lagrangian in the Einstein
frame is

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
M2

2
R̄ −

ð∂μψÞ2
2

−
ð∂μϕÞ2

2

× exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
−

9M4

4ðαþ 3
128π2

ð2ξþ 1Þ2Þ

−
ðλ − 3

32π2
λ2Þϕ4

2
exp

�
−
2
ffiffiffi
2

p
ψffiffiffi

3
p

M

�

−
3ðξ − 3

32π2
λð2ξþ 1ÞÞM2ϕ2

2ðαþ 3
128π2

ð2ξþ 1Þ2Þ exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

��
: ð42Þ

Interestingly, we find that the ratio between the Hubble
factors at the fixed points is unchanged, i.e., is
Hunst=Hst ¼

ffiffiffi
2

p
. In this case, the conformal transformation

is ḡμν ¼ 2
M2

∂L
∂R gμν, with

χ ¼ αþ 3
128π2

ð2ξþ 1Þ2
18

φþ ξ − 9ð2ξþ1Þλ
64π2

6
ϕ2: ð43Þ

The number of e-foldings is just as in Eq. (16), and so are
the slow-roll parameters as a function of N. Hence, the
scalar spectral index is still ns ∼ 1 − 2

N þOð 1
N2Þ. These

results can be readily found since, with the choice of
pseudo-optimal energy scale, the quantum corrections can
be seen as a redefinition of the coupling, and (16) is
independent of the couplings.
We should also quantitatively verify that the scalar

spectral index matches the observations, despite the above
approximation. It is possible to write the exact one-loop
Lagrangian in the Jordan frame such that it is linear in R,
as it has been done with the choice of pseudo-optimal
energy scale. The problem is to write the Lagrangian with
interactions between the scalar fields χ and ϕ [the last step
in equation Eq. (10)]. This is because χðφÞ in the exact
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one-loop Lagrangian is not invertible as it contains terms
like y ¼ x ln x, whose inverse is the exponential of the
Lambert function. Then, we only tried to find whether its
contribution is numerically suppressed with some approxi-
mation: we applied the conformal transformation used with
the choice of pseudo-optimal energy scale, namely

Ω2 ¼ 2χ

M2
¼ exp

� ffiffiffi
2

p
ψffiffiffi

3
p

M

�
with

χ ¼ αþ 3
128π2

ð2ξþ 1Þ2
18

φþ ξ − 9ð2ξþ1Þλ
64π2

6
ϕ2; ð44Þ

to the full one-loop potential, and we put R ¼ φ and
RαβRαβ − RαβμνRαβμν ¼ R2

12
, which is true near the unstable

fixed point. The transformed Lagrangian is a reparametri-
zation of the fields in which nonlinearities in R are present,
but they are suppressed on-shell, thanks to the result found
numerically, see Fig. 1. We find the zeroth order correction
to the potential for ϕ

M ≪ 1

Wðϕ;ψÞ ∼ −
9M4

4ðαþ 3
128π2

ð2ξþ 1Þ2Þ þ fðξÞλ2M3ψ : ð45Þ

The first slow-roll parameter can be computed by taking the
lowest order in ϕ

M ≪ 1 of ∂W
∂ψ . We find

ϵ ¼ 3

4N2
þO

�
1

C2
2

�
; ð46Þ

with

C2 ¼
αþ 3

128π2
ð2ξþ 1Þ2
18

: ð47Þ

This is Oðλ2Þ for α ¼ ξ2

λ . The second derivative of W,
instead, has a lowest order term proportional to ϕ2 so the
correction will be of orderOð1NÞ. Thus, the second slow-roll
parameter receives the correction

η ¼ −
1

N
þO

�
1

C2N

�
: ð48Þ

This is OðλÞ for α ¼ ξ2

λ . If we take a generic α and impose
that the correction must stay within the uncertainty pre-
dicted by the Planck mission, we find the approximate
lower bound for α

6 × 103 ≲ α; ð49Þ

which is five orders of magnitude less than α ¼ ξ2

λ , giving
thus some freedom in the choice of this coupling.

IV. A NOTE ABOUT REHEATING

Reheating provides a mechanism to transfer energy
from the scalar field to the Standard Model fields, which
become excited and populate the Universe with all the
elementary particles after the end of inflation. In our
model, the backreaction of the Standard Model fields is
supposed to take over the dynamical evolution of the
system after it has reached the stable fixed point and then
lead the Universe towards a radiation dominated era [4,5].
In the simplest scenario, reheating is based on the
assumption that the scalar field can decay into boson
pairs χ. This process can be modeled by considering the
Lagrangian

L ¼ Linv −
1

2
m2

χχ
2 − g2χ2ϕ2 −

ð∂χÞ2
2

; ð50Þ

where Linv is the scale invariant part. Expanding around
the vacuum expectation value ϕ0 we find the relevant
terms describing the decay, which take the form

Ldecay ∼
m2

ϕ

2
ϕ2 þ g2ϕ0ϕχ

2; ð51Þ

where m2
ϕ ≃ λϕ2

0=2 as in [4]. The decay rate is given by

Γ ¼ g2ϕ2
0

8πm2
ϕ

¼
ffiffiffi
2

λ

r
g2ϕ0

8π
; ð52Þ

and, in order for the field to have sufficient time to decay,
we need Γ≳H0 (where H0 is the stable point value for
the Hubble parameter). This provides a lower bound for
the coupling g, which can be evaluated recalling that, at
the stable fixed point, ϕ0 ¼ 2H0

ffiffiffiffiffiffiffi
ξ=λ

p
, see Eq. (4). Thus,

with the values inferred in the previous sections, we
have

g≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2

p
πλffiffiffi
ξ

p
s

∼ 10−4; ð53Þ

which is hardly affected by quantum corrections since it
depends only on running couplings. We also know that λ
and ξ satisfy a relation at tree level (see Eq. (22) of [4]),
which relates them to the estimated value of H at the end
of inflation. This can be used to rewrite the lower bound
on g as
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g≳ 3ξ3=410−4; ð54Þ

which shows that it has quite a strong dependence on
couplings. Concerning instead upper bounds on g, we
observe that the coupling must satisfy the perturbative
conditions, dictated by the validity of the one-loop
expansion; hence, we expect g to be much smaller than
one [44]. More information on the physically allowed
range for g could be retrieved by studying non-
Gaussianity, and we hope to report soon new results on
this issue.
There are several alternative pictures to reheating, such

as parametric resonance [45], which has been discussed for
this model in Refs. [4,5]. The effects of loop corrections in
this case are hard to assess without a careful analysis that
goes beyond the scope of this paper but is certainly worth
considering in future work.

V. CONCLUSIONS

In this paper we have studied how quantum corrections
modify a classical model of inflation with spontaneous
symmetry breaking of scale invariance to assess whether
the viability of the model is preserved.
In order to see the impact of quantum corrections we

relied upon techniques of semiclassical gravity. This theory
can be used to compute one-loop corrections in the regime
in which the spacetime is slowly expanding, meaning that
_a2ðtÞ

a2ðtÞM2 ≪ 1, äðtÞ
aðtÞM2 ≪ 1, where M is a mass scale of the

system. This adiabatic approximation allows one to find an
expansion in derivatives of the metric to the one-loop
effective action. This is done up to second order and leads
to a Coleman-Weinberg-like correction, where also quad-
ratic scalars, such as R2, RαβμνRαβμν, RαβRαβ, appear. The
external mass scale is chosen here as field-dependent: the
scaling anomaly appears via the reference value μ0 appear-
ing in (C1). One finds also a tachyonic instability close to
the onset of inflation, which cannot be handled by the heat
kernel expansion, and must take into account the effect of
curvature fluctuations. Some work in this case has already
been done [34,35].
The equations of motion are computed for generic μ and

outside the tachyonic regime, including the oscillatory
regime relevant to reheating. In order to solve and discuss
the dynamics of the system we set μ2 ¼ M2 in those
equations which are then numerically solved along with the
renormalization group differential equations. The solution
has been compared to the approximated pseudo-optimal
energy scale choice [24], in which M2 ¼ μ2 has been set
readily in the Lagrangian. This has been verified to be
a good approximation: its use allowed us to simplify

consistently the computation of the properties of the system
and of the observables.
The main and comforting result is that there are only

small deviations in the dynamics from the classical evo-
lution. It has been verified numerically whether the
adiabatic expansion holds throughout the evolution of
the system: this has been proved to be true apart from a
small lapse of time in which M2 ∼ 0 and a mild violation
afterwards, so no prediction for the observables can be done
in these regions of spacetime. We found that the nature of
the fixed points remains unchanged: the system evolves
from an unstable point to a stable one, though the position
of the fixed points changes with respect to the classical
case. The number of e-foldings has the same dependence
on the fields N ∼ ln ðconstH2

ϕ2Þ with ϕ ∼ 0 and also the

scalar spectral index remains unchanged. Quantitative
deviations from the classical case are numerically sup-
pressed so there are not consistent changes and quantum
corrections do not modify the viability of the model.

APPENDIX A: ADIABATIC COEFFICIENTS

The adiabatic coefficients are computed according to the
recursion relation

σðx;x0Þ;μak;μðx;x0Þþkakðx;x0Þ
¼Δ−1=2ðx;x0ÞðΔ1=2ðx;x0Þak−1ðx;x0ÞÞ;μ;μ

þ
�
3λðϕ2ðx0Þ−ϕ2ðxÞÞ− ξ

3
ðRðx0Þ−RðxÞÞ−Rðx0Þ

6

�
ak;

where σ is the geodesic interval 1
2
ðx − x0Þαðx − x0Þα and

Δðx; x0Þ is the Van Vleck determinant. These are explicitly
computed in [36] by means of the heat kernel method,
giving the same expression of the effective action as (20).
Up to second order they are

a0ðx; xÞ ¼ 0; a1ðx; xÞ ¼ 0;

a2ðx; xÞ ¼
3þ 5ξ

90
□R −

1

2
□ϕþ RαβμνRαβμν − RαβRαβ

180
:

The regularized effective action Eq. (20) is computed up to
second order with these coefficients. Integrating by parts
and truncating third and higher orders we get Eq. (26) (see
[36] for details).
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APPENDIX B: CORRECTION TO THE EQUATIONS OF MOTION

We report here the explicit expressions of Q1 and Q2:

Q1 ¼ ϵ1

�
1

2
RαβRαβ þ 2Rρ0γ0Rργ −∇0∇0R −

1

2
□Rþ□R00

�
þ ϵ2

�
1

2
RασγδRασγδþ

þ 2Rρασ
0 R0ρασ þ 4Rσ0γ0Rγσ − 4R0γR

γ
0 þ 4□R00 − 2∇0∇0R

�
−

1

64π2
log

�
M2

μ2

�

×

�ð2ξþ 1Þ2
72

R2 þ 9λ2ϕ4

2
þ ð2ξþ 1Þ2

18
RR00 þ

ð2ξþ 1Þ2
6

HR;0 −
λð2ξþ 1Þ

2
Rϕ2þ

− λð2ξþ 1ÞR00ϕ
2 − λð2ξþ 1Þ6Hϕϕ;0 þ

RαβRαβ − RαβμνRαβμν

180
−
Rρ
0R0ρ

45
−
Rαβγ
0 R0αβγ

45

�
þ

−
27

4
λ2ϕ4 þ 3

4
λð2ξþ 1ÞRϕ2 −

1

48
ð2ξþ 1Þ2R2 −

ð2ξþ 1Þ2
12

RR00 −
ð2ξþ 1Þ2

4
HR;0þ

þ 3ϕ2λð2ξþ 1Þ
2

R00 þ 9ð2ξþ 1ÞλHϕϕ;0 þ
ð2ξþ 1Þ2

6M2
HRM2

;0 −
3λð2ξþ 1ÞH

M2
ϕ2M2

;0þ

−
2ξþ 1

6
R00M2 −

ð2ξþ 1Þ
2

HM2
;0 þ

1

90

�
∇ρ∇δ

�
Rρδ log

�
M2

μ2

��
þ

þ 2∇ρ∇0

�
Rρ0 log

�
M2

μ2

��
−□

�
R00 log

�
M2

μ2

��
þ 4∇α∇β

�
R0α0β log

�
M2

μ2

��
þ

−
ð2ξþ 1ÞR00

6M2
ðRαβRαβ − RαβμνRαβμνÞ þ ð2ξþ 1ÞH

2M4
M2

;0ðRαβRαβ − RαβμνRαβμνÞþ

−
ð2ξþ 1ÞH

2M2
ðRαβRαβ − RαβμνRαβμνÞ;0

�
¼ 0; ðB1Þ

Q2 ¼
1

64π2

�
ð36λ2ϕ3 − 2λð2ξþ 1ÞRϕÞ þ

�
log

�
M2

μ2

�
−
3

2

�
þ 6λϕM2þ

−
1

90
ðRαβRαβ − RαβμνRαβμνÞ 6λϕ

M2

�
: ðB2Þ

APPENDIX C: SOLUTION OF THE RENORMALIZATION GROUP EQUATIONS

Equation (30) can be easily integrated, and we find

ϵ1;2ðμÞ ¼ ϵ1=2;0 �
lnðμ=μ0Þ
2880π2

;

λðμÞ ¼ λ0
1 − 9

8π2
lnð μμ0Þ

;

2ξðμÞ þ 1 ¼ ð2ξ0 þ 1Þ
�
1 −

9

8π2
ln

�
μ

μ0

��
−λ0=3

;

αðμÞ ¼ α0 −
π2ð2ξ0 þ 1Þ2
36ð1 − 2λ0=3Þ

þ π2ð2ξ0 þ 1Þ2
36ð1 − 2λ0=3Þ

�
1 −

9

8π2
ln

�
μ

μ0

��
−2λ0=3þ1

; ðC1Þ

where the solution for αðμÞ and ξðμÞ is valid for μ ≪ μ0e8π
2=9. This result is discussed in the main text.
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