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Non-Gaussian statistics of late-time cosmological fields contain information beyond that captured in the
power spectrum. Here we focus on one such example: the one-point probability distribution function (PDF)
of the thermal Sunyaev-Zel’dovich (TSZ) signal in maps of the cosmic microwave background (CMB). It
has been argued that the one-point PDF is a near-optimal statistic for cosmological constraints from the
TSZ signal, as most of the constraining power in TSZ N-point functions is contained in their amplitudes
(rather than their shapes), which probe differently weighted integrals over the halo mass function. In this
paper, we develop a new analytic halo model for the TSZ PDF, discarding simplifying assumptions made in
earlier versions of this approach. In particular, we account for effects due to overlaps of the TSZ profiles of
different halos, as well as effects due to the clustering of halos. We verify the accuracy of our analytic model
via comparison to numerical simulations. We demonstrate that this more accurate model is necessary for
the analysis of the TSZ PDF in upcoming CMB experiments. The novel formalism developed here may be
useful in modeling the one-point PDF of other cosmological observables, such as the weak lensing
convergence field.
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I. INTRODUCTION

Cosmological inference has traditionally focused on mea-
surements of the power spectrum (or its real-space analogue,
the two-point correlation function). For a Gaussian random
field, this approach is sensible, as the power spectrum
contains all statistical information in the data. The primary
cosmic microwave background (CMB) temperature and
polarization anisotropies are canonical examples of such
Gaussian fields [1–3]. However, although the initial con-
ditions for cosmic structure formation captured in the CMB
are consistent with Gaussianity, non-Gaussian features inevi-
tably develop in the late-time Universe, due to nonlinear
gravitational evolution and complex baryonic physics on
small scales. Thus, the information content of late-time
cosmological datasets, e.g., weak gravitational lensing maps
or maps of the galaxy distribution, is not completely captured
by the power spectrum. For highly non-Gaussian fields, the
amount of additional information in higher-order statistics
can be significant.
In Ref. [4] (hereafter H14), it was argued that the one-

point probability distribution function (PDF) is a near-
optimal non-Gaussian statistic for cosmological inference
frommaps of the thermal Sunyaev-Zel’dovich (TSZ) effect.
The TSZ effect is the up-scattering of CMB photons to

higher energies due to Thomson scattering off hot, free
electrons, which produces a unique distortion in the energy
spectrum of the CMB [5,6]. The TSZ effect probes the
integrated pressure of free electrons along the line of sight
(LOS); thus it is a biased tracer of free electrons, due to its
dependence on the product of the electron number density
and temperature. In particular, because of this temperature
dependence, the TSZ signal is predominantly sourced by
electrons in galaxy groups and clusters, where electrons are
virialized to high temperatures. As the distribution of such
objects in our Hubble volume is nearly Poissonian, maps of
the TSZ effect are extremely non-Gaussian, dominated by
individual rare, bright sources. H14 proposed the TSZ one-
point PDF as an efficient statistic with which to extract the
information in this non-Gaussianity.
Non-Gaussian properties of the TSZ signal have long

been used for cosmological constraints, in the more familiar
guise of inferring parameters via measurements of the halo
mass function, in which candidate clusters are identified via
the TSZ effect, their existence is confirmed and redshifts
are estimated via multiwavelength follow-up observations,
and their masses are estimated via follow-up observations
and/or scaling relations (e.g., [7–9]). However, this
approach utilizes only the brightest TSZ objects in the
sky, e.g., those with signal-to-noise ratios (S=N) greater
than some threshold in the map. An alternative strategy has
thus been developed in the past two decades, in which*lthiele@perimeterinstitute.ca
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“indirect” statistics of the TSZ signal are directly utilized as
cosmological probes, such as the power spectrum (e.g.,
[10–17]), bispectrum or skewness (e.g., [18–20]), and
cross-power spectra with gravitational lensing maps
(e.g., [21–23]). In such applications, no individual galaxy
clusters are identified; instead, these statistics utilize
information in objects below the S=N threshold for
individual detection, modeling their properties at the
ensemble level. In particular, it has been shown that
TSZ statistics beyond the power spectrum contain a
significant amount of cosmological information beyond
that contained in cluster counts (for current S=N thresh-
olds) or the power spectrum [4,18,19,24].
A unifying feature of these statistical TSZ analyses is

that their cosmological constraining power arises almost
entirely from the one-halo term. In other words, these
statistics are just indirect methods of counting halos,
weighted in different ways.1 For example, the TSZ power
spectrum is dominated by the one-halo term at all l≳ 50
[10,11,25]. Thus, rather than deriving cosmological con-
straints from spatial clustering information, these statistics
do so via the halo mass function. In particular, due to the
TSZ signal’s bias toward electrons in high-mass (i.e.,
high-temperature) halos, these statistics probe the expo-
nential tail of the mass function, which makes them very
sensitive probes of the amplitude of fluctuations, σ8 (e.g.,
[10,18,19,24]). Importantly, this sensitivity to σ8 is almost
entirely encoded in the amplitude of these statistics, rather
than their shape; due to the one-halo term’s dominance (as
mentioned above), the shape encodes information about
intracluster medium (ICM) physics (and weak depend-
ence on non-σ8 cosmological parameters), while the
amplitude is directly connected to integrals over the halo
mass function, and hence σ8. This underlies the argument
presented in H14 that the one-point PDF is an optimal
statistic for cosmological inference from the TSZ signal.
The one-point PDF effectively captures the information
in the amplitude of all N-point functions (or zero-lag
moments), at the expense of information contained in the
shape of the N-point functions (we anticipate that some
shape information could be restored by considering the
PDF on multiple smoothing scales, but such issues are not
the focus of this paper). While not optimal for con-
straining ICM parameters, the TSZ PDF does allow for
the breaking of degeneracies between these parameters
and σ8, due to the different dependence of each moment
on these parameters and σ8 (this is a generalization of
the argument for parameter degeneracy breaking using
the TSZ two- and three-point functions presented in
Ref. [24]).

The improved cosmological constraining power of the
TSZ PDF over other TSZ statistics was demonstrated in
practice in H14, which analyzed data from the Atacama
Cosmology Telescope (ACT) at 148 GHz (using some
218 GHz data for foreground control as well). Compared to
an analysis of the same data using the TSZ skewness [18],
the error bar on σ8 was decreased by a factor of 2 in H14
(yielding σ8 ¼ 0.793� 0.018), simply due to the improved
cosmological sensitivity of the TSZ PDF over the skewness
alone. However, the S=N of the measurement was not high
enough to simultaneously constrain cosmological and ICM
parameters (though the latter were marginalized over in
obtaining the final σ8 constraint). The Planck Collaboration
subsequently applied the PDF statistic to an analysis of
their component-separated TSZ map, obtaining σ8 ¼
0.77� 0.02 [17].
However, the theoretical modeling that was developed

for the TSZ PDF in H14 made several simplifying
assumptions, limiting its utility in upcoming measure-
ments (its sufficiency for the analysis of the ACT data in
H14 was verified explicitly using end-to-end simulations).
The analytic halo model of H14 assumed that clusters
were Poisson distributed on the sky and did not overlap,
allowing the TSZ PDF to be computed via a simple
integral over the mass function, given a model for the TSZ
profile of each halo. The primary goal of this paper is to
remove these simplifying assumptions and generalize
the analytic model from H14, thereby allowing its use
in analyses of the TSZ PDF from ongoing and upcoming
CMB experiments (e.g., Advanced ACT [26], SPT-3G
[27], Simons Observatory [28], and CMB-S4 [29]). The
assumptions are related to the distribution of halos
sourcing the TSZ signal. In H14, it was assumed that
these halos were sufficiently rare that they never over-
lapped on the sky. For massive clusters, this assumption is
valid, but as the TSZ signal of progressively lower mass
halos is included in the PDF, this assumption breaks
down. For an experiment with relatively high noise levels
(e.g., ≳20 μK-arcmin with ∼arcmin-scale beams), the
assumption is valid, since low-mass clusters are subsumed
into the noise. However, current and upcoming CMB
experiments have noise levels well below this threshold,
necessitating an improved model.
The other assumption from H14 that we will discard in

this analysis is the neglect of halo clustering effects. These
effects are relevant due to the LOS projection inherent in
the TSZ signal. Note that the one-point PDF of 3D cosmic
fields (i.e., the “voxel” PDF) does not receive any cluster-
ing contributions: as long as halo exclusion is enforced,
only the one-halo term is necessary to compute the 3D PDF
in the formalism used in this paper. For projected 2D fields,
however, this is not true. Due to halo clustering, there is an
excess probability for two halos to overlap along the LOS,
compared to the Poisson expectation. For the TSZ field, we
will find (Fig. 1 below) that the clustering effect is relatively

1Thermal SZ–gravitational lensing cross-correlations are an
exception to this statement, but even these statistics have only
moderate sensitivity to the two-halo term in current data [21,23].
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weak, but for future extensions of this formalism to the
weak lensing convergence field, we expect that it will be
significant.2

The remainder of this paper is organized as follows. In
Sec. II, we review the halo model formalism of H14 and the
associated assumptions, before proceeding to generalize the
model in Sec. III and compare the results to those obtained
in the simpler approach. In Sec. IV, we compare results
from our analytic halo model to those obtained from
numerical simulations, demonstrating its validity and
accuracy. In Sec. V, we use the analytic model to investigate
the physical origin of the TSZ PDF signal. Section VI
presents the cosmological and ICM parameter dependence
of the TSZ PDF. We then include noise and non-TSZ
foregrounds in Sec. VII and demonstrate the sufficiency of
our new model for the analysis of upcoming, high-precision
CMB datasets. We conclude in Sec. VIII.

Our fiducial cosmology is flat ΛCDM with dimension-
less Hubble constant h ¼ 0.7, matter density ΩM ¼ 0.25,
spectral index ns ¼ 0.96, σ8 ¼ 0.8, baryon density
ΩB ¼ 0.043, sum of the neutrino masses Σmν ¼ 0 eV,
and CMB temperature TCMB ¼ 2.726 K.

II. BACKGROUND AND PREVIOUS MODEL

H14 introduced a novel, simple analytic model for the
TSZ one-point PDF. Here we review this model and its
assumptions, laying the groundwork for the more accurate
model derived in the following section.
The TSZ signal is quantified by the Compton-y para-

meter, which measures the integrated pressure of free
electrons along the LOS:

yðnÞ ¼ σT
mec2

Z
LOS

drneðr;nÞkBTeðr;nÞ; ð1Þ

where σT is the Thomson cross section,mec2 is the electron
rest-mass energy, r is the physical distance along the LOS,
ne is the electron number density, kB is Boltzmann’s
constant, and Te is the electron temperature.
The TSZ effect produces a nonblackbody distortion in the

energy spectrum of the CMB, which is negative (positive)
at frequencies below (above) ≈218 GHz. Defining the
dimensionless frequency x≡hPlν=ðkBTCMBÞ, where hPl is
Planck’s constant and ν is the photon frequency, the TSZ
spectral function is given by

gðνÞ ¼ x cothðx=2Þ − 4: ð2Þ

The TSZ-induced fluctuations in the CMB temperature field
are then given by

ΔTTSZðn; νÞ
TCMB

¼ gðνÞyðnÞ: ð3Þ

In this work, we neglect relativistic corrections to the TSZ
effect (e.g., [33]), which are important for massive, hot
clusters; these effects must be included in an actual data
analysis (as they were in H14). Throughout the rest of the
paper, our results will generally be given either in terms of
Compton-y or in terms of the TSZ field at a reference
frequency of 148 GHz, where gð148 GHzÞ ¼ −0.97881.
We will also typically denote the TSZ-induced temperature
fluctuation as simply T ≡ ΔTTSZ.
We denote the (differential) TSZ one-point PDF as PðyÞ.

The binned version of the PDF used in much of this work is
given by

pi ¼
Z

yiþ1

yi

dyPðyÞ: ð4Þ

The concept underpinning the H14 model is to note that pi
quantifies the fraction of sky subtended by Compton-y

FIG. 1. Effects of clustering and overlaps on the TSZ one-point
PDF. The fiducial curve (black; including overlaps and cluster-
ing) and the result without clustering (red circles) are obtained
using the new Fourier-based approach presented in Sec. III, while
the result without clustering or overlaps (blue triangles) is
calculated using the formalism of H14 as described in Sec. II.
The bottom panel presents the fractional difference of the latter
two curves with respect to the fiducial curve. For clarity, only
selected data points are plotted with markers.

2See, e.g., Refs. [30–32] for simulation-based analyses of the
weak lensing one-point PDF. Note that another important differ-
ence between the TSZ and weak lensing cases, which will require
further theoretical work, is the existence of negative-signal
regions in the latter (cosmic voids), whereas the TSZ effect is
strictly positive.
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values in the range ½yi; yiþ1�. Thus, for a single spherically
symmetric halo with an azimuthally symmetric projected
y profile yðθÞ, this would correspond to the area in the
annulus between θðyiÞ and θðyiþ1Þ, where θðyiÞ is the
angular distance from the center of the halo to the radius
where yðθÞ ¼ yi. If one then makes the approximation that
halos sourcing the TSZ signal are sufficiently rare that they
never overlap on the sky, the final result for the full TSZ
PDF is simply given by adding up such annular area
contributions from all halos:

pi ¼
Z

dzdM
χ2

H
dn
dM

πðθ2ðyiÞ − θ2ðyiþ1ÞÞ þ δið1 − FclustÞ;

ð5Þ

where χðzÞ is the comoving distance to redshift z, HðzÞ is
the Hubble parameter, dnðM; zÞ=dM is the halo mass
function (i.e., the number of halos of mass M at redshift
z per unit mass and comoving volume), θðy;M; zÞ is the
inverse function of yðθ;M; zÞ (i.e., the Compton-y profile
of a halo of massM at redshift z), Fclust is the total sky area
subtended by halos (assuming some radial cutoff), δi is
unity if y ¼ 0 lies in the bin and zero otherwise, and
redshift and mass dependences have been suppressed in the
equation for compactness.
Equation (5) makes two strong assumptions: (i) halos

sourcing the TSZ signal are rare enough that their projected
y profiles never overlap; (ii) the clustering of these halos
(which would make overlaps more likely) can also be
neglected. These assumptions were valid for the analysis of
ACT data in [4], where the noise level was sufficiently high
that the PDF could be modeled considering only halos for
which these approximations are true (due to these halos
being massive and hence rare). The remainder of this paper
is focused on discarding these assumptions, thus yielding
a more accurate and general model for analysis of the TSZ
PDF in ongoing and upcoming CMB experiments. We will
not focus on the modeling of non-TSZ foregrounds and
noise (which were considered in detail in H14 and must be
in any future analysis as well), but rather only on the
modeling of the physical TSZ PDF signal.
In this work, we adopt the same models for the physical

quantities underlying the TSZ PDF as used in H14. We
compute the halo mass function dn=dM and halo bias
bðM; zÞ using the fitting functions of Ref. [34]. We
compute electron thermal pressure profiles using the fitting
function given by Ref. [35] (hereafter B12), in order to
facilitate direct comparison with their hydrodynamical
simulations (Sec. IV B). For convenience, we give the
relevant formulas here. The thermal gas pressure at
r ¼ r200c is given by

P200c ¼
200GM200cρcðzÞΩB

2ΩMr200c
; ð6Þ

with ρcðzÞ the critical density. Defining x≡ r=r200c
and the core scale length xc, the pressure profile is
parametrized as

PthðxÞ
P200c

¼ Π0

ðx=xcÞγ
ð1þ ðx=xcÞαÞβ

: ð7Þ

While α and γ are held fixed, the remaining parameters
are taken to have the following mass and redshift
dependence:

Π0ðM̃; zÞ ¼ P0M̃0.154ð1þ zÞ−0.758; ð8Þ

xcðM̃; zÞ ¼ xc;0M̃−0.00865ð1þ zÞ0.731; ð9Þ

βðM̃; zÞ ¼ β0M̃0.0393ð1þ zÞ0.415; ð10Þ

where M̃ ≡M200c=1014 M⊙. We take the fiducial values
αfid ¼ 1, γfid ¼ −0.3, Pfid

0 ¼ 18.1, xfidc;0 ¼ 0.497, and
βfid0 ¼ 4.35. In Sec. VI we consider the effect of changes
in α, P0, and β0 on the one-point PDF. All masses in the
remainder of this work are given in terms of M ≡M200m
unless otherwise stated. When needed, we convert to
M200c using the Navarro-Frenk-White profile [36] and the
concentration-mass relation of Ref. [37], making use of
the Colossus package [38]. We note that this concen-
tration model is calibrated in a mass range narrower than
our integration boundaries, but since the contributions
from the low- and high-mass ends are generally small as
shown in Sec. V, we do not expect this to be a significant
source of error. In our fiducial result we apply a radial
cutoff to the y profiles at rout ¼ 2rvir, where we define
the virial radius with a redshift-dependent overdensity
approximated according to Ref. [39]. We choose inte-
gration boundaries such that 1011 ≤ M½h−1 M⊙� ≤ 1016

and 0.005 ≤ z ≤ 6. With these boundaries all integrals are
converged.

III. NEW MODEL

In this section, we derive the main result of this paper: an
analytic model for the one-point PDF PðyÞ, making no
simplifying assumptions about nonoverlapping or non-
clustering properties of halos. We will do this in three
steps. First, we calculate the PDF for a narrow bin in mass
M and redshift z, such that overlaps can be neglected
(Sec. III A). Second, we combine the contributions from all
ðM; zÞ values accounting for overlaps, but with large-scale
clustering of halos neglected (Sec. III B). Finally, we show
how to include halo clustering (Sec. III C).
It is convenient to work in conjugate space by intro-

ducing the Fourier transform (FT) of the one-point PDF:

P̃ðλÞ≡
Z

dyPðyÞeiλy: ð11Þ
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Note that a calculation of P̃ðλÞ is equivalent to a calculation
of PðyÞ.3

A. PDF for a narrow mass-redshift bin

Let us consider now a narrow bin in halo mass and
redshift of width dMdz centered around mass M and
redshift z, in which the number of halos is sufficiently
small that halo overlaps can be neglected (by “overlaps,”
we mean overlaps of the projected y profiles of these
objects on the sky). Wewill calculate P̃ðλÞ considering only
halos in this bin.
We define the angular halo density in the narrow bin:

dn
dΩ

¼ χ2ðzÞ
HðzÞ

dnðM; zÞ
dM

dMdz ð12Þ

and let y0ðM; z; θÞ denote the y profile of a halo with mass
M and redshift z, where θ is the angular distance from the
halo center. We assume that the profile has a finite radius
θmax, i.e., y0ðM; z; θÞ ¼ 0 for θ > θmax. This is simply the
projection of the radial cutoff defined in Sec. II.
We write P̃ðλÞ as an expectation value:

P̃ðλÞ ¼ hexpðiλyðnÞÞi; ð13Þ

where the sky location n is fixed and the expectation value
runs over random halo placements. Since we are neglecting
overlaps, we can trade this expectation value with an
integral over the angular profile:

P̃ðλÞ ¼
�
1 −

dn
dΩ

πθ2max

�
þ dn
dΩ

Z
θmax

0

dθ2πθeiλyðθÞ; ð14Þ

where the first term is the probability that no halo overlaps
sky location n and the second term integrates over overlap
locations. Introducing the auxiliary quantity

ỸðM; z; λÞ≡
Z

dθ2πθðeiλy0ðM;z;θÞ − 1Þ; ð15Þ

we rewrite Eq. (14) in the form

P̃ðλÞ ¼ 1þ χ2ðzÞ
HðzÞ

dnðM; zÞ
dM

ỸðM; z; λÞdMdz: ð16Þ

For reasons that will be apparent in the next section, it will
be convenient to write this as

P̃ðλÞ ¼ exp

�
χ2ðzÞ
HðzÞ

dnðM; zÞ
dM

ỸðM; z; λÞdMdz

�
; ð17Þ

which is equivalent for a differential bin ðdMdzÞ.
In the Appendix, we show how to obtain the formalism

used in H14 from Eq. (16), under the assumption that halo
overlaps can be neglected.

B. PDF neglecting halo clustering

Now we calculate the one-point PDF from all masses
and redshifts, accounting for halo overlaps but neglecting
large-scale halo clustering.
Suppose we define a large number of narrow mass-

redshift bins ðM1; z1Þ;…; ðMN; zNÞ. If halo clustering is
neglected, then the total y signal is the sum of independent
contributions from each bin. Therefore, the complete
PDF from all N mass-redshift bins is then obtained by
convolution:

PðyÞ ¼ lim
N→∞

PM1;z1ðyÞ ⊗ � � � ⊗ PMN;zN ðyÞ: ð18Þ

Taking Fourier transforms, the convolution becomes multi-
plication and simplifies as follows:

P̃ðλÞ ¼ lim
N→∞

YN
i¼1

P̃Mi;ziðλÞ

¼
Y∞
i¼1

exp
�
χ2ðziÞ
HðziÞ

dnðMi; ziÞ
dMi

ỸðMi; zi; λÞdMidzi

�

¼ exp

�X∞
i¼1

χ2ðziÞ
HðziÞ

dnðMi; ziÞ
dMi

ỸðMi; zi; λÞdMidzi

�

¼ exp

�Z
χ2ðzÞ
HðzÞ

dnðM; zÞ
dM

ỸðM; z; λÞdMdz

�
; ð19Þ

where we have used Eq. (17) in the second line.

C. Including halo clustering

Finally, we include the effect of halo clustering. In
this subsection, we will denote the “unclustered” PDF
found in Eq. (19) by P̃uðλÞ and denote the “clustered” PDF
by P̃clðλÞ.
The derivation proceeds in two steps. First, we compute

the one-point PDF P̃δðλ;nÞ in a fixed realization of the
linear density field δlinðn; zÞ. Second, we average over
realizations of the Gaussian field δlin to obtain P̃clðλÞ. (Note
that P̃δ depends on n, since translation invariance is broken
by a particular realization of δlin, but P̃cl is a translation-
invariant PDF as usual.)
The quantity P̃δðλ;nÞ can be obtained from Eq. (19) for

the unclustered PDF, by biasing the halo mass function
with the halo bias bðM; zÞ, i.e.,

3This approach bears similarities to the traditional PðDÞ
analysis used in radio point source studies [40,41]; however,
our method accounts for TSZ sources’ nontrivial profiles and the
overlaps (and clustering) associated with these. We also note
related work focused on the PDF of the TSZ power spectrum
band powers [42].
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P̃δðλ;nÞ ¼ exp
Z

dMdz

�
χ2ðzÞ
HðzÞ ỸðM; z; λÞ

×
dnðM; zÞ

dM
½1þ bðM; zÞδlinðn; zÞ�

�
: ð20Þ

We note that this expression is only meaningful as long as
we can define a sufficiently large environment around n in
which δlinðnþ n0; zÞ ≃ δlinðn; zÞ. This assumption is justi-
fied because δlinðn; zÞ varies slowly in comparison to the
typical cluster radius.
The PDF including clustering is obtained by averaging

over realizations of the linear density field δlinðn; zÞ in
Eq. (20):

P̃clðλÞ ¼ hP̃δðλ;nÞiδðn;zÞ: ð21Þ

Introducing

Aðλ;nÞ≡
Z

dzδlinðn; zÞαðz; λÞ; ð22Þ

αðz; λÞ≡
Z

dMbðM; zÞ χ
2ðzÞ
HðzÞ

dnðM; zÞ
dM

ỸðM; z; λÞ; ð23Þ

we write Eq. (20) as

P̃δðλ;nÞ ¼ P̃uðλÞeAðλ;nÞ: ð24Þ

Using the identity hexi ¼ ehx2i=2 for a Gaussian random
variable x, we obtain

P̃clðλÞ ¼ P̃uðλÞ exp
1

2
hA2ðλ;nÞiδ: ð25Þ

The expectation value hA2i can be evaluated using the
Limber approximation and the LOS integral representation
in Eq. (22). The result is

hA2ðλ;nÞiδ ¼
Z

dzHðzÞD2ðzÞα2ðz; λÞ ×
Z

kdk
2π

PlinðkÞ;

ð26Þ

where PlinðkÞ is the linear matter power spectrum at z ¼ 0
and DðzÞ is the growth factor with Dð0Þ ¼ 1. This gives
our final expression for the one-point PDF:

P̃clðλÞ ¼ P̃uðλÞ exp
�
1

2

Z
dzHðzÞDðzÞ2αðz; λÞ2

×
Z

kdk
2π

PlinðkÞ
�
; ð27Þ

where P̃uðλÞ is the unclustered PDF in Eq. (19).

D. Quantifying the effects of overlaps
and clustering

In the following, we denote the PDF integrated over a
given temperature bin by pT and evaluate the temperature
decrement corresponding to a specific y signal at ν ¼
148 GHz. Unless otherwise stated, we bin the PDF into
temperature bins of width 1 μK. The linear power spectrum
PlinðkÞ and growth factor DðzÞ are computed using CAMB

[43]. We briefly mention two numerical properties of our
analytic method. If the integration boundaries (in mass and
cluster radius) are chosen too narrow, the Fourier transform
P̃ðλÞ does not vanish for λ → ∞. This gives rise to ringing in
the PDF. Furthermore, the PDF at high jTj is only properly
converged if the y profiles are evaluated on a very fine
angular grid, which is due to their rapid variation for angles
close to the clusters’ center.
We now turn to concrete results from our analytic model.

In Fig. 1 we show the effects of clustering and overlaps.
The fiducial result is obtained using Eq. (27), the result
neglecting halo clustering is calculated from Eq. (19), and
the result neglecting both overlaps and clustering follows
from the formalism developed in H14 [Eq. (5)]. Overlaps
have a much larger impact on the PDF, in particular for low
jTj values. These temperature bins are dominated by
numerous low-mass halos, which have a larger probability
to overlap. Clustering increases the PDF for almost all jTj
values, but it is less important than overlaps. This is
explained by the fact that it only plays a role if the
gravitational interaction aligns two nearby clusters along
the line of sight, which has subdominant probability in
comparison to random alignments on arbitrarily large
scales. Clustering slightly decreases the PDF for
T > −4 μK. These bins are dominated by very numerous
low-mass halos, which have a relatively high probability to
gravitationally interact and produce an alignment, which
would push their contribution to higher jTj values. The
lowest jTj bin, on the other hand, sees an increase in the
PDF due to clustering, which is clear because clustering
increases the clear sky fraction ð1 − FclustÞ. Note that the
unphysical divergence of the H14 model in the lowest jTj
bin (arising from the neglect of overlaps) is removed by the
new Fourier-based approach developed here.

IV. COMPARISON TO SIMULATIONS

We check the validity of our analytic approach by
comparing to the results of two different simulation
methods. First, we produce “simplified” random maps,
in which unclustered halos are randomly distributed on a
simulated flat-sky map and assigned Compton-y profiles
computed with the B12 pressure profile. We then measure
the average TSZ PDF from these maps. By construction,
the one-point PDF of our simplified simulations should
agree perfectly with our unclustered analytic result in
Eq. (19), but verifying the agreement is a strong check

THIELE, HILL, and SMITH PHYS. REV. D 99, 103511 (2019)

103511-6



on details of the implementation, which are nontrivial
(see Sec. III D).
Second, we measure the TSZ PDF from Compton-y

maps constructed directly from the cosmological hydro-
dynamics simulations of B12.4 The simulated maps in this
case only include TSZ signal from halos at z < 1, and thus
in this section we set the upper redshift integration
boundary to z ¼ 1 in our analytic calculations, in order
to enable direct comparison with the simulated maps. Note
that our fiducial cosmology is identical to that used in B12.

A. Simplified simulations

The simulations described in this section are produced
as follows. We construct individual maps of area Ω ¼
10 × 10 deg2, with square pixels of side length 3 arcsec.
We then consider discrete, narrow bins in mass and redshift
of size dMdz centered aroundM, z, for which we compute
the average number of such halos in the map via
nðM; zÞ ¼ ΩdnðM; zÞ=dΩ. For each such mass-redshift
bin, we populate the map with y profiles (using the B12
pressure profile), whose number is given by the probability
distribution wð⌈n⌉Þ ¼ n − bnc, and wðbncÞ ¼ ⌈n⌉ − n.
Since this distribution reproduces the correct mean, it is
valid to use it to find the average TSZ PDF computed from
many maps. We find that sampling the number of halos
from the physically more realistic Poisson distribution
leads to relatively slow convergence of the average PDF,
but we have confirmed that it yields a consistent result with
the more rapid approach. Note that we do not include halo
clustering in these maps.
Figure 2 shows the average TSZ PDF computed from

507 simplified simulations (dashed blue curve). As the
maps do not include clustering of halos, we compare
the simulation-derived PDF to the analytic result from
Sec. III B, in which clustering effects are not included (but
halo overlaps are). The discrepancy with our analytic result
is on average ≈0.2% and decreases as more maps are added
to the average. This confirms the validity of our analytic
formalism, in the limit where halo clustering effects can be
neglected.

B. Cosmological hydrodynamics simulations

We now compare the results of the full analytic calcu-
lation presented in Sec. III C (including halo clustering)
to measurements of the TSZ PDF from cosmological
hydrodynamics simulations. We use Compton-y maps
constructed by direct LOS integration (to z ¼ 1) of ran-
domly rotated and translated simulated volumes from
Ref. [44]. These are the same simulations from which
the B12 pressure profile fitting function was extracted;
thus, the comparison here is a direct test of our analytic
formalism for the TSZ PDF, with no additional tuning of

ICM parameters required. The simulations were performed
using the smoothed particle hydrodynamics code GADGET-2,
with a custom implementation of a subgrid prescription for
feedback from active galactic nuclei. The pressure profile
model extracted from the simulations has subsequently been
found to agree with a wide range of TSZ and x-ray
measurements (e.g., [21,45–49]). A full description of the
simulations can be found in Ref. [44].
We consider 390 Compton-y maps extracted from the

simulations, each of area Ω ¼ 4.09 × 4.09 deg2, with
square pixels of side length 6 arcsec. The average TSZ
PDF measured from this suite of y maps is shown in Fig. 2
(red curve with error bars). As mentioned above, an upper
redshift cut at z ¼ 1 is applied in the construction of the
maps, so as to minimize correlations arising from high-
redshift objects common to multiple maps. We apply this

FIG. 2. Comparison of our analytic TSZ PDF results to the PDF
measured via two sets of simulations. The top panel shows our
fiducial analytic result computed via Eq. (27) (black line), the
PDF measured from simplified simulations that neglect halo
clustering (dashed blue line), and the PDF measured from
cosmological hydrodynamics simulations (solid red line with
error bars). The bottom panel shows the fractional difference of
the analytic results with respect to the simulation-derived results.
The discrepancy seen with the hydrodynamical simulations is
investigated further in Fig. 3 and found to be due to halo mass
function differences. Note that we compare the hydrodynamical
simulations to the analytic model including clustering, while the
simplified simulations are compared to the analytic model
without clustering (not plotted in the top panel for clarity).
The error bars on the B12 results are estimated from the scatter
among the simulated maps. Note that in the upper panel the
difference between the clustered and unclustered analytic
results would be invisible to the eye, and thus only one curve
has been plotted.

4We thank N. Battaglia for sharing these maps.
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redshift cut in the analytic calculation in this subsection
(and only this subsection) for consistency with the
simulated maps.
The agreement in Fig. 2 between the TSZ PDF measured

from the hydrodynamical simulations and our analytic
result is much worse than the agreement for the simplified
simulations seen in the previous subsection. However, this
difference can be traced back to the discrepancy between
the halo mass function found in B12 and the mass function
[34] used in this work. We explicitly confirm that this halo
mass function difference can indeed give rise to discrep-
ancies in the one-point PDF as observed in Fig. 2.
In Fig. 3 we show how different interpolations of the

halo mass function (HMF) given in B12 (see their Fig. 11)
affect the PDF. This is compared to the discrepancy found

between our fiducial result and the PDF measured from the
B12 simulations. Since only information for redshift z ¼ 0
is available in Fig. 11 of B12, we take the ratio between the
interpolated halo mass function and the fitting function [50]
as constant across the redshift. Although this is likely a
gross oversimplification, it can be seen from the figure
that reasonable interpolations can already reproduce the
observed discrepancy very well. We thus conclude that our
analytic formalism passes this check, although future
comparisons with additional hydrodynamical simulations
will also be useful.

V. ORIGIN OF THE SIGNAL

We now turn to the different contributions to the PDF.
First, we consider cluster mass and redshift. In Fig. 4 we
plot the absolute fractional deviation of the PDF as a
function of the maximum mass and redshift included in the
calculation. These results were obtained using the simpli-
fied simulations generated as described in Sec. IV. It should
be noted that care must be taken in interpreting these plots,
since overlaps can shift part of the contribution from a
certain ðM; zÞ bin to higher jTj values. Furthermore, we
note that direct comparison with the analogous results
given in H14 is not possible, because their results included
instrumental noise, non-TSZ foregrounds, and beam
convolution.
Regarding the mass contributions, we note two general

trends in Fig. 4. First, as jTj increases, the transition
region, i.e., the range of relevant masses for the specific

FIG. 3. Illustration of the impact of the halo mass function on
the one-point PDF. Upper panel: Different interpolations of the
halo mass function given in B12. The red points are the ratios of
the mass function measured at z ¼ 0 in B12 relative to [50]; the
colored curves correspond to various interpolations of these
points. These interpolations were chosen on the basis of algebraic
simplicity; we confirmed that small changes at individual data
points have no major effect on the PDF. Lower panel: Corre-
sponding fractional differences to our fiducial result. The colored
curves match the same cases in the top panel. The red points with
error bars are identical to those in Fig. 2. Modifications of the
mass function clearly affect the predicted PDF and can explain
much of the difference between our analytic result and the PDF
measured from the hydrodynamical simulations. It is noteworthy
that the interpolation that is in best agreement with the halo mass
function measured in B12 does not correspond to the best
agreement of our analytical model with the B12 results. This
is most likely explained by the large error bars near the high-mass
end and the nontrivial redshift dependence of the HMF that is not
taken into account here.

FIG. 4. Mass and redshift contributions. We plot the absolute
fractional deviation of the PDF in four different temperature bins
of width 5 μK as a function of the maximum mass and redshift
included in the calculation.
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temperature bin, gets smaller (ignoring the temperature bin
that contains the clear sky fraction for now). At high jTj, the
PDF in a given temperature bin is dominated by clusters in
a narrow mass range. On the other hand, for low jTj a
variety of sources contributes. Second, the relevant masses
are higher for high jTj, which is expected.
Regarding the redshift contributions, the most relevant

interval broadens and shifts to larger redshift as jTj
decreases. For the temperature bin containing the clear
sky fraction the behavior is drastically different, with a very
small interval in mass and redshift being the dominant
contribution.
Now we consider the effect of the radial cutoff. In our

fiducial computation we considered the y profile up to
rout ¼ 2rvir. In Fig. 5 we show how the choice of this outer
radius affects the PDF. The effect is largest for the low-jTj
regime. These temperature bins receive significant contri-
butions from the outskirts of clusters. Furthermore, as
discussed above, overlaps have their largest impact on these
bins, and reducing the outer radius decreases the amount
of overlaps. The clear sky fraction is increased as rout is
decreased, which is intuitively clear. We note that the
choice of rout ¼ 2rvir does not correspond to convergence,
since there is still a significant discrepancy to the result
obtained with rout ¼ 3rvir. However, it is physically not
justified to suppose the validity of the pressure profile
fitting function up to infinite radius. Physically, the virial

shock will lead to a sharp decline in the pressure profile at
r ≈ 2–2.5r200c. Upon convolution with instrumental noise
(as described in Sec. VII) the precise choice of radial cutoff
becomes irrelevant to the PDF prediction, as the extremely
small y values in the outskirts are subsumed into the noise.

VI. PARAMETER DEPENDENCE

We now turn to the dependence of the PDF on cosmo-
logical and pressure profile parameters. In Fig. 6 we plot
the effect of changing the cosmological parameters σ8, ΩM,
and Σmν, as well as the pressure profile parameters P0, β0,
and α as defined in Sec. II. When considering nonzero
neutrino masses we take Neff ¼ 3.046.
The impact of changing the cosmology is as follows. The

neutrino mass sum has its largest effect on high-jTj bins,
consistent with the fact that it changes the matter power
spectrum most on small spatial scales, which here leads to a
suppression in the number of clusters (however, to hold σ8
fixed, the initial scalar amplitude As must be increased,
thus leading to an overall increase in the number of clusters;
this is simply an artifact of this choice of cosmological
parameters). The impact of changing σ8 is similar, yielding
a mild degeneracy with Σmν. On the other hand, changing
ΩM has largest impact on low-jTj bins. Thus, degeneracy
between σ8 and ΩM could be broken by a measurement of
the TSZ PDF over a sufficiently large jTj range.
The pressure profile parameters affect the PDF as

follows. P0 changes the PDF relatively constantly across
temperature, which is explained by the fact that it is an
overall normalization of the pressure profile. Changing the
logarithmic slope at large radii, β0, produces a similar
effect, although with the opposite sign. Increasing the
logarithmic slope at intermediate radii, α, decreases the
PDF in low-jTj bins and increases it in large-jTj bins.

VII. INCLUDING NOISE AND FOREGROUNDS

Here we consider a representative upcoming CMB experi-
ment and demonstrate the necessity of our improved analytic
approach formodeling theTSZPDF sufficiently accurately to
perform unbiased inference from this observable. In lieu of
full parameter forecasts, which require treatment of the
covariance matrix and likelihood function, we simply com-
pute the predictions from our full analytic model [Eq. (27)]
and from the H14 model [Eq. (5)] and compare these to
predicted error bars on a measurement of the TSZ PDF.
Specifically, we consider a measurement with the Simons

Observatory (SO), which will cover fsky ¼ 0.4 with six
frequency channels, reaching a depth and resolution at
145GHz of 6 μK-arcmin and FWHM ¼ 1.4 arcmin, respec-
tively [28].5 We include the effects of non-TSZ foregrounds
via the post-component-separation Compton-y noise power

FIG. 5. Effect of radial cutoff. The top panel shows the TSZ
PDF computed via Eq. (27) with varying choices of the outer
radial cutoff of the pressure profile (as labeled). For the curve
corresponding to rout ¼ 0.5rvir, the ringing is due to non-
convergence of the FT as mentioned earlier. The bottom panel
shows the fractional difference with respect to our fiducial
choice of rout ¼ 2rvir.

5The sensitivity values considered here are for the “goal”
configuration presented in Ref. [28].
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spectra that are publicly available via the SO Collaboration
[51]. In particular, we use the y noise power spectrum Nyy

l ,
derived via the “standard internal linear combination,” with-
out additional deprojection constraints (see [28] for further
details about the foreground modeling and component
separation). In practice, deprojection options will have to
be explored in the foreground cleaning as well, but this is
beyond the scope of our work here.
We construct a Wiener filter to optimally weight the

harmonic-space TSZ signal via

Fl ¼ Cyy
l =ðCyy

l þ Nyy
l Þ; ð28Þ

where Cyy
l is the TSZ power spectrum, which we compute

using the fiducial model of [11]. The filter is smoothly
tapered to zero at the boundaries of the multipole range
provided in the Nyy

l data file (lmin ≈ 40 and lmax ≈ 8000).
We apply this filter to the y profiles of all halos in our
analytic calculation, which captures the suppression of
modes lost due to foregrounds and noise. Note that the
multifrequency information of SO (and Planck, which is
also used) allows large-scale TSZ modes to be included
(because the CMB can be removed using spectral infor-
mation), which were lost due to CMB “noise” in the single-
frequency ACT analysis of H14. Thus the filter extends to
lower multipoles than in H14 (which used a filter originally
constructed in [18]).
After calculating the analytic prediction for the filtered

TSZ PDF, we convolve the result with a Gaussian

noise (þresidual foreground) PDF, whose variance is com-
puted via

σ2yy ¼
X
l

2lþ 1

4π
Nyy

l F2
lp

2
l; ð29Þ

where pl is the pixel window function (here assumed to
be 0.5 arcmin circular pixels, although this has negligible
effect). We then rescale the results from Compton-y to
148 GHz temperature to match those shown elsewhere in
the paper (although the application of the filter and noise
convolution means the temperature values are not compa-
rable to those in earlier plots). We bin the results into bins
of width 5 μK.
The results are shown in Fig. 7. The solid blue curve shows

the prediction from the FT-based formalism developed in this
paper [Eq. (27)]. The dashed green curve shows the prediction
from the H14 model [Eq. (5)]. The error bars shown on the
blue curve are computed using the diagonal elements of the
covariance matrix Cij estimated from the simplified simu-
lations described in Sec. IVA, but with Poisson-distributed
cluster numbers rather than the modified distribution
described earlier (which achieved faster convergence at the
expense of only capturing the mean correctly), so that the
variance is correctly captured. Specifically, we compute
the error on the value of the PDF in the ith bin as

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fmaps
sky

fsurveysky

s
×
dsurveypixel

dmaps
pixel

×
ffiffiffiffiffiffi
Cii

p
; ð30Þ

FIG. 6. Effect of varying cosmological (left) and ICM pressure profile (right) parameters. For clarity, the residual curves for σ8 are
reduced by a factor of 10. The wiggles at large jTj are due to the angular grid on which the y profiles have been evaluated. Note the
different vertical scale in the two residual plots.
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where fsky are the sky fractions and dpixel the pixel side
lengths. We take fSOsky ¼ 0.4 and dSOpixel ¼ 0.5 arcmin; the
simulation parameters are fmaps

sky ¼6.21×10−3 and dmaps
pixel ¼

0.1 arcmin. For a survey with the properties described above,
the difference between the no-overlaps case and our fiducial
result is considerably larger than the errors for essentially all
bins plotted.We note that the error bars themselves should not
be taken at face value, because significant bin-to-bin corre-
lations exist as discussed in H14. Nevertheless, we conclude
that if the earlier model of H14were used in an analysis of the
TSZ PDF from SO, cosmological and ICM parameter
inference would clearly be biased. With our accurate model
in hand, we plan to pursue full parameter forecasts for
ongoing and upcoming CMB experiments in future work.

VIII. OUTLOOK

In this paper we have presented a new analytic model for
the TSZ one-point PDF, building upon and substantially

improving the model first developed in H14. In particular, by
working in Fourier conjugate space, we have shown how to
account for effects due to overlaps in the TSZ profiles
of halos on the sky, as well as contributions due to the
clustering of halos (which arise because of the LOS
projection). For the TSZ PDF, the effects due to overlaps
are non-negligible, but the clustering effects are rather small.
We have verified the accuracy of the model via comparison
to numerical simulations, both simplified simulations con-
taining randomly distributed clusters and full-scale cosmo-
logical hydrodynamics simulations. However, issues related
to the halo mass function in the latter simulations rendered
a precise test of the clustering effects challenging; future
simulation comparisons will thus be useful. Finally, we have
demonstrated that the use of this more accurate analytic
model will be necessary in analyses of the TSZ PDF in
upcoming, high-sensitivity CMB datasets.
We anticipate a number of interesting next steps in this

line of research. An obvious first step is to compute the
covariance matrix in this formalism and the likelihood
function associated with the PDF observable. Given the
challenges observed in this context in H14, it may be useful
to pursue novel approaches such as likelihood-free infer-
ence (although this could render the analytic model
redundant) [52]. We expect that the forecast cosmological
constraints using the TSZ PDF will significantly improve
upon those for the TSZ power spectrum alone (e.g., as
presented in Ref. [28]). An optimal combination with
constraints from individually detected clusters is clearly
also a pressing issue and will lead to further improvements.
Beyond the TSZ signal, the formalism developed here

likely has applications to other cosmological fields. An
obvious candidate is the one-point PDF of the weak lensing
convergence field, which has already been investigated in
simulations [30–32]. We expect that the clustering effects
computed in this paper will be more important for this
application than for the TSZ field. In addition, further
development to treat negative-convergence regions (voids)
will be necessary. Nevertheless, a full, nonperturbative
model for the one-point PDF of the projected density field
is clearly a goal worth pursuing.
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FIG. 7. Difference between our fiducial analytic result
[Eq. (27); solid blue curve] and the result neglecting overlaps
and halo clustering (i.e., the H14 model; dashed green curve),
with noise and non-TSZ foregrounds included. The latter are
modeled and propagated through multifrequency component
separation via the publicly available Simons Observatory
Compton-y noise power spectra. Note that a Wiener filter has
been applied to the T̃ field here, as denoted by the tilde, and hence
the values are not directly comparable to those in other figures.
The convolution with noise and residual foregrounds is respon-
sible for the nonzero PDF values for T̃ > 0. It is clear that the
earlier H14 model is not sufficiently accurate for SO analysis; the
difference between our improved model and the previous model
is larger than the error bars in essentially all bins shown.
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APPENDIX: EQUIVALENCE TO FORMALISM
OF H14

In this Appendix we show that our analytic model is
equivalent to the formalism used in H14 under the
assumption that no overlaps occur. DenoteR
dM

R
dzðχ2=HÞðdn=dMÞ by R

M;z for brevity. The argu-
ments M and z are understood for y0ðM; z; θÞ, etc.
Integrating Eq. (16) [which is equivalent to a first-order
expansion of Eq. (19)] over mass and redshift, we obtain

P̃ðλÞ ¼ 1þ
Z
M;z

Z
dθ2πθðeiλy0ðθÞ − 1Þ:

The one-point PDF in y space is given by

PðyÞ ¼ δðyÞ þ
Z
M;z

Z
dθθ

Z
dλðeiλ½y0ðθÞ−y� − e−iλyÞ

¼ δðyÞ þ
Z
M;z

�
−2πδðyÞ θ

2
max

2
þ 2π

θ0ðyÞ
jdy=dθ0j

�
;

where we denote the inverse function to y0ðθÞ by
θ0ðyÞ. The PDF binned into yi ≤ y ≤ yiþ1 is then
found as

pi ¼
Z

yiþ1

yi

dyPðyÞ

¼ δi

�
1 −

Z
M;z

πθ2max

�
þ
Z
M;z

2π

Z
yiþ1

yi

dy

				 dθ0dy

				θ0ðyÞ
¼ δið1 − FclustÞ þ

Z
M;z

π½θ20ðyiþ1Þ − θ20ðyiÞ�; ðA1Þ

where δi equals one if y ¼ 0 is contained in the integration
interval and zero otherwise. θmax ¼ θmaxðM; zÞ corresponds
to the radial cutoff, so that 1 − Fclust is the clear-sky
fraction. This is the expression used in H14, i.e., Eq. (5)
presented earlier.
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