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The reconstruction of a braneworld inflationary universe considering the parametrization (or attractor)
of the scalar spectral index nsðNÞ in terms of the number of e-folding N is developed. We also study the
possibility that the reconstruction for the scenario of braneworld inflation can be realized in terms of the
tensor-to-scalar ratio rðNÞ. For both reconstruction methodologies, we consider a general formalism in
order to obtain the effective potential as a function of the cosmological parameters nsðNÞ or rðNÞ. For both
reconstruction methods, we consider the specific examples for large N in the framework of the slow-roll
approximation as the attractor ns − 1 ∝ N−1 for the scalar spectral index and the attractor r ∝ N−2 for the
tensor-to-scalar ratio. In this context and depending on the attractors used, we find different expressions for
the effective potential VðϕÞ, as also the constraints on the parameters present in the reconstruction.
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I. INTRODUCTION

It is well known that during the early universe, the
introduction of the inflationary stage or inflation is to date a
possible solution to many long-standing problems of
the hot big bang model (horizon, flatness, monopoles,
etc.) [1–3]. However, the most significant characteristic
of the inflationary model is that inflation gives an account
of a causal interpretation of the origin of the observed
anisotropy of the cosmic microwave background (CMB)
radiation as also the distribution of a large scale structure
observed today [4–7].
In order to describe the inflationary epoch for the early

universe, different inflationary models have been proposed
in the framework of general relativity (GR) as in modified
gravity or an alternative to Einstein’s general relativity. In
this context, implications of string/M-theory to Friedmann-
Robertson-Walker (FRW) cosmological models have
attracted a great deal of attention in the last years and in
particular some models with brane-antibrane configura-
tions like some timelike branes, together with their
applications to the inflationary cosmology [8]. In this
framework, the introduction of extra dimensions generates
extra terms in the Friedmann equation product of the
dimensional reduction (embedded) to four dimensions
[9–11] and the standard model of particles is confined to
the brane, while the gravitation propagates into the bulk
space-time [10]. In this respect, the inflationary model of a
Randall-Sundrum (RS) type II scenario has taken great
attentiveness in the last years [12] and this modification
to GR for the cosmological models has been widely
studied. In particular the chaotic model on the brane in

the framework of slow roll was analyzed in Ref. [13]. In
Ref. [14] an inverse power-law potential was studied,
where a single scalar field can act as an inflaton field
and quintessence for an appropriate value of the brane
tension. The study of a tachyon potential considering the
power-law inflation in the frame of braneworld cosmology
was developed in Ref. [15]. For a comprehensible review of
brane cosmology, see e.g., Refs. [16–18] and recent
articles; see the list in [19].
On the other hand, the reconstruction of the background

and in particular the effective potential associated with a
scalar field in the context of inflation from observational
data such as the scalar spectrum, scalar spectral index ns,
and the tensor-to-scalar ratio r, has been analyzed by
several authors [20–26]. Originally, considering a single
scalar as the reconstruction of inflationary potentials from
the primordial scalar spectrum was proposed in Ref. [20].
An attractive mechanism to reconstruct the effective

potential of the scalar field assuming the slow-roll approxi-
mation is through the parametrization in terms of the
number of e-folds N. In this respect, by considering the
scalar spectral index nsðNÞ and the tensor-to-scalar ratio
rðNÞ (commonly called attractors) it is possible to recon-
struct the background during the inflationary epoch.
From an observational point of view, the attractors given
by ns − 1 ∝ N−1 and r ∝ N−2, by considering the number
of e-foldings N ≃ 50–70 at the end of the inflationary
epoch, agree with the Planck results [7]. In particular and
considering the framework of GR, the scalar spectral index
given by nsðNÞ − 1 ∝ N−1, it is possible to build different
effective potentials such as the T-model [27], E-model [28],
Staronbisky R2-model [1], the chaotic model [29], and the
model of Higgs inflation with nonminimal coupling
[30,31]. In the framework of warm inflation unlike cold*ramon.herrera@ucv.cl
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inflation, it was necessary to consider jointly the attractors
nsðNÞ and rðNÞ, in order to reconstruct the effective
potential and the dissipation coefficient [32]. Analogously,
the reconstruction of an inflationary model in the context of
the Galileon model or G-model, considering as attractors the
scalar spectral index and the tensor-to-scalar ratio as a
function of the number of e-foldings jointly, was studied
in Ref. [33,34].
We also mentioned another way to reconstruct the

background and it is related with the slow-roll parameter
ϵ and its parametrization in terms of N i.e., ϵðNÞ. In this
sense, considering ϵðNÞ it is possible to find the scalar
spectral index and the tensor-to-scalar ratio for inflationary
models in GR; see [35,36]. In particular choosing different
slow-roll parameters ϵðNÞ, the reconstruction of several
effective potentials associated with a scalar field and the
observational parameters were studied in Ref. [18]. Also, in
Refs. [37–39] were found the effective potential and the
consistency relation r ¼ rðnsÞ, but considering the two
slow-roll parameters ϵðNÞ and ηðNÞ.
In the context of modified gravity, in Ref. [40] the

reconstruction of the effective potential and the coupling
of the Gauss-Bonnet function was obtained during the
inflationary epoch by fixing the tensor-to-scalar ratio and
the Hubble parameter as a function of the e-folds, in the
framework of Einstein Gauss-Bonnet gravity. Also, the
reconstruction of an inflationary stage assuming the slow-
roll approximation for FðRÞ gravity considering different
expressions for the tensor-to-scalar ratio in terms of N was
developed in Ref. [41]; see also Ref. [42] for other modified
gravities.
On the other hand, the reconstruction technique from

different equations of state in the context of the fluid
cosmology during inflation was studied in Refs. [43–45]
and for the case of the current universe in [46]. In particular
for the reconstruction of the inflationary epoch it is possible
to assume an ansatz on the effective equation of state (EoS)
as a function of the number of e-foldings [43]. Here,
rewriting the scalar spectral index and the tensor-to-
scalar ratio in terms of the effective EoS, one can find
the attractors nsðNÞ and rðNÞ in the fluid inflation.
Subsequently, if the fluid corresponds to a standard scalar
field, one can obtain the reconstruction of the effective
potential under slow-roll approximation [43].
It is interesting to mention that from the point of view of

the fluid cosmology, it is possible to consider effects of
viscosity terms dependent on the Hubble rate and its
derivatives in the EoS of the dark fluid and then the
equations of motion from this fluid can be visualized as
modifications to the GR, which is how it happens in some
braneworld models or fourth-order gravity; see Ref. [47].
Another methodology that has been widely studied in the

literature for the reconstruction of the effective potential
and the observables nsðNÞ and rðNÞ in the framework of
inflation is to consider the scale factor as ansatz. In this

sense, we mentioned the inflationary models such as power
law [48], intermediate [49], logamediate [50], exponential
[33,45], among others. Models of dark energy and its
reconstruction from the scale factor were studied in
Refs. [51,52].
The goal of this study is to reconstruct the braneworld

inflation, through the parametrization of the scalar spectral
index or the tensor-to-scalar ratio, as a function of the
number of e-foldings. In fact, we analyze how the brane
model changes the reconstruction of the scalar potential,
considering as attractors the spectral index nsðNÞ or the
tensor-to-scalar ratio rðNÞ. In this respect, we will consider
the domination of the brane effect, in order to obtain
analytical solutions in the reconstruction of the back-
ground. We will also formulate a general formalism to
find the effective potential, by assuming the parametriza-
tion nsðNÞ or rðNÞ, in the context of the slow roll
approximation. Thus, choosing a specific attractor for
the observable ns or the tensor-to-scalar ratio r in terms
of the number of e-folds for large N, we will show the
possibility of reconstructing the effective potential VðϕÞ, in
the frame of braneworld inflation.
As an application of the formulated formalism, we will

analyze two different reconstructions. Following the stan-
dard reconstruction of the background from nsðNÞ, we shall
consider the specific case in which the scalar spectral index
is given by ns ¼ 1–2=N. As a second reconstruction,
we shall regard the reconstruction from the point of view
of the tensor-to-scalar ratio rðNÞ and as it modifies the
reconstruction of the effective potential. In these recon-
structions, we will derive different constraints on the
parameters present in the models.
The outline of the paper is as follows. The next section

presents a brief review of the background and the cosmo-
logical perturbations on the braneworld. In Sec. [53], we
develop the reconstruction in our model. In Sec. [10], we
consider the high energy limit and the reconstruction,
considering the attractor as the scalar spectral index
nsðNÞ. Here, we formulate a general formalism to find
the effective potential and in Sec. [16], we also apply our
results to a specific example for the spectral index nsðNÞ. In
Sec. V, we formulate the reconstruction from the tensor-to-
scalar ratio rðNÞ under a general formalism and in Sec. VA,
we consider as an example the attractor rðNÞ ∝ N−2.
Finally, in Sec. VI we summarize our findings. We chose
units so that c ¼ ℏ ¼ 1.

II. BRANEWORLD INFLATION:
BASIC EQUATIONS

In this section we give a brief review of the background
equations and cosmological perturbations on the brane.
We begin with the action given by

S¼M3
5

Z
d5x

ffiffiffiffi
G

p
ðð5ÞR−2Λ5Þ−

Z
d4x

ffiffiffiffiffiffi
−g

p
Lmatter; ð1Þ
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where the quantity 5R corresponds to the Ricci scalar
curvature of the metric Gab of the five-dimensional bulk,
Lmatter describes thematter confined on the brane, andM5 and
Λ5 are the five-dimensional Planck mass and cosmological
constant, respectively. The relation between the Planck mass
in four-dimensional mp and M5 and also the relationship
between the cosmological constants becomes [53]

mp ¼
ffiffiffiffiffiffi
3

4π

r �
M2

5ffiffiffi
τ

p
�
M5; and Λ4 ¼

4π

M4
5

�
Λ5 þ

4π

3M3
5

τ2
�
;

respectively. Here, Λ4 corresponds to the four-dimensional
cosmological constant and the quantity τ denotes the brane
tension.
From the action (1) the authors of Ref. [10] have shown

that the four-dimensional Einstein equations induced on the
brane can be written as (see also Ref. [54])

Gμν ¼ −Λ4gμν þ
�
8π

m2
p

�
Tμν þ

�
8π

M2
5

�
Sμν − Eμν; ð2Þ

in which Tμν corresponds to the energy-momentum tensor
of the matter, the quantity Sμν denotes the local correction
to standard Einstein equations from the extrinsic curvature,
and Eμν is the nonlocal effect correction due to a free
gravitational field which emerges from the projection of the
bulk Weyl tensor. By considering an extended version of
Birkhoff’s theorem, we find that if the bulk space-time is
anti–de Sitter, then the nonlocal effect corrections Eμν ¼ 0

[55] and from the Bianchi identity (∇μGμν ¼ 0), we have
∇μSμν ¼ 0 [54]. On the other hand, assuming that the
matter in the brane (the matter is confined in the brane and
the gravity can be propagated to the extra dimension) is
describe by a perfect fluid together with a flat FRW metric,
then we find that the modified Friedmann equation
becomes [10,53]

3H2 ¼ κρ

�
1þ ρ

2τ

�
þ Λ4 þ

ξ

a4
; ð3Þ

where the quantity H ¼ ȧ=a denotes the Hubble rate, a
corresponds to the scale factor, and ρ denotes the matter
field confined to the brane. Here, the constant is κ ¼
8π=m2

p, where mp is the four-dimensional Planck mass.
The quantity ξ=a4 has a form of dark radiation and it
indicates the influence of the bulk gravitons on the brane, in
which ξ corresponds to an integration constant. As we
emphasized before, the brane tension τ is related with the
four- and five-dimensional Planck masses by the relation
m2

p ¼ 3M6
5=ð4πτÞ and a constraint on the value of the

brane tension is found from nucleosynthesis given by
τ > ð1 MeVÞ4 [56]. However, a different constraint for
the brane tension from current tests for deviation from

Newton‘s law was obtained in Refs. [57,58] in which it is
restricted to τ ≥ ð10 TeVÞ4.
In the following, we will consider that the constant

Λ4 ¼ 0, and once the inflation epoch initiates, the quantity
ξ=a4 will rapidly become unimportant, with which the
modified Friedmann Eq. (3) becomes [10]

3H2 ¼ κρ

�
1þ ρ

2τ

�
: ð4Þ

In order to describe the matter, we consider that the
energy density ρ corresponds to a standard scalar field ϕ,
where the energy density ρðϕÞ and the pressure PðϕÞ are
defined as ρ ¼ ϕ̇2

2
þ VðϕÞ, and P ¼ ϕ̇2

2
− VðϕÞ, respec-

tively. Here, the quantity VðϕÞ ¼ V denotes the scalar
potential. We also consider that the scalar field ϕ is a
homogeneous scalar field i.e., ϕ ¼ ϕðtÞ and also this field
is confined to the brane [10,53]. In this context, the
dynamics of the scalar field can be written as

ρ̇þ 3Hðρþ PÞ ¼ 0; ð5Þ

or equivalently

ϕ̈þ 3Hϕ̇þ V 0 ¼ 0; ð6Þ

where V 0 ¼ ∂VðϕÞ=∂ϕ. Here the dots mean derivatives
with respect to the cosmological time.
By assuming the slow-roll approximation in which the

energy density ρ ∼ VðϕÞ, then the Eq. (4) reduces to [10,53]

3H2 ≈ κV

�
1þ V

2τ

�
; ð7Þ

and Eq. (6) can be written as

3Hϕ̇ ≈ −V 0: ð8Þ

Following Ref. [53] we can introduce the slow-roll param-
eters ϵ and η defined as

ϵ ¼ 1

2κ

�
V 0

V

�
2 ð1þ V=τÞ
ð1þ V=2τÞ2 and η ¼ 1

κ

V 00

Vð1þ V=2τÞ :

ð9Þ

On the other hand, introducing the number of e-folding N
between two different values of the time t and te gives

N ¼
Z

te

t
Hdt ≃ κ

Z
ϕ

ϕe

V
V 0

�
1þ V

2τ

�
dϕ; ð10Þ

where te corresponds to the end of the inflationary stage
and here we have considered the slow-roll approximation.
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In the context of the braneworld the power spectrum PR
of the curvature perturbations assuming the slow-roll
approximation is given by [16]

PR ¼
�
H2

ϕ̇2

��
H
2π

�
2

≃
κ3

12π2
V3

V 02

�
1þ V

2τ

�
3

: ð11Þ

The scalar spectral index ns is defined as ns − 1 ¼ d lnPR
d ln k

and in terms of the slow-roll parameters, ϵ and η can be
written as [16]

ns − 1 ¼ −6ϵþ 2η: ð12Þ

Here we have used Eqs. (9) and (11), respectively.
It is well known that the tensor perturbation during

inflation would produce gravitational waves. In the brane-
world the tensor perturbation is more complicated than the
standard expression obtained in GR, where the amplitude
of the tensor perturbations Pg ∝ H2. Because the brane-
world gravitons propagate in the bulk, the amplitude of the
tensor perturbation suffers a modification [59], wherewith

Pg ¼ 8κ

�
H
2π

�
2

F2ðxÞ; ð13Þ

where the quantity x ¼ Hmp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4πτÞp

and the function
FðxÞ is defined as

FðxÞ ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

− x2 sinh−1ð1=xÞ
i
−1=2

; ð14Þ

in which the correction given by the function FðxÞ
appeared from the normalization of a zero mode [59].
In particular in the limit in which the tension τ ≫ V, the
function FðxÞ → 1 and then Pg ∝ H2.
An important observational quantity is the tensor-to-scalar

ratio r, defined as r¼ðPg

PR
Þ. Thus, combining Eqs. (11) and

(13), the tensor-scalar ratio, r, is given by

r ¼
�
Pg

PR

�
≃
8

κ

�
V 0

V

�
2
�
1þ V

2τ

�
−3
F2ðVÞ: ð15Þ

Here, we have considered that the quantity x can be rewritten
in terms of the effective potential from Eq. (7).

III. RECONSTRUCTION ON BRANE

In this section we consider the methodology in order
to reconstruct the background variables, considering the
scalar spectral index in terms of the number of e-folds in the
framework of a braneworld. As a first part, we rewrite
the scalar spectral index given by Eq. (12), as a function of
the number of e-folds N and its derivatives. In this form,
obtaining the index ns ¼ nsðNÞ, we should find the
potential V ¼ VðNÞ in terms of the number of e-folding

N. Subsequently, utilizing the relation given by Eq. (10),
we should obtain the e-folds N as a function of the scalar
field ϕ i.e., N ¼ NðϕÞ. Finally, considering these relations,
we can reconstruct the effective potential VðϕÞ in order to
satisfy a specific attractor nsðNÞ.
In this way, we start by rewriting the standard slow-roll

parameters ϵ and η in terms of the number of e-folds N.
Thus, the derivative of the scalar potential V 0 from Eq. (10)
can be rewritten as

V 0 ¼ dV
dϕ

¼ V;N
dN
dϕ

; inwhichV 0 ¼ κV

�
1þ V

2τ

�
V;N;

ð16Þ

and this suggests that V;N is a positive quantity. In the
following, we will consider that the notation V;N corre-
sponds to dV=dN, V;NN denotes d2V=dN2, etc.
Analogously, we can rewrite V 00 as

V 00 ¼ κ

2V;N

�
V2
;N

�
1þ V

τ

�
þ V

�
1þ V

2τ

�
V;NN

�
:

In this form, the slow-roll parameter ϵ can be rewritten as

ϵ ¼ 1

2

ð1þ V
τÞ

Vð1þ V
2τÞ

V;N; ð17Þ

and the parameter η as

η ¼ 1

2V

ð1þ V
τÞ

ð1þ V
2τÞ

V;N þ V;NN

2V;N
; ð18Þ

respectively. Here, we have considered that V 0 > 0.
Also, from Eqs. (10) and (16) we can rewritten dN=dϕ as

dN
dϕ

¼
ffiffiffiffiffiffiffiffi
κV
V;N

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ V

2τ

�s
: ð19Þ

In this way, by using Eq. (12) we find that the scalar
spectral index can be rewritten as

ns − 1 ¼ −2
ð1þ V

τÞ
Vð1þ V

2τÞ
V;N þ V;NN

V;N
; ð20Þ

or equivalently

ns − 1 ¼ −2
�
ln

�
V

�
1þ V

2τ

���
;N
þ ½lnV;N �;N

¼
�
ln

�
V;N

V2ð1þ V
2τÞ2
��

;N

: ð21Þ
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We also note that in the limit in which τ → ∞, Eq. (21)
reduces to GR, in which ns − 1 ¼ ðln V;N

V2 Þ;N ; see Ref. [25].
From Eq. (21) we have

V;N

V2ð1þ V=2τÞ2 ¼ e
R

ðns−1ÞdN: ð22Þ

This equation gives us the effective potential VðNÞ for a
specific attractor nsðNÞ. Thus, integrating we have

1

τ
ln

�
1þ V=2τ
V=2τ

�
−

ð1þ V=τÞ
Vð1þ V=2τÞ ¼

Z
½e
R

ðns−1ÞdN �dN:

ð23Þ

However, this equation results in a transcendental equation
for the scalar potential V and this result does not permit one
to obtain the relation V ¼ VðNÞ.
We also note that by combining Eqs. (19) and (22), we

obtain that the relation between the number of e-folds N
and the scalar field ϕ can be written as

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

�
1þ V

2τ

�s
e
R ðns−1Þ

2
dN

#
dN ¼ dϕ: ð24Þ

On the other hand, from Eq. (15) the tensor-scalar ratio r
can be rewritten as

rðNÞ ≃
�
4

τ

�
V;N

�
1þ V

2τ

�
−3
F2ðVÞ: ð25Þ

In the following we will consider the high energy limit in
which ρ ≃ V ≫ τ, in order to obtain an analytical solution
in the reconstruction of the scalar potential in terms of the
scalar field VðϕÞ.

IV. HIGH ENERGY: RECONSTRUCTION
FROM THE ATTRACTOR nsðNÞ

In this section we consider the high energy limit (V ≫ τ)
in order to reconstruct the scalar potential, considering as
an attractor the scalar spectral index in terms of the number
of e-folds i.e., ns ¼ nsðNÞ. In this limit, the derivatives V0
and V 00 can be rewritten as

V 02¼ κ

2τ
V2V;N; and V 00 ¼ κ

2τ
V

�
V;Nþ

VV;NN

2V;N

�
: ð26Þ

In this way, the relation between the number N and the
scalar field ϕ in this limit becomes

dN
dϕ

¼ κ

2τ

�
V2

V 0

�
¼
�
κ

2τ

�
1=2 Vffiffiffiffiffiffiffiffi

V;N
p : ð27Þ

From Eq. (12) we find that the scalar spectral index ns
results in

ns − 1 ¼ 4τ

κ

�
V 00 −

3V 0

V

�
1

V2
¼ −4

V;N

V
þ V;NN

V;N
; ð28Þ

or equivalently

ns − 1 ¼ −4½lnV�;N þ ½lnV;N �;N ¼
�
ln

�
V;N

V4

��
;N
: ð29Þ

We note that the relation between the scalar potential
and the scalar spectral index given by Eq. (29) becomes
independent of the brane tension τ in the high energy limit.
From Eq. (29), the scalar potential in terms of the number

of e-foldings can be written as

V ¼ VðNÞ ¼
�
−3
Z �

e
R
ðns−1ÞdN

�
dN

�
−1=3

; ð30Þ

where
R ðeR ðns−1ÞdNÞdN < 0, in order to make certain that

the potential VðNÞ > 0.
Now, by combining Eqs. (27) and (29), we find that the

relation betweenN and ϕ is given by the general expression

h
Ve
R ðns−1Þ

2
dN
i
dN ¼

�
κ

2τ

�
1=2

dϕ; ð31Þ

where V is given by Eq. (30).
In this form, Eqs. (30) and (31) are the fundamental

relations in order to build the scalar potential VðϕÞ for an
attractor point nsðNÞ, in the framework of the high energy
limit in braneworld inflation.
On the other hand, in the high energy limit in which

V ≫ τ, the function F2ðxÞ given by Eq. (15) becomes
F2ðxÞ ≈ 3

2
x ¼ 3

2
V
τ . In this form, in the high energy limit the

tensor-to-scalar ratio r becomes

r ≃ 48τ

�
V;N

V2

�
: ð32Þ

Here we have considered Eq. (25).

A. An example of ns = nsðNÞ
In order to develop the reconstruction of the scalar

potential VðϕÞ in the braneworld inflation, we consider the
famous attractor nsðNÞ given by

nsðNÞ ¼ ns ¼ 1 −
2

N
; ð33Þ

as example.
From the attractor (33), we find that considering Eq. (29)

we have V;N

V4 ¼ α=N2, in which α corresponds to a constant
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of integration (with units of m−12
p ) and since V;N > 0, then

the constant of integration α > 0. In this form, the effective
potential as a function of the number of e-foldings N from
Eq. (30) becomes

VðNÞ ¼ 3−1=3
�
α

N
þ β

�
−1=3

; ð34Þ

where β denotes a new constant of integration. Here, the
new constant of integration β with units of m−12

p can be
considered β ¼ 0 or β ≠ 0.
In the high energy limit, we find that the power spectrum

PR given by Eq. (11) can be rewritten as

PR ≃
1

12π2

�
κV2

2τ

�
3 1

V 02 ¼
κ2

48π2τ2

�
V4

V;N

�
¼ κ2

48π2τ2

�
N2

α

�
:

ð35Þ

Note that this result does not depend of the constant of
integration β. From Eq. (35), it is possible to write the
constant of integration α in terms of the numberN, PR, and
the tension τ as

α ¼ κ2

48π2τ2

�
N2

PR

�
: ð36Þ

In particular by considering N ¼ 60 and PR ¼ 2.2 × 10−9,
we obtain that the constant of integration α ≃ 3 × 109ðκ=τÞ2.
On the other hand, from Eq. (32) the tensor-to-scalar

ratio can be rewritten as

r ≃ 48τ

�
V;N

V2

�
¼ 48τα

�
V2

N2

�
¼ 48τα

�
3−2=3

N2ðα=N þ βÞ2=3
�
:

ð37Þ

Note that considering the attractor ns given by Eq. (33),
we can find a relation between the tensor-to-scalar ratio r
with the scalar spectral index or the consistency relation
becomes

rðnsÞ ≃
�
12ατ

32=3

��
αð1 − nsÞ

2
þ β

�
−2=3

ð1 − nsÞ2: ð38Þ

In the following, we will analyze the cases separately
in which the constant of integration β takes the values
β ¼ 0 and β ≠ 0, in order to reconstruct the effective
potential VðϕÞ.
For the case β ¼ 0, we obtain that the relation between

the number of e-foldings N and scalar field ϕ considering
Eqs. (31), (33) and (34) becomes

NðϕÞ ¼ N ¼ 1

32α1=2

�
κ

2τ

�
3=2

ðϕ − ϕ0Þ3; ð39Þ

where ϕ0 corresponds to a constant of integration. In this
way, in the high energy limit we find that the reconstruction
of the effective potential as a function of the scalar field for
the case β ¼ 0 and assuming the attractor ns − 1 ¼ −2=N
is given by

VðϕÞ ¼ V0ðϕ − ϕ0Þ; where V0 ¼
�

κ

18τα

�
1=2

: ð40Þ

Also, we note that for the case β ¼ 0, the consistency
relation r ¼ rðnsÞ has a dependence rðnsÞ ∝ ð1 − nsÞ4=3.
In particular, by considering ns ¼ 0.964, N ¼ 56, and
PR ¼ 2.2 × 10−9, we find an upper bound for the brane
tension given by τ < 10−13m4

p, from the condition r < 0.07.
For this bound on τ, we have used Eq. (38). Now, from
Eq. (36) and considering N ¼ 60 and PR ¼ 2.2 × 10−9,
together with the upper limit on τ, we obtain a lower limit for
the constant α given by α > 1.9 × 1038m−12

p .
On the other hand, in the reconstruction for the situation

in which the constant of integration β ≠ 0, we find that
considering Eq. (31) the relation between dN and dϕ can be
written as

dN

½αN2 þ βN3�1=3 ¼
dN

β1=3½α0N2 þ N3�1=3 ¼ C1dϕ; where

C1 ¼ 31=3
�

κ

2ατ

�
1=2

; ð41Þ

and the quantity α0 ¼ α=β. In the following, we will
consider for simplicity the case in which the constant of
integration β > 0 i.e., α0 > 0. We also note that the
integration of Eq. (41) does not permit one to obtain an
analytical solution for the number of e-folds as a function
of the scalar field i.e., N ¼ NðϕÞ. In this sense, the solution
of Eq. (41) can be written as

ffiffiffi
3

p
arctan

��
1þ 2

�
1þ α0

N

�
−1=3

�
=
ffiffiffi
3

p �

þ 1

2
ln

�
1þ

�
1þ α0

N

�
−2=3

þ
�
1þ α0

N

�
−1=3

�

− ln

�
1 −

�
1þ α0

N

�
−1=3

�
¼ β1=3C1ðϕ − ϕ0Þ; ð42Þ

where ϕ0 denotes a constant of integration.
Numerically, we note that in the limit in which

α=β ¼ α0 < N, the first two terms of Eq. (42) are approx-
imately constants and the dominant term corresponds to
(see Fig. 2)

− ln

�
1 −

�
1þ α0

N

�
−1=3

�
≈ β1=3C1ðϕ − ϕ0Þ: ð43Þ
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Thus, we find that the reconstruction of the effective
potential VðϕÞ considering the specific case in which
α0 < N is given by

VðϕÞ ≈ 1

ð3βÞ1=3 ½1 − expð−β1=3C1½ϕ − ϕ0�Þ�: ð44Þ

Here, we have combined Eqs. (34) and (43). Curiously,
we observe that this effective potential is similar to that
obtained in the Starobinsky model [1] in which β1=3C1 ¼ffiffiffiffiffiffiffiffi
2=3

p
m−1

p i.e., β1=3C1mp ≈Oð1Þ. Also, in the limit
β1=3C1½ϕ − ϕ0� ≫ 1, the effective potential corresponds
to a constant potential i.e., a solution of de Sitter.
For the inverse case in which α0 > N, we note that the

first term of Eq. (42) dominates with which (see Fig. 2)

ffiffiffi
3

p
arctan

��
1þ 2

�
1þ α0

N

�
−1=3

�
=
ffiffiffi
3

p �
≈ β1=3C1ðϕ − ϕ0Þ:

ð45Þ

In this form, we obtain that the reconstruction in the limit
in which α0 > N becomes

VðϕÞ ≈ 1

2ð3βÞ1=3 ½
ffiffiffi
3

p
tanðβ1=3C1ðϕ − ϕ0Þ=

ffiffiffi
3

p
Þ − 1�: ð46Þ

Here the range for the scalar field is given byffiffi
3

p
π

6β1=3C1
þ ϕ0 ≲ ϕ≲ ffiffi

3
p

π
2β1=3C1

þ ϕ0.

In Fig. 1 we show the ratio r versus the spectral index ns,
for three different values of the brane tension τ. In both
panels we consider the two-marginalized constraints for the
consistency relation r ¼ rðnsÞ (at 68% and 95% C.L. at
k ¼ 0.002 Mpc−1) from the new Planck data [7]. In the top
panel we consider the special case in which the constant of
integration β ¼ 0, where the consistency relation is given
by Eq. (38). Here, we take the value α ¼ 1038m−12

p . In the
bottom panel we take into account the case in which β ≠ 0
and for the relation r ¼ rðnsÞwe have used Eq. (38). In this
case we have considered the specific value of β at N ¼ 60
(point limit α0=N ¼ 1 or β ¼ α=N) wherewith β ¼ α=60
and α ¼ 3 × 109ðκ=τÞ2, respectively. Also, in both panels
the solid, dashed, and dotted lines correspond to the values
of brane tension τ=m4

p ¼ 10−12; 10−13, and 10−14, respec-
tively. In particular for the case β ¼ 0we find that the brane
tension has an upper limit given by τ < 10−13mp, as can be
seen in the top panel of Fig. 1. For the case in which β ≠ 0
we find that in the particular case in which β ¼ α=60, the
value of the brane tension τ < 10−12m4

p is well corrobo-
rated by Planck 2018 results; see bottom panel of Fig. 1.
This suggests that the value of the constant of integration β
modifies the upper bound on the brane tension. We note

that in the case in which the constant β > α=60 the upper
limit on the brane tension increases and in the opposite case
(β < α=60) the upper limit on τ decreases.
In Fig. 2 we show the behavior of the three terms on the

right of Eq. (42) versus the dimensionless quantity α
βN ¼ α0

N.
We note that for the limit in which α0 < N the dominant
term is given by the third term of Eq. (42), see solid line of
Fig. 2. However, for the case in which α0 > N the dominant
term corresponds to the first expression of Eq. (42) given by
dotted line in Fig. 2.
In order to clarify our above results, we can study some

specific limits for the ratio α=ðβNÞ ¼ α0=N in which
α0=N ≪ 1 and α0=N ≫ 1. As a first approximation we
consider the case in which α0=N ≪ 1 or α0 ≪ N. For this

FIG. 1. Tob and bottom: tensor-to-scalar ratio r as a function of
the scalar spectral index ns, for three different values of the brane
tension τ. In both panels we have considered the two-marginalized
constraints jointly as 68% and 95% C.L. at k ¼ 0.002 Mpc−1 from
the Planck 2018 results [7]. Also, in both panels the solid, dashed,
and dotted lines correspond to the values of brane tension
τ=m4

p ¼ 10−12; 10−13, and 10−14, respectively. Top: consistency
relation for the specific case in which the constant β ¼ 0 and we
have used α ¼ 1038m−12

p . Bottom: case in which β ≠ 0 and we
have considered β ¼ α=60 and α ¼ 3 × 109ðκ=τÞ2, respectively.
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limit we find from Eq. (41) that the relation N ¼ NðϕÞ is
given by

NðϕÞ ¼ exp½β1=3C1ðϕ − ϕ0Þ�; ð47Þ

where ϕ0 denotes a constant of integration. Thus, consid-
ering the limit α=ðβÞ ¼ α0 ≪ N we obtain that the effective
potential VðϕÞ given by Eq. (34) becomes a constant and
equal to VðϕÞ ¼ ð3βÞ−1=3. In fact, this result indicates an
accelerated expansion de Sitter or de Sitter inflation, since
in the high energy limit and considering the slow-roll
approximation, we have H ∝ V ¼ const. Note that this
constant potential coincides with the potential given by
Eq. (44) when β1=3C1½ϕ − ϕ0� ≫ 1. We also observe
that for the consistency relation r ¼ rðnsÞ, we get r ¼
48τα=½ð3βÞ2=3N2� ∝ ð1 − nsÞ2 [see Eq. (38)].
For the case in which α=ðβNÞ ≫ 1 or α0 ≫ N, we find

from Eq. (41) that the relationN ¼ NðϕÞ coincides with the
case β ¼ 0 i.e., Eq. (39) and then the effective potential
VðϕÞ changes linearly with the scalar field according to
Eq. (40) in which VðϕÞ ∝ ϕ. This effective potential agrees
with the potential given by Eq. (46) assuming that the
argument β1=3C1ðϕ − ϕ0Þ=

ffiffiffi
3

p
< 1.

V. HIGH ENERGY: RECONSTRUCTION
FROM THE ATTRACTOR rðNÞ

In this section we consider the hight energy limit, in
order to reconstruct the effective potential VðϕÞ, but from a
different point of view. In order to reconstruct the scalar
potential, we consider as an attractor the tensor-to-scalar
ratio in terms of the number of e-foldings N i.e., r ¼ rðNÞ.

In this sense, considering Eq. (32) we obtain that the
potential effective VðNÞ can be written as

V ¼ VðNÞ ¼ −48τ
�Z

rdN

�
−1
: ð48Þ

Now from Eq. (27) we find that the relation between the
number N and the scalar field ϕ is given by

r1=2
dN
dϕ

¼ ð24κÞ1=2: ð49Þ

Here, we have considered Eq. (32).
In this context, we can obtain the scalar spectral index ns

as a function of the number of e-folds N, combining the
expressions given by Eqs. (29) and (48) for a specific
attractor r ¼ rðNÞ. Thus, the scalar spectral index can be
rewritten as

ns − 1 ¼
�
ln

�
r

48τV2

��
;N
: ð50Þ

Here, the potential V is given by Eq. (48).

A. An example of r= rðNÞ
In order to develop the reconstruction of the scalar

potential VðϕÞ in the braneworld inflation, we consider that
the attractor for the tensor-to-scalar ratio as a function of the
number of e-folds rðNÞ is given by

rðNÞ ¼ α1
N2

; ð51Þ

where α1 > 0 corresponds to a constant (dimensionless).
For this attractor the cases in which α1 ¼ 12 was analyzed
in Ref. [27], and the specific value α1 ¼ 8 was obtained
in Ref. [25].
In particular considering N ¼ 60 and r < 0.07, we find

that the value of the constant α1 < 252.
By combining Eqs. (48) and (51) we obtain that the

scalar potential in terms of the number of e-foldings
becomes

VðNÞ ¼ 1

α2=N þ β1
; where α2 ¼

α1
48τ

: ð52Þ

Here the quantity β1 corresponds to a constant of integra-
tion with units of m−4

p .
In order to obtain the relation between the number N and

the scalar field ϕ, we consider Eq. (49) together with the
attractor given by Eq. (51) obtaining

N ¼ exp

" ffiffiffiffiffiffiffiffi
24κ

α1

s
ðϕ − ϕ0Þ

#
; ð53Þ

FIG. 2. Evolution of the three terms on the right given by
Eq. (42) versus the dimensionless quantity α

βN ¼ α0
N. Here, the

dotted, dashed, and solid lines denote the first, second, and third
terms of Eq. (42), respectively.
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where ϕ0 denotes a new constant of integration. Thus, the
reconstruction of the scalar potential in terms of the scalar
field can be written as

VðϕÞ ¼
 
α2 exp

"
−

ffiffiffiffiffiffiffiffi
24κ

α1

s
ðϕ − ϕ0Þ

#
þ β1

!−1

: ð54Þ

In particular assuming that β1 > 0 and α2=β1 ≫ N, the
effective potential has the behavior of an exponential

potential i.e., VðϕÞ ∝ eð
ffiffiffiffiffiffiffiffiffiffi
24κ=α1

p
Þϕ (recall the we have

considered that V 0 > 0). In the inverse case in which
N ≫ α2=β1, the scalar potential corresponds to a constant
potential VðϕÞ ¼ const.
In the context of the cosmological perturbations, we find

in the high energy limit the power spectrum becomes

PR ≃
1

12π2

�
κV2

2τ

�
3 1

V 02

¼ κ2

48π2τ2

�
V4

V;N

�
¼ κ2

48π2τ2
N2

α2

�
α2
N

þ β1

�
−2
: ð55Þ

Here we have used Eqs. (11) and (52), respectively. Thus,
we can write the constant β1 in terms of the scalar spectrum
PR, the number of e-folds N and the constant α2 as

β1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3α2PR

s �
κN
4πτ

�
−
α2
N

¼
ffiffiffiffiffiffiffiffiffiffi
α2
3PR

r �
12κN
πα1

�
−
α2
N

:

ð56Þ

On the other hand, from Eq. (50) we find that the relation
between the scalar index ns and the number of e-foldings is
given by

ns − 1 ¼ 2

N

�
β1

α2=N þ β1
− 2

�
: ð57Þ

Note that in the specific case in which N ≫ α2=β1,
the scalar spectral index ns gives the famous attractor
ns − 1 ¼ −2=N.
Now, from Eq. (57) we can find the constant β1 in terms

of ns, N, and α2 as

β1 ¼
½Nðns − 1Þ þ 4�
N½ð1 − nsÞN − 2� α2: ð58Þ

Note that for the values ns ¼ 0.964 and N ¼ 60, we
have that the ratio α2=β1 ∼ 5. This suggests that the limit
α2=β ≫ N is not satisfied for large N, then the exponential
potential VðϕÞ ∝ eϕ does not work in the braneworld. This
analysis for the exponential potential in the framework of a
brane coincides with that obtained in Ref. [60]. Thus, the
reconstruction of the effective potential VðϕÞ is given by
Eq. (54) for large N and an appropriate limit corresponds to

N ≫ α2=β1, where the behavior of the scalar potential
becomes constant.
In this form, combining Eqs. (56) and (58) we find that

the tension τ as function of the observables ns and PR
together with the number of e-foldings N and α1 becomes

τ ¼
�

PRπ
2α31

4 × 123κ2N4

��½Nðns − 1Þ þ 4�
½ð1 − nsÞN − 2� þ 1

�
2

: ð59Þ

Here we have used that α2 ¼ α1=ð48τÞ.
In particular assuming that the spectral index ns ¼

0.964, the spectrum PR ≃ 2.2 × 10−9, and N ¼ 60, we
obtain that the constraint on the brane tension τ is
given by

τ ≃ 6 × 10−20α31m
4
p: ð60Þ

Note that Eq. (60) gives a relation between the brane
tension and the parameter α1. Now, by assuming that
α1 < 252 in order to obtain r < 0.07 at N ¼ 60, we find
that the upper bound for the brane tension becomes

τ < 9.6 × 10−13m4
p ≃ 10−12m4

p:

On the other hand, from Eq. (57) we find that the relation
between the scalar index and the tensor-to-scalar ratio can
be written as

ns − 1 ¼ −
2r1=2

α1=21

�
2α2 þ β1

ffiffiffiffiffiffiffiffiffiffi
α1=r

p
α2 þ β1

ffiffiffiffiffiffiffiffiffiffi
α1=r

p �
: ð61Þ

Here we have used the attractor given by Eq. (51).

FIG. 3. As before, we show the tensor-to-scalar ratio r as a
function of the scalar spectral index ns from Planck 2018 results
[7] for three different values of the brane tension τ but assuming
the attractor rðNÞ ∝ N−2 as the starting point. Solid, dotted,
and dashed lines correspond to the values of brane tension
τ=m4

p ¼ 10−11; 10−12, and 10−13, respectively.
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In Fig. 3 we show the tensor-to-scalar ratio versus the
scalar spectral index for three different values of the brane
tension considering the attractor rðNÞ ¼ α1N−2. Here we
have used Eq. (61) and the solid, dotted, and dashed lines
correspond to the values of brane tension τ=m4

p ¼
10−11; 10−12, and 10−13, respectively. From this plot we
check that the upper limit for the brane tension given by
τ < 10−12m4

p is well corroborated from Planck data.

VI. CONCLUSIONS

In this article we have analyzed the reconstruction of
the background in the context of braneworld inflation.
Considering a general formalism of reconstruction, we
have obtained an expression for the effective potential
under the slow-roll approximation. In order to obtain
analytical solutions in the reconstruction on the brane,
we have considered the high energy limit in which the
energy density ρ ≃ V ≫ τ. In this analysis for the
reconstruction of the background, we have considered
the parametrization of the scalar spectral index or the
tensor-to-scalar ratio as a function of the number of e-
foldings N. In this general description we have found from
the cosmological parameter nsðNÞ or the parameter rðNÞ
integrable solutions for the effective potential depending on
the cosmological attractor nsðNÞ or rðNÞ.
For the reconstruction from the attractor associated with

scalar spectral index nsðNÞ, we have assumed the famous
attractor ns ¼ 1–2=N as an example. From this attractor,
we have obtained that the consistency relation r ¼ rðnsÞ is
given by Eq. (38), and from the power spectrum we have
found that the integration constant α depends on the brane
tensor; see Eq. (36). On the other hand, depending on the
value of the second constant of integration β, we have
found different results for the reconstruction of the
effective potential VðϕÞ. In particular for the specific case
in which the constant β ¼ 0, we have obtained that the
reconstruction of the effective potential corresponds to a
potential VðϕÞ ∝ ϕ. Also, assuming that the observational
constraint on the tensor-to-scalar ratio r < 0.07, we have
found an upper limit for the brane tension given by
τ < 10−13m4

p, wherewith the brane model is well supported
by the Planck data; see top panel of Fig. 1. In this same
context, for the case in which the constant of integration
β ≠ 0, we have found a transcendental equation for the
number of e-folds as a function of the scalar field N ¼
NðϕÞ and the reconstruction does not work. However, as a
first approximation we have analyzed the dominant terms
of the transcendental equation in order to give an approach
to the reconstruction of the effective potential; see Fig. 2.
Also, we have considered the extreme limits α0=N ≪ 1 and
α0=N ≫ 1, in order to find analytical expressions for the
potential VðϕÞ. In this approach, we have obtained that
in the limit in which α0=N ≫ 1, the effective potential
coincides with the case in which the constant of integration

β ¼ 0, where the effective potential changes linearly with
the scalar field.
On the other hand, we have explored the possibility of

the reconstruction in the framework of braneworld infla-
tion, considering as an attractor the tensor-to-scalar ratio in
terms of the number of e-foldings i.e., r ¼ rðNÞ. Here we
have found general relation in order to build the effective
potential. As a specific example, we have considered the
attractor rðNÞ ∝ N−2. Here, we have obtained that the
reconstruction of the effective potential is given by
Eq. (54). In particular, considering the limit in which
α2=β1 ≫ N, we have obtained that the effective potential
corresponds to an exponential potential i.e., VðϕÞ ∝ eϕ;
however, this limit does not work. In the inverse limit, we
have found that the effective potential VðϕÞ ¼ const. Also,
utilizing the observables as the scalar spectral index and the
power spectrum together with the number of e-folds, we
have found a relation between the brane tension and the
associated parameter α1 to the attractor rðNÞ. Thus, by
considering that α1 < 252, in order to obtain r < 0.07 at
N ¼ 60, we have found an upper bound on the brane
tension given by τ < 10−12m4

p and this constraint is well
corroborated with Planck data; see Fig. 3.
We have also found that in the framework of braneworld

inflation, the incorporation of the additional term in
Friedmann’s equation affects substantially the reconstruction
of the effective potential VðϕÞ, considering the simplest
attractors, such as nsðNÞ − 1 ∝ N−1 or rðNÞ ∝ N−2. In this
respect, we have shown that in order to obtain analytical
solutions for the reconstruction of VðϕÞ, the attractor rðNÞ is
an adequate methodology to be considered.
We conclude with some comments concerning the way

to distinguish the reconstruction in the braneworld and GR
inflationary models from the methodology used. For the
famous attractor ns − 1 ¼ −2=N, we have found that the
reconstruction from nsðNÞ in braneworld inflation does
not work unlike in GR. Here, we have shown that for a
specific case in which the integration constant is zero, the
reconstruction from nsðNÞ works. On the other hand, by
assuming the reconstruction of braneworld inflation from
the attractor rðNÞ, we have been able to rebuild our model
as it occurs in the framework of GR. This suggests that the
version of reconstruction from rðNÞ is a suitable ansatz to
be used for the reconstruction of braneworld inflation.
Finally, in this paper we have not addressed the

reconstruction of the braneworld model as a fluid, consid-
ering an ansatz on the effective EoS as a function of the
number of e-folds. We hope to return to this methodology
in the near future.
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