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We numerically study string production by evolving classical Abelian Higgs gauge field wave packets.
Initial conditions are constructed for the propagation of a single wave packet and for the collision of two
wave packets. We identify regions of parameter space that lead to prompt production of strings from a
single wave packet. The collision of two subcritical wave packets can also lead to the production of strings
in certain regions of parameter space.
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I. INTRODUCTION

Topological defects such as kinks, strings, and magnetic
monopoles are classical solutions in a wide range of field
theories. In quantum theory, topological defects can be
viewed as a bound state of a large number of quanta. The
interpretation of solitons as particles is most explicitly
known in the sine-Gordon model. In that case, the operators
that create and destroy solitons (which are fermions) can be
written in terms of particle quanta that are bosons. The
question of interest in this paper is if it is possible to
assemble particles to make strings. And if so, can we say
something about the initial conditions necessary to produce
strings?
The transition from particles to solitons is difficult to

treat because particles are described by quantum field
theory whereas solitons are described by classical field
theory. However, from a practical standpoint, we often
produce high occupation number states of quantum par-
ticles that behave quasiclassically. For example, by sending
currents into a light bulb we produce light that can be
described as classical radiation using Maxwell’s equations.
Thus, it is relevant to consider the production of solitons in
the scattering of classical waves or wave packets. We will
restrict our attention to this situation and ask what classical
initial conditions lead to the production of solitons in the
final stage.
These questions were addressed in Ref. [1] for an SO(3)

field theory, where incoming wave packets led to the
production of magnetic monopoles. While the possible
production of magnetic monopoles is exciting, it is in the
realm of speculative physics because we do not know if

grand unified theories are correct. On the other hand,
strings are closer to reality since we do have supercon-
ductors in which (gauge) strings exist. In this paper we
focus on the production of gauge U(1) strings, where the
class of initial conditions we use are motivated by the initial
conditions of Ref. [1].
There are several aspects of the string creation problem

that differ from the monopole creation problem. In the
latter, once monopole-antimonopole pairs are created with
enough energy, they fly apart and survive indefinitely. On
the other hand, only closed loops of string can be created.
These oscillate, radiate, collapse, and survive only for a
finite amount of time. If some of the loops are produced
with large angular momentum, they live for longer but
eventually decay. A second difference is that the properties
of the string network that is produced change with time
because the strings interact with each other and intercom-
mute to form smaller loops.
We introduce the field theory and string solution in

Sec. II followed by our choice of initial conditions in
Sec. III. The computational methods used in our analysis
are described in Sec. IV and then we present our results in
Sec. V. We conclude in Sec. VI.

II. ABELIAN HIGGS MODEL AND STRINGS

We consider the Abelian Higgs model given by the
Lagrangian,

L ¼ −
1

4
FμνFμν þ 1

2
jDμϕj2 −

λ

4
ðjϕj2 − η2Þ2 ð1Þ

where ϕ ¼ ϕ1 þ iϕ2 is a complex scalar field, Dμ ¼
∂μ þ ieAμ, Aμ is the gauge field with field strength tensor
Fμν ¼ ∂μAν − ∂νAμ, and λ and e are coupling constants.
The energy density in the fields is
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E ¼ 1

2
jD0ϕj2 þ

1

2
jDiϕj2 þ

1

2
ðE2 þ B2Þ þ λ

4
ðjϕj2 − η2Þ2

ð2Þ

where Ei ¼ F0i is the electric field and Bi ¼ ϵijkFjk=2 is
the magnetic field.
Topological string solutions in the Abelian Higgs model

are well known. The solution for a straight string along the
z axis is

ϕ ¼ ηfðrÞeiθ; Ai ¼ vðrÞϵij
xj

r2
ði; j ¼ 1; 2Þ ð3Þ

where we work in cylindrical coordinates r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

,
θ ¼ tan−1ðy=xÞ, and fðrÞ and vðrÞ are profile functions that
vanish at the origin and go to 1 asymptotically. The energy
per unit length (also the tension) of the string is given by

μ ¼ πη2FðβÞ ð4Þ
where β≡ 2λ=e2. The function FðβÞ is known numeri-
cally and is a smooth, slowly varying function. We also
have Fð1Þ ¼ 1 in the so-called Bogolmol'nyi-Prasad-
Sommerfield limit when the scalar mass in the model,
mS ¼

ffiffiffiffiffi

2λ
p

η equals the vector mass,mV ¼ eη. For β not too
large, the thickness of the scalar fields in the string is ∼m−1

S
and of the vector fields is ∼m−1

V .
The string is characterized by a topological winding

number that is defined by

n ¼ −i
2πη2

I

dxiϕ�∂iϕ ¼ 1

2π

I

dθ
dl

dl ð5Þ

where θ is the phase of the scalar field at a given point
on the contour and l denotes the parameter along the
integration curve.

III. INITIAL CONDITIONS

We base the initial conditions for our simulations on
those used for monopole-antimonopole production [1]. We
adopt the temporal gauge for all our simulations, that is,
A0 ¼ 0, and construct circularly polarized gauge wave
packet configurations (not solutions) that propagate along
the �z axis. Consider the ansatz below for a wave packet
propagating in the −z direction,

Ax ¼ ∂yf1ðωf2 − ∂zf2Þ cosðωðtþ z − z0ÞÞ ð6Þ

Ay ¼ ∂xf1ðωf2 þ ∂zf2Þ sinðωðtþ z − z0ÞÞ ð7Þ

Az ¼ ∂x∂yf1f2½cosðωðtþ z − z0ÞÞ − sinðωðtþ z − z0ÞÞ�
ð8Þ

where f1 ¼ f1ðx; yÞ, f2 ¼ f2ðtþ z − z0Þ will be specified
below, and z0 determines the initial (t ¼ 0) location of the

wave packet along the z axis. Now the initial conditions for
the gauge fields and their time derivatives are

Aiðt ¼ 0;xÞ ¼ Aiðt ¼ 0;xÞ; ð9Þ

∂tAiðt ¼ 0;xÞ ¼ ½∂tAiðt;xÞ�t¼0: ð10Þ

This form for the gauge fields satisfies ∇ · A ¼ 0 which
will be useful later when we discuss Gauss constraints.
We can also construct a wave packet traveling in the þz

direction in a similar manner. To do this, we write the
formulas in terms of f3ðt − ðzþ z0ÞÞ:

A0
x ¼ ∂yf1ð−ω0f3 − ∂zf3Þ cosðω0ðt − z − z0Þ ð11Þ

A0
y ¼ −∂xf1ðω0f3 − ∂zf3Þ sinðω0ðt − z − z0ÞÞ ð12Þ

A0
z ¼ ∂x∂yf1f3ðcosðω0ðt − z − z0ÞÞ − sinðω0ðt − z − z0ÞÞ:

ð13Þ

And these can be used to construct initial conditions for a
wave packet that propagates in the þz direction as above.
We choose profile functions in a manner that localizes

the gauge wave packet in all directions;

f1ðx; yÞ ¼ a exp

�

−
x2 þ y2

2w2

�

ð14Þ

f2ðtþ z − z0Þ ¼ exp

�

−
ðtþ z − z0Þ2

2w2

�

ð15Þ

f3ðt − z − z0ÞÞ ¼ exp

�

−
ðt − z − z0Þ2

2w2

�

ð16Þ

where a is the amplitude and w is the width of the wave
packet.
The initial conditions for the scalar field are “trivial,”

ϕðt ¼ 0;xÞ ¼ η; ½∂tϕðt;xÞ�t¼0 ¼ 0: ð17Þ

The free parameters in the initial conditions are z0, a, w,
ω, and ω0. For our simulations, we will rescale these
parameters as follows:

z0 ¼
z̄0
η
; a ¼ ā

η
; w ¼ w̄

η
;

ω ¼ ω̄η; ω0 ¼ ω̄0η: ð18Þ

The dimensionless parameters z̄0, ā, w̄, ω̄, and ω̄0 above
are varied in our code. In addition, the Abelian Higgs
model has the parameters e, λ, and η. However, by field
and coordinate rescalings, there is only one model param-
eter given by the ratio of scalar and vector masses,
β ¼ m2

S=m
2
V ¼ 2λ=e2.
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IV. COMPUTATIONAL TECHNIQUES

Following the numerical relativity based approach
developed in [1], we introduce a new dynamical variable
Γ ¼ ∂iAi. Then the field variables are ϕ, Ai, and Γ,
altogether 6 functions. The equations of motion for these
variables are

∂2
tϕa ¼ ∇2ϕa − e2AiAiϕa − 2eϵab∂iϕbAi − eϵabϕbΓ

− λðϕbϕb − η2Þϕa ð19Þ

∂tF0i ¼ ∇2Ai − ∂iΓþ eðϵabϕa∂iϕb þ eAiϕaϕaÞ ð20Þ

∂tΓ ¼ ∂iF0i − g2p½∂iF0i þ eϵabϕa∂tϕb� ð21Þ

where a ¼ 1, 2, ϵab is the Levi-Civita tensor with ϵ12 ¼ 1,
F0i ¼ ∂tAi in the temporal gauge, and g2p is a new
parameter introduced for numerical stability. The idea is
that the square bracket in Eq. (21) vanishes in the
continuum because of the Gauss constraints ∇ · E ¼ ρ
where ρ is the charge density. However, the square bracket
may not vanish upon discretization. By writing the equa-
tions in the above form with the auxiliary function Γ, we
obtain improved numerical stability as is also seen in
numerical relativity [2]. The value of the parameter g2p is
chosen by numerical experimentation; we have set g2p ¼
0.75 in our simulations. The initial conditions for the
auxiliary function Γ follow from the choice of initial
conditions for the gauge field,

Γðt ¼ 0;xÞ ¼ 0: ð22Þ

For our analysis, we discretized these equations on a
2563 lattice with lattice spacing Δx ¼ 0.05 and time step
size Δt ¼ Δx=4. The difference equations were solved
using the explicit Crank-Nicholson method with two
iterations. To reduce computation times, we parallelized
our numerical code. As a check of our evolution code, we
find that the total energy inside the box is conserved to
within 1% during the entire evolution period.
In addition to the evolution of equations, we developed a

tracking code which detects strings and calculates the
number of loops that are present in the simulation domain
at any given time. The program calculates the phase
winding as defined in Eq. (5) on every plaquette of the
lattice. A nonzero winding on a plaquette implies that a
string passes through the plaquette and enters/exits the
corresponding cells. The program then connects the strings
and records the properties of the loops.
The string tracking algorithm is the same as used in

earlier work [3,4] but with one subtlety. In calculating the
winding as in Eq. (5), we have to find the discretized value
of dθ along the links of the lattice. Generally one uses the
“geodesic rule” and the phase difference between lattice
sites i and iþ 1 is

dθ → Δθ≡ θiþ1 − θi þ 2πk ð23Þ

where k ¼ 0,�1 is chosen to minimize jΔθj. However, this
rule ignores the case when jΔθj ¼ π. The justification in
earlier works has been that this possibility is of zero
measure. In our case, however, this situation arises quite
frequently. The reason can be seen from the equations of
motion and the initial conditions. We start out with ϕ1 ¼ η
and ϕ2 ¼ 0, i.e., θ ¼ 0 throughout the lattice. The equa-
tions of motion are such that they tend to preserve ϕ2 ¼ 0,
and all the nontrivial dynamics is in the ϕ1 variable, at least
at early times. Now ϕ1 can become negative. When ϕ1

differs in sign at neighboring lattice sites, this gives a phase
difference of exactly �π and the geodesic rule is ambigu-
ous. In evaluating the winding number, we choose þπ or
−π with equal probability.

V. RESULTS

As we have discussed above, the problem contains 1
model parameter, namely, β, and 5 initial condition
parameters. We will fix some of these parameters and scan
over a range of a few parameters. We set

z̄0 ¼ 1.8; w̄ ¼ 0.6; ω̄0 ¼ ω̄: ð24Þ

We have explored

β∈ ½0.08;8.0�; ā∈ ½0.6;7.0�; ω̄∈ ½0.2;8.0�: ð25Þ

We did not see any qualitative changes as we varied β
(see below) and so for most of our runs we set β ¼ 1,
equivalently e ¼ 0.5, λ ¼ 0.125. We also chose η ¼ 1 and
this sets the length scale in the simulation.
From our initial runs, we found that energy is condensed

into strings even from a single wave packet, i.e., without
scattering two gauge wave packets. We will call this
“prompt string production” and it is reminiscent of the
discovery in [5] that strings may be formed due to purely
gauge field fluctuations during a phase transition. In the
next subsection, we will explore prompt string production
and find that there are regions of parameter space where
prompt production does not occur. We will then move on to
explore this region of parameter space and find a subregion
where strings are produced when wave packets collide.

A. Prompt string production

For the single pulse case, after fixing the parameters of the
theory, we managed to analytically find expressions for the
total energy in the simulation domain for the wave packet
profiles shown in the previous section. It is as follows:

ESingle ¼
ā2π

3
2ηð9þ 10w̄2ω̄2 þ 4w̄4ω̄4 þ 2e2ðw̄2 þ w̄4ω̄2ÞÞ

8w̄3
:

ð26Þ
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With this expression, we can trade one of the parameters for
the total energy.
In Fig. 1 we show the prompt production of strings at

various times during the evolution. In the first frame, there
is energy density of the wave packet but no strings. Some
time steps later, the scalar field has adjusted to the gauge
wave packet and strings, as detected by topological wind-
ing, are produced. As the system evolves further, the dense
network of strings chops itself up and decays.
We have examined prompt production for several

different values of the model parameter λ (equivalently β
since we fix e ¼ 0.5). Figure 2 shows how the length in
strings—evaluated by counting the plaquettes that contain
nontrivial topological winding—changes with time. The
figure shows that the outcome is not very sensitive to the
value of λ and hence we set λ ¼ 0.125 (β ¼ 1) in the runs
described below.

In contrast, as seen in Fig. 3, the prompt production of
strings depends sensitively on the parameter ω̄. The general
trend is that less length is produced for larger ω̄ but the
strings that are produced survive for a longer time. This can
happen if larger ω̄ leads to larger loops or to loops with
higher angular momentum.
In Fig. 4 we plot the energy density integrated over x̄ and

ȳ coordinates, as a function of z̄. Prompt string production
occurs at the initial location of the wave packet (z̄0 ¼ 1.8 or
36 lattice spacings away from the center of the lattice).
Then, the string cluster moves towards the left and also
decays.
We have calculated the length of strings at any given

time by counting the number of plaquettes with nontrivial
winding. We can also estimate the energy in the string
network by adding up the field energies in all the cells
within m−1

S or m−1
V (whichever is larger) of the string

FIG. 1. Total energy density (boxes on the left) and winding (boxes on the right) at different time steps for the case of one pulse for
ā ¼ 6.215, ω̄ ¼ 2.0, λ ¼ 0.125, and ESingle ¼ 4000. The 1163 boxes shown here are smaller than the full lattice (2563).
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network. However, the plot in Fig. 5 of the energy versus
time shows reasonable correspondence with the length
versus time plot in Fig. 3 for ω̄ ¼ 2.0, indicating that the
strings do not have significant kinetic energy at formation.
As expected, greater initial energy produces more

strings. However, our analysis indicates some subtleties
in the process of string production. From Eq. (26), it can be
seen that, for fixed energy, the amplitude becomes smaller
as we increase the frequency and vice-versa. (The wave
packet width w̄ is fixed in all our runs.) After experimenting
with different values of amplitude and frequency at fixed
energy, we noticed that there is a minimum/critical ampli-
tude below which we do not produce any strings (as seen in
Fig. 6). The parameter space under the critical curve, for
which strings are not produced, gets smaller as the energy
increases. In the opposite limit of small ω̄ (large amplitude),
we see that the total length of strings is far greater (also seen
in Fig. 3). The physical origin of this behavior is not clear.

One expectation is that more strings are produced if there is
higher energy density (for the same total energy). However,
upon plotting the maximum energy density in our simu-
lation box over the duration of the run with respect to

FIG. 2. Total length of strings (in units of number of lattice
points) as a function of time(-steps) for λ ¼ 0.01 (blue), λ ¼
0.125 (orange), λ ¼ 0.50 (green), and λ ¼ 1.0 (red). All the other
kinematic parameters are kept fixed with ā ¼ 6.215 and ω̄ ¼ 2.0.

FIG. 3. Total length of strings (in units of number of lattice
points) as a function of time(-steps) for ω̄ ¼ 0.1 (blue), ω̄ ¼ 2.0
(orange), ω̄ ¼ 4.0 (green), ω̄ ¼ 6.0 (red), ω̄ ¼ 8.0 (no strings),
and λ ¼ 0.125. Total energy for all the runs is kept fixed at,
ESingle ¼ 4000, by adjusting ā suitably according to Eq. (26).

FIG. 4. Energy in the strings in the xy planes as a function of z
at time steps t ¼ 0 (no strings), t ¼ 50 (orange, right-most curve),
t ¼ 100 (green), t ¼ 150 (red), t ¼ 200 (blue), and t ¼ 250
(brown, left-most curve), during the simulation for ā ¼ 6.215,
ω̄ ¼ 2.0, λ ¼ 0.125, and ESingle ¼ 4000. Following prompt string
production, the string network moves to the left and decays.

FIG. 5. Energy in strings as a fraction of total energy
versus time(-steps) for ā ¼ 6.215, ω̄ ¼ 2.0, λ ¼ 0.125, and
ESingle ¼ 4000.

FIG. 6. Critical amplitude ā as we change total input energy,
ESingle, for the single pulse case with λ ¼ 0.125. Strings are only
produced above the curve.
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frequency (for fixed total energy equal to 4000), we find
noisy behavior with an overall increasing trend (see Fig. 7).
This is counterintuitive, since no strings are produced
above the critical value of ω̄ ¼ 7.5 (corresponding to the
critical amplitude ā ¼ 0.817 as seen in Fig. 6). This
indicates that energy density alone may not determine
string production and is reminiscent of the chaotic behavior
seen in kink production in 1þ 1 dimensions [6,7].

B. Wave packet collisions

We now consider the case when two wave packets
collide. The parameters are chosen so that there is no
prompt string production. However, strings are produced
when the wave packets collide. So now we have two wave
packets in the initial conditions that are headed towards a
collision. The initial energy is

6 8 10 12 14

1600

1800

2000

2200

2400

Maximum Energy Density

FIG. 7. Maximum energy density as a function of frequency ω̄
in the initial wave packets for λ ¼ 0.125 and total energy of 4000
in the box. The critical frequency above which no strings are
produced here is 7.5 (corresponding to ā ¼ 0.817).

FIG. 8. Total energy density (boxes on the left) and winding (boxes on the right) at different time steps for the case of two collinear
pulses for ā ¼ 0.578, ω̄ ¼ 9.0, λ ¼ 0.125, and EDouble ≈ 8000. The strings are first produced at time step 133 in our simulation, and
therefore we have not shown plots for intermediate time steps. The 1163 boxes shown here are smaller than the full lattice (2563).
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EDouble ¼ 2ESingle þ
π3=2ā2η
4w̄7

e−z̄
2
0
=w̄2 ½−18w̄2z̄20 þ 4z̄40

þ 2w̄8ω̄2ðe2 þ 2ω̄2Þ þ 2w̄6ðe2 þ 5ω̄2Þ
þ w̄4ð9 − 2e2z̄20 − 8z̄20ω̄

2Þ cosð2z̄0ω̄Þ
− 8w̄2z̄0ωð2w̄2 − z̄20 þ w̄4ω̄2Þ sinð2z̄0ω̄Þ�: ð27Þ

We again use Eq. (26) for fixing kinematic parameters.
For the simulation, we chose ā ¼ 0.578 and ω̄ ¼ 9.0 for the
individual wave packets. With this choice prompt production
of strings does not occur, that is, the parameters lie below the
critical curve for the single pulse case shown in Fig. 6.
Figure 8 shows the evolution of the wave packets and

string formation after collision. Very few short-lived strings
are produced even though the total input energy is much
higher (≈8000) compared to the single pulse run presented
in the previous subsection. The fractional energy in strings
as a function of time is shown in Fig. 9. By scanning over
different amplitudes, ā, for the same total energy, we find
the critical curve for string formation when wave packets
collide. The critical curve is plotted in Fig. 10.

VI. CONCLUSIONS

We have explored the formation of U(1) gauge strings
due to wave packets of gauge fields in two settings: (i) the
prompt formation of strings from gauge fields, and (ii) the
formation of strings when gauge wave packets collide. We
have restricted our attention to a class of wave packets with
certain parameters, and found critical curves in parameter
space that demarcate string formation regions. These
critical curves show that it is easier to produce strings
with higher energy wave packets (see Figs. 6 and 10).
However, we have not found a general pattern beyond this
simple conclusion. The reason may lie in the chaotic
behavior observed in previous studies of kink production
in 1þ 1 dimensions [6,7].
It is also interesting to contrast string production with

magnetic monopole production. Unlike the case of mag-
netic monopoles, the string loops that are formed are short
lived as they collapse and produce radiation. The loops may
live longer if we could find initial conditions that provide
them with greater angular momentum but these too will
not live indefinitely. On the other hand, once a magnetic
monopole and antimonopole pair are produced with suffi-
cient velocity, they will move apart and survive indefinitely.
Furthermore, magnetic monopoles are localized objects and
so the colliding wave packets need not be very extended.
For strings, the wave packets have to extend over a region
that is the size of the string loop that is to be produced, and
only relatively small loops can be produced. In these
respects it appears that magnetic monopoles are easier to
produce than strings.
The flip side is that we know systems that contain gauge

strings while the existence of magnetic monopoles is still
speculative. Gauge strings are known to exist in super-
conductors and, in that setting, our gauge field wave
packets correspond to photon wave packets. This suggests
that by shining light on superconductors we could produce
strings within the superconductor. However, a realistic
superconductor is described by a different set of equations
that take into account the dependence of the model
parameters on the temperature [8]. It will be interesting
to adapt our analysis to study string production in
superconductors.
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FIG. 9. Energy in strings as a fraction of total energy versus
time for ā ¼ 0.578, ω̄ ¼ 9.0, λ ¼ 0.125, and EDouble ≈ 8000.

FIG. 10. Critical amplitude ā as we change total input energy,
EDouble, for the case of colliding wave packets for λ ¼ 0.125.
Strings are only produced above the curve.
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