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Quadratic gravity is a UV completion of general relativity, which also solves the hierarchy problem.
The presence of four derivatives implies via the Ostrogradsky theorem that the classical Hamiltonian is
unbounded from below. Here we solve this issue by showing that the relevant solutions are not unstable but
metastable. When the energies are much below a threshold (that is high enough to describe the whole
cosmology) runaways are avoided. Remarkably, the chaotic inflation theory of initial conditions ensures
that such a bound is satisfied and we work out testable implications for the early Universe. The possible
instability occurring when the bound is violated not only is compatible with cosmology but would also
explain why we live in a homogeneous and isotropic universe.
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I. INTRODUCTION

Let us start with some basic definitions. The action of
quadratic gravity (QG) in the Jordan frame is (modulo total
derivatives)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R2

6f20
−
W2

2f22
−
M̄2

PlR
2

þ Lm

�
; ð1Þ

whereW2 ≡WμνρσWμνρσ ,Wμνρσ is the Weyl tensor and Lm
is the matter piece (a cosmological constant can be
included, but we neglect it here given its tiny value). Lm
includes nonminimal couplings between the scalar fields
ϕa and the Ricci scalar of the form −ξabϕaϕbR=2. The
parameters f20 and f22 are positive to avoid tachyons1 [1,2].
The R2 and W2 terms render gravity renormalizable [1].

However, renormalizability requires the space of states to
be endowed with an indefinite inner product. It was
recently realized that this does not preclude a physical
interpretation as the probabilities involving observable
states can be computed with positive norms [2–4] (see
also Refs. [5–17] for related approaches).
Another remarkable feature of QG is the possibility to

solve the hierarchy problem (why is the Higgs mass much
smaller than M̄Pl?): this requires2 f2 ≲ 10−8 [18–21].
Note that, as will be reviewed in the article, the
Starobinsky inflationary model [22] (which is built in here
thanks to the presence of the R2 term) requires a very small
f0 to match the observed curvature power spectrum; this is
another independent reason to think that a very small value
of f2 is natural.

Still the classical theory may harbor some issues: given
that QG features four time derivatives in the Lagrangian,
the Ostrogradsky theorem [23] establishes that the classical
Hamiltonian is not bounded from below. This manifests
itself through the presence of a ghost with spin 2 and mass
[1,24]

M2 ¼
f2M̄Plffiffiffi

2
p ; ð2Þ

which is due to the W2 term. In the present paper this
problem will be addressed.
The basic idea exploits two key elements: (i) the ghost is

not tachyonic, and (ii) its coupling f2 [21] is very small.
Indeed, as is well known, a nontachyonic decoupled ghost
does not suffer from any instability [3,25]. By introducing
an order-one coupling to normal particles one expects, from
effective field theory arguments, that the theory remains
stable up to energies of orderM2 (below which the ghost is
not excited). But, given that the ghost coupling is tiny to
solve the hierarchy problem, this energy threshold is lifted
to a much higher value. In the rest of the paper we confirm
this expectation.
At the end, we also work out testable predictions for

inflation.

II. GHOST METASTABILITY

A. A four-derivative scalar field example

In order to illustrate our argument in a clear way we start
by presenting it in a four-derivative theory of a real scalar
field ϕ. Indeed the potential issues due to the Ostrogradsky
theorem are present in this simple case too. In Sec. II B we
will then turn to QG.

1In this work the flat metric ημν has the mostly minus signature:
ημν ¼ diagðþ1;−1;−1;−1Þ.

2One could go up to f2 ∼ 10−7 with specific matter contents,
but we quote here the most general bound.
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The Lagrangian is given by

Lϕ ¼ −
1

2
ϕ□ϕ −

c4
2
ϕ□2ϕ − VðϕÞ; ð3Þ

where c4 is a real parameter,□≡ ημν∂μ∂ν and the function
V represents some interaction. At low energy the second
term in Eq. (3) is negligible and one obtains the standard
Lagrangian of a scalar field.
The four-derivative terms in Eq. (3) can be eliminated by

introducing an auxiliary field A: one adds

c4
2

�
□ϕ −

A − ϕ=2
c4

�
2

ð4Þ

(which is zero by using the field equation of A) to Lϕ,
which then becomes

Lϕ¼−
1

2
ϕ□ϕ−

c4
2
ϕ□2ϕþc4

2

�
□ϕ−

A−ϕ=2
c4

�
2

−VðϕÞ

¼−A□ϕþ 1

2c4

�
A−

ϕ

2

�
2

−VðϕÞ: ð5Þ

One can diagonalize the kinetic terms by defining ϕ�≡
ϕ=2� A, that is

A≡ 1

2
ðϕþ − ϕ−Þ ϕ≡ ϕþ þ ϕ−; ð6Þ

to obtain

Lϕ ¼ −
1

2
ϕþ□ϕþ þ 1

2
ϕ−□ϕ− þm2

2
ϕ2
− − Vðϕþ þ ϕ−Þ;

ð7Þ

where m2 ≡ 1=c4. The corresponding field equations are

□ϕþ ¼ −V 0ðϕþ þ ϕ−Þ;
□ϕ− ¼ −m2ϕ2

− þ V 0ðϕþ þ ϕ−Þ: ð8Þ

We observe that the theory includes two two-derivative
scalars, which are decoupled in the noninteracting case
V ¼ 0: a standard one ϕþ, which is massless and a ghost
ϕ− with massm (note that c4 > 0 in order for ϕ− not to be a
tachyon, a condition which we assume here). ϕþ and ϕ− are
analogous to the massless graviton and the ghost in QG,
respectively.
Let us now assume some nontrivial interaction:

VðϕÞ ¼ λϕ4=4, where λ is a positive coupling constant.
Then we see that V tends to stabilize the motion of ϕþ and
destabilize the one of ϕ−. If m2 ≤ 0 the solution ϕþ ¼
ϕ− ¼ 0 would be unstable. However, for m2 > 0 the
situation is much better as long as the values and the

derivatives of the fields are taken below certain thresholds
that we now determine.
Let us denote with φ the typical order of magnitude

of field values. Then ϕ− feels a potential of the form
vðφÞ≡m2φ2=2 − VðφÞ ¼ m2φ2=2 − λφ4=4. This is a
potential with a local minimum at φ ¼ 0 and two maxima
at φ ¼ �m=

ffiffiffi
λ

p
with potential barriers vð�m=

ffiffiffi
λ

p Þ ¼
m4=ð4λÞ≡ E4

d, where we have introduced

Ed ≡ m

ð4λÞ1=4 : ð9Þ

Since Ed gives the height of the barrier, when the typical
energy scale E associated with the field derivatives is much
below Ed the runaways are avoided. Thus the condition on
the field derivatives to ensure that the motion is bounded is

E ≪ Ed ðcondition on field derivativesÞ: ð10Þ

There is a different condition on the field values that can be
computed by equating the two terms (the stable and the
unstable one) in v, that is m2φ2=2 ¼ λφ4=4, which gives φ
equal to

Ef ≡ mffiffiffiffiffiffiffi
λ=2

p ; ð11Þ

which is larger than Ed for small λ. Thus the condition on
the field values to have a bounded motion is

φ ≪ Ef ðcondition on field valuesÞ: ð12Þ

Both Eqs. (10) and (12) have to be satisfied by the
boundary conditions in order for the motion to be bounded
(that is to avoid the Ostrogradsky instabilities). An impor-
tant point is that when λ is small both Ed and Ef become
larger than the ghost mass, m. Because of the presence of a
potential barrier the solution ϕþ ¼ ϕ− ¼ 0 is not unstable,
but metastable. The geometrical meaning of the thresholds
Ed and Ef is illustrated in Fig. 1, which shows a typical
potential with a metastable minimum. This resembles the
Higgs potential in the Standard Model for the current
central value of the top mass.
In Fig. 2 we show a spatially homogeneous but time-

dependent solution for the simple quartic interaction
VðϕÞ ¼ λϕ4=4. Whenever the initial conditions are chosen
to satisfy the bounds in Eqs. (10) and (12) we observe
indeed a bounded motion (the runaways are avoided) like in
the plot.3 Note that the small values of ϕ� on the vertical
axes just reflect the fact that Condition (12) is enforced.

3The existence of an “island of stability” was noted in the
simple one-dimensional toy model obtained from Eq. (3) by
neglecting the spatial derivatives and choosing VðϕÞ ¼ λϕ4=4
[26]. However, Ref. [26] did not identify the thresholds (9)–(11).
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B. The case of quadratic gravity

Having illustrated our argument in a simple theory, let us
now turn to QG. In analogy with what was done in the
previous subsection we start by rewriting the R2 and W2

terms as two extra two-derivative fields.

Let us first perform the field redefinition

gμν →
M̄2

Pl

f
gμν; f ≡ M̄2

Pl þ ξabϕ
aϕb −

2R
3f20

> 0; ð13Þ

where the Ricci scalar above is computed in the Jordan-
frame metric (the one before the redefinition). The trans-
formation (13) gives the Einstein-frame action [2,20,27,28]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
W2

2f22
−
M̄2

Pl

2
Rþ LE

m

�
: ð14Þ

The Einstein-frame matter Lagrangian, LE
m, also contains

an effective scalar ω, which corresponds to the R2 term in
Eq. (1) and is defined in terms of f by

ω ¼
ffiffiffi
6

p
M̄Pl ln ð

ffiffiffi
f

p
=M̄PlÞ: ð15Þ

The part of the Lagrangian that depends only on ω is
given by

Lω
m ¼ ð∂ωÞ2

2
−U; U ¼ 3f20M̄

4
Pl

8
ð1 − e−2ω=

ffiffi
6

p
M̄PlÞ2:

ð16Þ

The complete form of the Einstein-framematter Lagrangian,
which includes the most general matter sector, can be found
inRef. [2] (see alsoRef. [20],where the reheating in this class
of theories has been studied).
It is also possible to make the ghost explicit by consid-

ering an auxiliary field4 γμν:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

2M̄
2
Pl

8
ðγμνγμν − γ2Þ

−
M̄2

Pl

2
Gμνγ

μν −
M̄2

Pl

2
Rþ LE

m

�
; ð17Þ

where Gμν is the Einstein tensor and γ ≡ γμνgμν.
Equation (17) can be proved simply by noting that if we
insert the solution of the γμν equations,

Gμν ¼
M2

2

2
ðγμν − γgμνÞ; ð18Þ

that is

γμν ¼
2

M2
2

�
Rμν −

gμνR

6

�
;

into Eq. (17) we recover Eq. (14) (modulo total deriva-
tives). Expanding around the flat metric ημν gives a mixing
between hμν ≡ gμν − ημν and γμν that can be removed by

FIG. 2. Homogeneous time-dependent solution for VðϕÞ ¼
λϕ4=4 with λ ¼ 10−2. The initial conditions are chosen as
follows: ϕþð0Þ ¼ 10−2Ef, ϕ−ð0Þ ¼ 10−2Ef, _ϕþð0Þ ¼ ð1.5 ×

10−1EdÞ2 and _ϕ−ð0Þ ¼ −ð10−2EdÞ2, where a dot denotes the
derivative with respect to time t. The vertical dashed lines indicate
the period.

FIG. 1. Geometrical meaning of the thresholds Ef and Ed
[defined in Eqs. (11) and (9)] for field values and derivatives,
respectively.

4We extend the analysis of Ref. [29] to a generic matter sector.
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expressing hμν ¼ h̄μν − γμν. The tensors h̄μν and γμν re-
present the graviton and the ghost, respectively.
Equation (17) is useful because it allows us to understand

the mass and interaction terms of the ghost. For example,
it tells us that the ghost interactions vanish as f2 → 0.
This can be seen by inserting Eq. (18) into Eq. (17) and by
noting that the f2 → 0 limit of the result gives back general
relativity (GR).

Let us consider first the term M2
2
M̄2

Pl
8

ðγμνγμν − γ2Þ in
Eq. (17). If one rewrites it in terms of h̄μν and γμν it leads
to mass and interaction terms of the schematic form

M2
2

2

�
ϕ2
2 þ

ϕ3
2

M̄Pl
þ ϕ4

2

M̄2
Pl

þ � � �
�
; ð19Þ

where we have understood Lorentz indices and order-one
factors and denoted the spin-2 fields with ϕ2 (which we
also canonically normalized: ϕ2 → ϕ2=M̄Pl). The mass
term has the same order of magnitude as the interactions
for ϕ2 ∼ M̄Pl, which, therefore, represents the maximal
spin-2 field value to avoid the runaways. This maximal
value gives M2

2ϕ
2
2=2 ¼ M4

2=f
2
2 ≡ E4

2, where

E2 ≡ M2ffiffiffiffiffi
f2

p ¼
ffiffiffiffiffi
f2
2

r
M̄Pl: ð20Þ

For energies

E ≪ E2 ðin the spin-2 sectorÞ ð21Þ

the Ostrogradsky instabilities are avoided. Indeed, if
Eq. (21) is satisfied the mass of the ghost dominates its
interactions and, as is well known, a decoupled ghost does
not suffer from runaways. Condition (21) applies to the
derivatives of the spin-2 fields because, as we have seen
above, the threshold for the spin-2 field values is much
larger (of order M̄Pl). If Condition (21) is satisfied by the
boundary conditions the runaways are avoided. The quan-
tity E2 is analogous to Ed in the simple scalar field theory of
Sec. II A.
The same result holds if one considers the second and

third terms in Eq. (17). The ghost interactions from them
are at most of order f2E2ϕn

2=M̄
n−2
Pl (n ¼ 1; 3; 4;…), where

we have introduced at least a factor of f2 (the ghost
decouples for f2 → 0) and the energy squared E2 appears
because of the two derivatives present there. These inter-
actions for ϕ2 ≲ M̄Pl are smaller than ∼f2E2M̄2

Pl which
gives ∼M2

2M̄
2
Pl ∼ ðM2=

ffiffiffiffiffi
f2

p Þ4 ¼ E4
2 when evaluated at

E ¼ M2=
ffiffiffiffiffi
f2

p ≡ E2.
Finally, let us consider LE

m. The ghost-matter interactions
have size of order

f2E4ϕn
2=M̄

n
Pl ðn ¼ 1; 2; 3;…Þ; ð22Þ

where now one should interpret E as due to either derivative
or mass terms of matter fields or matter field values times
coupling constants; by requiring these interactions to be
less than E4

2 and ϕ2 ≲ M̄Pl one obtains that runaways are
avoided for

E ≪ Em; Em ≡ ffiffiffiffiffi
f2

4
p

M̄Pl; ðin the matter sectorÞ;
ð23Þ

which is larger than E2 for small f2. Indeed, Eq. (21)
regards only the energy E in the spin-2 sector (where the
ghost is). Condition (23), like Eq. (21), should be satisfied
by the boundary conditions. Notice that multiplying Em byffiffiffiffiffi
f24

p
[to obtain the size of the ghost-matter interactions for

the maximal field values; see Eq. (22)] one obtains (as one
should) a scale of order E2. The quantity Em vaguely
corresponds to Ef in the simple scalar field theory of
Sec. II A. There is a difference, however: gravity is sourced
by other fields (the matter sector) while the scalar ϕ of
Sec. II A was assumed to be sourced by itself.5

Therefore, one finds that the ghost of quadratic gravity is
not associated with Ostrogradsky instabilities, but rather
with metastability: there exists an energy barrier [given in
Eqs. (20) and (23)] that prevents the fields from running
away.
Note that the thresholds E2 and Em are both larger than

M2 for a weakly coupled ghost. This leads us to a very
interesting situation: there exists an energy range in which
the predictions of QG deviate from those of GR, but
without activating runaway solutions. We will see some of
these predictions in Sec. IV below. Nevertheless, it is
important to observe that Conditions (21) and (23) apply to
any positive choice of f2. If one takes f2 ∼ 1 both E2 and
Em are at the Planck scale and again the runaways are
avoided for any physical situation that has a chance to be
observable. This effect is due to the fact that M2 increases
when f2 grows, as is clear from Eq. (2). The disadvantage
of the f2 ∼ 1 case is that, unlike the f2 ≪ 1 case, there is
no hope to have a large energy window in which there
are observational consequences of the ghost without
Ostrogradsky instabilities.
For a natural Higgs mass (f2 ≲ 10−8, M2 ≲ 1010 GeV)

E2 and Em can still be as high as 10−4M̄Pl and 10−2M̄Pl,
respectively. It is clear that inflation (and the preceding
epoch) is the only stage of the Universe that can provide us
information about such high scales. For energies much
below M2 (which can be many orders of magnitude above
the TeV scale for a natural Higgs mass and is at the Planck
scale for f2 ∼ 1) the theory reduces to Einstein gravity and,
therefore, all the observations related to low-energy

5One could make the two cases more similar by adding to the
theory of Sec. II A other fields, which mimic the matter sector in
QG. We do not do it here for the sake of simplicity.

ALBERTO SALVIO PHYS. REV. D 99, 103507 (2019)

103507-4



astrophysical systems (involving typical energies much
smaller thanM2) are reproduced just as in Einstein gravity.
Let us then focus on inflation and the preinflationary epoch.
Note that Wμνρσ ¼ 0 on a Friedmann-Robertson-Walker

(FRW) metric because such a metric is conformally flat.
Therefore, only perturbations that violate homogeneity
and/or isotropy could destabilize the Universe. In the
chaotic theory [30] (a key element to understand the
naturalness of inflation) one assumes that the fields took
random values including inhomogeneous and anisotropic
ones before inflation. But we live in one of those patches
where the energy scales of inhomogeneities (1=L) and
anisotropies (A) were small enough [31]:

L ≫ jΦ=U0ðΦÞj1=2; A ≪ H; ð24Þ
where H is the inflationary Hubble rate, Φ is a generic
canonically normalized inflaton field and U is its potential.
The conditions above justify the use of homogeneous and
isotropic solutions to describe the classical part of inflation
(which is regularly done in the literature on inflation). On
the one hand, the experimental bound [32]

H < 2.7 × 10−5M̄Pl ð95%C:L:Þ ð25Þ
implies that the second condition in Eq. (24) ensures both
Eqs. (21) and (23) (at least for the maximal ghost mass
compatible with Higgs naturalness). On the other hand, by
identifying U with the one in Eq. (16) (Starobinsky
inflation6 [22]) the first condition in Eq. (24) becomes
1=L ≪ 10−6M̄Pl, which again agrees with both Eqs. (21)
and (23).
In other words, remarkably, the chaotic theory auto-

matically ensures that the conditions to avoid runaway
solutions are satisfied.

III. EXPLICIT NONLINEAR CALCULATIONS

In this section we solve the nonlinear gravity equations,7

namely

Gμν þ
2

M2
2

Bμν ¼
TE
μν

M̄2
Pl

; ð26Þ

where Bμν ≡ ð∇ρ∇σ þ Rρσ

2
ÞWμρνσ is the Bach tensor and TE

μν

is the energy-momentum tensor in the Einstein frame. We
do so with an ansatz that violates the symmetries of the
FRWmetric to see the nonlinear effect of the ghost. In order
to understand how things work in practice, we consider the
following anisotropic ansatz:8

ds2 ¼ dt2 − aðtÞ2
X3
i¼1

e2αiðtÞdxidxi: ð27Þ

The scale factor a and the αi are generic functions of the
cosmic time, t. As usual H is defined in terms of a by
H ≡ _a=a, where a dot denotes the derivative with respect
to t. This allows us to probe the nonlinear dynamics by
solving ordinary differential equations. Note, however, that
the argument of the previous section also applies to
inhomogeneities. To the best of our knowledge this is
the first article where anisotropic metrics in QG are studied
in the Einstein frame, which allows us to compare theo-
retical predictions with inflationary observations (as we
will do in Sec. IV). In this section we focus on Starobinsky
inflation, a natural option in QG.
Given that

P
i αi can be included in a redefinition of a

we can take

α1 ≡ βþ þ
ffiffiffi
3

p
β−; α2 ≡ βþ −

ffiffiffi
3

p
β−; α3 ¼ −2βþ:

ð28Þ
Therefore, the amount of anisotropy is encoded only in the
functions β� and we can measure it through

A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_β2þ þ _β2−

q
: ð29Þ

By inserting this ansatz into the trace of the gravity
equations one obtains

R ¼ 3p − ρ

M̄2
Pl

;

�
ρ ¼ _ω2

2
þU;p ¼ _ω2

2
− U

�
: ð30Þ

TheWeyl-squared term does not contribute to this equation.
If the anisotropy is zero, the other equations do not receive
contributions either. However, for A ≠ 0 the Weyl-squared
term contributes to some equations and leads to terms with
four derivatives. One can reduce the gravity system to first-
order equations through the definitions

γ� ¼ _β�; δ� ¼ _γ�; ϵ� ¼ _δ�: ð31Þ
The tt component of the gravity equations then is

H2 ¼ ρ

3M̄2
Pl

þ A2 −
1

M2
2

�
RA2

3
þH2A2 þ 14A4

− 4Hðγþδþ þ γ−δ−Þ − 2ðγþϵþ þ γ−ϵ−Þ þ δ2þ þ δ2−

�
:

ð32Þ
Note that, by using Eq. (30), this equation becomes a
second-order algebraic equation for H. As usual we choose
the solution that supports the Universe’s expansion. The ii
components of the gravity equations lead instead to the ϵ�
equations:

6We find similar results with other successful models such as
Higgs inflation [33] or hilltop inflation [34].

7From now on we perform the calculations in the Einstein
frame (14) unless otherwise stated.

8For the study of other anisotropic metrics in QG and
conformal gravity see Refs. [35,36] and [37], respectively.
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_ϵ� ¼ −M2
2ð3Hγ� þ δ�Þ

þ
�
_R
6
þ RH

2
þ 27HA2 þ 18ðγþδþ þ γ−δ−Þ

�
γ�

þ
�
2R
3

− 3H2 þ 12A2

�
δ� − 6Hϵ�; ð33Þ

where we have used the tt component and the trace of the
gravity equations. Finally, we also reduce the inflaton
equation to two first-order differential equations:

_ω ¼ πω; _πω þ 3Hπω ¼ −
dU
dω

: ð34Þ

By using the first of these equations and Eq. (30) one can
express R in terms of ω and πω. Equations (31)–(34) then
form a set of 11 equations in 11 unknowns (β�, γ�, δ�, ϵ�,
H, ω, πω). We find, as we should, that there are no other
independent equations.
In Fig. 3 we show how small initial values for the

anisotropy in the sense of Eqs. (21)–(23) (jγ�ð0Þj ≪ E2,ffiffiffiffiffiffiffiffiffiffiffiffiffiffijδ�ð0Þj
p

≪ E2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵ�ð0Þj3

p
≪ E2 and9 H ≪ E2) do not

create problems: the anisotropy quickly goes to zero and
one recovers the GR behavior; no runaway solutions are
observed in agreement with the general argument of Sec. II.

Note that the smallness of _β� simply reflects the fact that
Condition (21) is enforced because the plot is presented in
units of E2; for the chosen value of f2, the quantities _β� in
units of M2 are actually much larger than one at the
beginning. Regarding H, after a short (preinflationary)
time, it quickly reaches a plateau (inflation) and then
decreases again when inflation ends. The inflaton initial
conditions in Fig. 3 were chosen to obtain N ≈ 62. We
scanned the possible values of initial conditions, not just
the one used in Fig. 3, and always found qualitatively the
same result.
For the considered anisotropies we find that when

Eqs. (21)–(23) are not satisfied the Universe collapses as
shown in10 Fig. 4. In that plot we have set all the initial
conditions of the anisotropy functions [other than γ�ð0Þ] to
zero. By turning on the other initial conditions one finds
similar behaviors: when the energy scales associated with
them are much smaller than E2 the anisotropy goes to zero
as time passes by and the Universe inflates; when they are
comparable or larger than E2 the collapse occurs.
The interpretation is that the regions of space with large

initial anisotropies have eventually zero size as compared to
those satisfying Eqs. (21)–(23), which instead lead to
inflation. What we have shown provides an explicit
mechanism to implement the original chaotic inflation idea

FIG. 3. The anisotropy vs the cosmic time. We set f2 ¼ 10−8,
f0 ≈ 1.6 × 10−5, ϕð0Þ ≈ 5.5M̄Pl and

ffiffiffiffiffiffiffiffiffiffiffiffi
πϕð0Þ

p
≈ 7.1 × 10−6M̄Pl.

In the inset we show the corresponding Hubble rate.

FIG. 4. The scale factor in the Jordan frame by varying the
initial condition for γþ. We set γ−ð0Þ ¼ 10−1E2 and all the other
initial conditions for the anisotropy functions to zero. Further-
more, f2 ¼ 10−8, f0 ≈ 1.6 × 10−5, Rð0Þ ≈ 1.3 × 102f20M̄

2
Pl and

Hð0Þ ¼ 1.2E2.

9By using the definitions in Eqs. (20) and (23) one can
equivalently write the last condition H ≪ E2 as

ffiffiffiffiffiffiffiffiffiffiffiffi
M̄PlH

p
≪ Em.

This is because we can also regard M̄PlH as generated (through the
Einstein equations) by the energy density stored in the matter
sector.

10The scale factor in Fig. 4 is the one in the Jordan frame
because we find that the field redefinition in Eq. (13) is ill defined
when collapse occurs [the inequality in Eq. (13) is not satisfied
for some time].
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by Linde [30]. Indeed, it is not clear if in Einstein gravity
the patches that were largely inhomogeneous and aniso-
tropic [where Conditions (24) were violated] are incom-
patible with life: the fact that inflation does not occur in that
case is not sufficient to reach this conclusion. On the other
hand, the classical runaways that are triggered when those
conditions are violated in the presence of the W2 term for
a natural Higgs mass (f2 ∼ 10−8) certainly render the
Universe inhospitable. Indeed, it is very interesting to note
that the maximal Hubble rate allowed by Eq. (25) is,
remarkably, just slightly smaller than the value of E2 for the
natural choice, f2 ∼ 10−8. Therefore, the Weyl-squared
term combined with Higgs naturalness provides an explicit
mechanism to implement the original chaotic inflation idea.

IV. LINEAR ANALYSIS AND OBSERVATIONAL
PREDICTIONS

A general check of ghost metastability can be performed
by studying the complete set of linear perturbations around
the de Sitter (dS) spacetime (which is the relevant one
according to the results of Sec. II): one should find no
runaway solutions there for arbitrary energies. The linear
dS modes were found in Refs. [38–48]. Here we show that
they are all bounded (and thus they do not suffer from
runaways) for any wave number q.
First, one should recall that for M2 > H one recovers the

Einstein modes, which are bounded. This expected decou-
plingwas rigorously shown in Ref. [47]. Therefore, we focus
here on the case M2 < H, which, taking into account
Eq. (25), implies that f2 has to bevery small. In the following
we choose to work in the conformal Newtonian gauge.
Let us start with the scalar perturbations. They are similar

to those in GR with one exception: there is one more
isocurvature mode B (the helicity-0 component of the
ghost) [46,47]. Its modes are gB and g�B, where

11 [47]

gBðη; qÞ≡ Hffiffiffiffiffiffi
2q

p
�
3

q2
þ 3iη

q
− η2

�
e−iqη þR terms ð35Þ

and η is the conformal time (η < 0 and η → 0− corresponds
to large t). The terms due to the curvature perturbation R
are not shown since they are the same as in GR and thus are
bounded. Also the first term in Eq. (35) is bounded: for
given initial conditions at a negative value of η the super-
horizon limit η → 0 is finite.
The vector modes are instead given by12

VI ≡ ffiffiffiffiffiffiffiffiffi
−qη

p
I ffiffiffiffiffi

ρ−4
p
2
ffiffi
ρ

p
ð−qηÞ; ð36Þ

where I ¼ fJ; Yg, Jα and Yα are the Bessel functions of
the first and second kind, respectively, and ρ≡H2=M2

2.
We plot them in Fig. 5 to show that they are bounded.
In the tensor sector we have four modes (the two helicity

components of the graviton and the ghost). They are
[38,40,47]

ga ≡ cosðqηÞ þ qη sinðqηÞ; gb ≡ qη cosðqηÞ− sinðqηÞ;
ð37Þ

GI ≡ ð−qηÞ3=2I ffiffiffiffiffi
ρ−4

p
2
ffiffi
ρ

p
ð−qηÞ; ðwhere I ¼ fJ; YgÞ ð38Þ

for the graviton (g) and the ghost (G) respectively. The
graviton tensor modes ga and gb coincide with the modes
one finds in GR. In Fig. 6 we show that the ghost tensor
modes GY and GJ are also bounded (we plot the corre-
sponding graviton tensor modes too for comparison).
In Figs. 5 and 6 we chose ρ ¼ 104, which is a typical

value in QG with a natural Higgs mass. The results do not
change qualitatively as long as H ≫ M2. For ghost masses
above H one instead recovers the modes of GR.
Note that the modes presented in this section would

reduce to a linear analysis of the ansatz in Eq. (27) if one
considers the space-independent limit of the perturbations
and matches the two different definitions of time used here
and in Sec. III.
The linear analysis also provides observational predic-

tions of the theory. There are two differences compared to
GR as shown in Ref. [47]. The first one is a suppression of
the tensor power spectrum such that the tensor-to-scalar

FIG. 5. Vector modes for ρ≡H2=M2
2 ¼ 104.

11In Ref. [46] it was proved that no physical singularity can be
present in any other gauge. This proof was later extended to the
most general matter sector in Ref. [47].

12For the derivation of the vector modes see Ref. [47], where a
previous calculation in Ref. [42] was corrected.
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ratio r is13 r ¼ rE=ð1þ 2H2=M2
2Þ, where rE is the tensor-

to-scalar ratio in GR. In QG a natural Higgs mass
corresponds typically [49] to H ≫ M2 so r is highly
suppressed. For example, for the parameter values and
inflationary model chosen in Fig. 3 rE ≈ 0.003, r ∼ 10−9,
the curvature power spectrum PR ≈ 2.1 × 10−9 and
ns ≈ 0.968. All predictions are in agreement with the most
recent Planck data [32].
The second difference is the presence of B, whose power

spectrum is

PB ¼ 3

2M̄2
Pl

�
H
2π

�
2

: ð39Þ

Given that PB is not suppressed (and in fact it is 3=16 times
the tensor power spectrum in GR) we compute here its
dependence on q, which is required to compare it with the
Planck constraints on isocurvature modes [32]. By defining
the spectral index as nB ≡ 1þ d lnPB

d ln q one finds nB ¼ 1 − 2ϵ,
where ϵ is the first slow-roll parameter (in single-field
inflation ϵ ¼ rE=16). Then the q dependence is

PBðqÞ ¼ PBðq0Þ
�
q0
q

�
2ϵ

: ð40Þ

In Fig. 7 we compare PB with Planck data. As shown in the
plot, models with rE ≈ 0.2 are compatible with the data,
unlike in GR. Moreover, given that the spectral index nB is
close to 1, B fulfills the bounds on the spectral index of
isocurvature modes given in Ref. [32]. The CMB-S4

Collaboration will be able to improve the sensitivity to
isocurvature modes [50] and, therefore, this scenario can be
further tested in the future.

V. CONCLUSIONS

We have shown that the possible classical runaways of
quadratic gravity do not occur if the energies satisfy
Conditions (21) and (23), which regard the boundary
conditions for the spin-2 sector and the matter sector,
respectively. Those conditions are weak enough to accom-
modate the entire history of the Universe. For a natural
Higgs mass with f2 ∼ 10−8, E2 and Em are still so high that
they can be tested only via inflation (and preinflation
dynamics). In that context, those energies represent the
deviations from a homogeneous and isotropic metric (given
that the ghost is inactive in a conformally flat metric).
To illustrate how this argument works we have solved

numerically the nonlinear equations for anisotropic metrics.
We found that the regions where Conditions (21) and (23)
are satisfied quickly become isotropic and inflate; the
others undergo collapse. The possible lethal instabilities
occurring whenever the energy bounds are violated not
only are avoided in our Universe, but would also explain
(for a natural Higgs mass) why we live in a homogeneous
and isotropic universe: life can only emerge from those
patches that are isotropic and homogeneous enough in the
sense of Eqs. (21) and (23).

FIG. 6. Tensor modes for ρ≡H2=M2
2 ¼ 104. FIG. 7. The ghost-isocurvature power spectrum PB computed at

two different scales (q1 ¼ 0.002 and q2 ¼ 0.1 Mpc−1). The most
precise determination of PRðq0Þ (the curvature power spectrum at
the pivot scale q0 ¼ 0.05 Mpc−1) by Planck (2018) is used. The
strongest constraints from Planck at the 1 − 2σ level are also
shown.

13The power spectra are at horizon exit q ¼ aH.
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As a check of the general argument, we have also shown
that the linear perturbations around dS are bounded for any
q. Those linear modes also encode important and testable
predictions of the theory, most notably a gravity-isocurva-
ture mode that satisfies all current bounds and can be tested
with cosmic microwave background observations in the
near future.
It is also appropriate to mention here some advantages of

our approach with respect to an alternative proposed in
Refs. [15,16] where the ghost is projected out from the
spectrum and the classical limit is taken: first our argument
holds for generic metrics while the method of Refs. [15,16]
was developed (so far) only for flat and purely FRWmetrics
(and the general perturbations around FRW are crucial to
make contact with observations); second the classical

runaways, which appear when Conditions (21) and (23)
are violated, give us an explanation of the quasihomogeneity
and isotropy of the preinflationary initial conditions.
Finally, our results render legitimate and motivate the

study of classical solutions in QG, such as black holes and
horizonless spherical solutions (partially explored in
Refs. [51–55] and [56,57]), wormholes (see Ref. [58] for
the conformal gravity case) and gravitational waves.
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