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We consider here some popular fðRÞmodels generally viewed as possible alternatives to the existence of
dark energy in General Relativity. For each of these, we compute the redshift zmax at which the angular
diameter distance dAðzÞ is expected to reach its maximum value. This turning point in dAðzÞ was recently
measured in a model-independent way using compact quasar cores and was found to occur at
zmax ¼ 1.70� 0.20. We compare the predictions of zmax for the fðRÞ models with this observed value
to test their viability at a deeper level than has been attempted thus far, thereby quantifying an important
observational difference between such modified gravity scenarios and standard Lambda Cold Dark Matter
(ΛCDM) cosmology. Our results show that, while the most popular fðRÞ models today are consistent with
this measurement to within 1σ, the turning point zmax will allow us to prioritize these alternative gravity
theories as the measurement precision continues to improve, particularly with regard to how well they
mitigate the tension between the predictions of ΛCDM and the observations. For example, while the
Hu-Sawicki version of fðRÞ increases this tension, the Starobinky model reduces it.
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I. INTRODUCTION

During the last two decades there has been a renewed
interest in the modification of Einstein’s General Relativity
theory, mainly in the field of cosmology, in a bid to obtain a
more fundamental explanation for the accelerated expan-
sion of the Universe during its inflationary and dark energy
epochs. In these modified theories, the repulsive force
driving the accelerated expansion arises as a purely geo-
metric effect [1]. In this way, one tries to evade the
coincidence and cosmological problems of standard
Lambda Cold Dark Matter (ΛCDM) cosmology in
General Relativity (GR) or the origin of some yet-to-
be-observed scalar field in the so-called scalar-tensor
cosmological models [2]. In these modified theories, the
Einstein-Hilbert Lagrangian is altered by replacing the
Ricci scalar R with a nonlinear function, containing other
curvature invariants, such as fðR; RabRab; RabcdRabcd;…Þ.
One of the simplest and most natural extensions of GR in

this class is known as fðRÞ gravity [3], a prominent and
well-studied theory. Other extensions include Gauss-
Bonnet gravity [4,5], Finsler-Randers gravity [6], and
conformal Weyl gravity [7].
Following Starobinsky’s inflationary model [8] of the

early Universe with fðRÞ ¼ Rþ αR2 and the first attempt
[9] to mimic the late time cosmic acceleration with 1=R
gravity—a model that was later ruled out due to its
instabilities [10,11] and violation of the post-Newtonian
tests of GR [12]—the theory of fðRÞ gravity has been
studied extensively, with numerous fðRÞ models being
proposed over the past decade. Some of these are attractive
because they can apparently describe the early phase of
inflation as well as the current accelerated expansion of
the Universe [13]. Many others fail to predict a matter-
dominated era [14,15] in the expansion history of the
Universe, however, and therefore cannot be considered as
viable fðRÞ-gravity models. Thus far, only a few obser-
vationally viable fðRÞmodels also satisfy the Solar System
tests. Some popular examples include the models found in
Refs. [16–19].
In some cases, it was originally claimed that these fðRÞ

models do not contain a cosmological constant Λ. It can
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easily be shown [20], however, that all these cosmologies
do in fact contain Λ and may be represented in a form that
differs from ΛCDM via a so-called deviation parameter b,
such that at as b → 0, fðRÞ → R − 2Λ. These models also
recover ΛCDM at high redshifts or, equivalently, large R.
Using observations of type Ia Supernovae (SNe), baryonic
acoustic oscillations, the cosmic microwave background,
the Hubble parameterHðzÞ, and cosmic chronometers data,
the free parameters in these models have been well con-
strained [21–23], and in some cases [24,25], the fits do not
show any statistically significant difference from ΛCDM.
Among the plethora of cosmological data used to

constrain these models, the angular-size redshift cosmo-
logical test has been used sparingly partly due to the lack of
standard rulers, i.e., sources of which the intrinsic diameter
is known, and the added complication arising from a
possible size evolution with redshift. This test is based
on the notion that, for all known models other than Milne
[26–33], the angular diameter distance dAðzÞ attains a
maximum value at some finite redshift zmax. Among the
various integrated distance (and temporal) measures used in
cosmology, dAðzÞ uniquely has this property of reducing to
zero approaching the big bang. This effect follows [34]
from the fact that the angular diameter distance depends on
the apparent angular size of the emitter. In this paper, we
will be using the intrinsic size θcore of a compact quasar
core, the value of which increases as we go back in time
(z → ∞), when the object was closer to us, so that dAðzÞ ∼
θ−1core becomes smaller. Take the Einstein-de Sitter model
(Ω ¼ 1) as an illustrative example. Its angular diameter
distance dEdSA ðzÞ ¼ 2c=H0ð1þ zÞ−1ð1 − 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Þ attains
its maximum at zmax ¼ 1.25, while for flat ΛCDM with the
Planck parameters [35] Ωm ¼ 1 −ΩΛ ¼ 0.308,

dΛCDMA ðzÞ ¼ c
H0

1

1þ z

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z03Þ þΩΛ

p ð1Þ

reaches a maximum at zmax ¼ 1.596.
The first such angular diameter-redshift tests for cos-

mological models were conducted using kiloparsec-scale
radio sources and galaxies [36,37], but due to the lack of a
reliable and well-defined standard ruler, these tests were not
successful. This was followed by studies of double-lobed
quasars [38] in the redshift range 1 ≤ z ≤ 2.7, which
showed that the apparent angular size for these objects
remained almost unchanged with the angular diameter
distance. Later on, it became apparent that ultracompact
radio sources [39] that have a much smaller angular size
in the milli–arc second range can be used as standard
measuring rods, even more when considering that their
age is insignificant compared to the age of the Universe, so
that they are free from long-term evolutionary effects.
Following the study of compact radio sources with the very
large baseline interferometry in Ref. [39], there were a

number of subsequent investigations involving these
sources that led to some general cosmological constraints.
When using these compact radio sources, one is usually

faced with the challenge of differentiating between sys-
tematic differences and proper cosmological variations.
This arises due to the fact that these sources are often
present in a mixed population of Active Galactic Nuclei
that constitute quasars, BL Lacertae objects, Optically
Violent Variable quasars, etc. This deficiency was recently
rectified in Refs. [29–31], where a subsample of quasar
cores with a tractable amount of scatter and almost free of
evolutionary effects was identified. In their study, Cao et al.
[30] focused their analysis of dAðzÞ on the optimization of
the parameters in ΛCDM. This approach, however, is not
suitable for a broader study and model selection involving
a diverse set of (possibly non-nested) cosmologies, such
as we have in this paper. Principally for this reason, a
subsequent study involving their quasar sample was carried
out recently by Melia [32] and Melia and Yennapureddy
[33], who, instead of preassuming any particular cosmo-
logical models to infer dA and its turning point zmax, used
Gaussian processes (GPs) to analyze these 120 sources
spanning the redshift range 0 ≤ z ≤ 3 in a completely
model-independent way.
Since the goal of this paper is to use zmax as our primary

probe, it will be helpful to better understand the improve-
ments made with this diagnostic in recent years. Cao et al.’s
[29–31] criteria for selecting a suitable subsample of
quasars to measure the angular-diameter distance was a
key step forward that greatly facilitates our work in this
paper. But there are several areas of improvement that make
our analysis even better. First, the use of GPs to reconstruct
the angular-diameter distance as a function of redshift
instead of relying on the parametrization in specific models
cannot be overstated. As noted earlier, only an approach
such as this can ensure that the inferred distance is a true
reflection of the actual observations. In the end, none of the
presumed models may be correct, in which case their
adopted parametrization for dA is overly restrictive. A GP
reconstruction is completely free of such constraints for
models, such as we have in this paper, that are not nested
with ΛCDM. The GP approach to this work was facilitated
by our recent publication [40], in which we introduced a
new area minimization statistic appropriate for the use of
GP reconstruction in model selection. This statistic was not
available to Cao et al. at the timewhen they carried out their
analysis.
Second, while Cao et al. [29–31] carried out their model

optimization using the individual quasars in the sample, in
our analysis, we first binned the 120 selected sources into
20 redshift intervals prior to the GP reconstruction. A quick
inspection of their data and best-fit curves shows that many
sources lie several σ’s away from the theoretical curves.
In other words, the reported errors appear to be too small to
represent the actual scatter in the data. For this reason,
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our approach used binning of the individual sources, with a
population variance based on assumed Gaussian variation
within each bin to more reliably estimate the error asso-
ciated with each datum. Not surprisingly, our errors are
larger than those reported for each individual source
because they are a better reflection of the overall scatter
in the data. So, the GP reconstruction we use for this paper
is based on this binning rather than on the use of individual
sources that, as mentioned, should yield results more in line
with the observed scatter in the data.
Third, and equally important, Cao et al. [29–31] opti-

mized the “standard ruler” lcore and the Hubble parameter
H0 separately, while our approach optimizes just one
unknown that combines these two parameters. This is
another crucial improvement because, to separate lcore
from H0, one must combine the angular-size data with
other kinds of observation. For example, Cao et al. used
HðzÞ data based on cosmic chronometers and baryon
acoustic oscillations (BAOs). Unfortunately, this biases
the results because, as is well known, all but three BAO
measurements are model dependent. They require the
preassumption of a particular ΛCDM model in order to
separate redshift-space distortions from the actual BAO
peak position. Contrary to the claim made by Cao et al.,
their determination of lcore is therefore not model inde-
pendent. As explained in Refs. [32,33], however, one can
use the angular-size data from compact quasar cores to test
cosmologies without optimizing the values of lcore and H0

separately, which entirely avoids the bias introduced with
the adoption of BAO measurements. Without this step,
one would not be able to test other models, such as fðRÞ
cosmologies.
Finally, it is necessary to understand why the turning

point in dAðzÞ, zmax, is a better diagnostic for our models
than the overall angular-diameter distance itself. For zmax,
one does not need to know H0, so its measurement is a
different kind of test than dAðzÞ, which depends on the
Hubble constant. The complication with the latter is thatH0

is model dependent, so, unfortunately, one must identify
both lcore and H0 to use dAðzÞ. The outcome of this
difference is that the added flexibility of adjusting dA by
optimizing H0 is not available for the comparison of zmax,
which makes the latter more robust and a better discrimi-
nator of different cosmological models.
Melia and Yennapureddy [33] determined that the

angular-diameter distance attains a turning point at
zmax ¼ 1.70� 0.20. Since no cosmology was preassumed
with this measurement, its inferred value serves as a new,
independent probe of the geometry of the Universe. In their
study, Melia and Yennapureddy demonstrated that a com-
parison of the predicted value of zmax with this measure-
ment can differentiate one model from another quite well.
Using this comparison with the predictions of various
cosmologies in GR, they found that the most strongly
favored is the Rh ¼ ct universe [41–45], followed by

Planck ΛCDM. At the same time, several others—notably
Milne, which predicts no turning point at all—are ruled
out at a very high level of significance, well beyond the
nominal 3σ.
In this paper, we advance the use of this novel cosmo-

logical test in very significant ways.We obtain the predicted
value of zmax for the four well-studied viable fðRÞ models
described above and see how this changes as a function of
the deviation parameter b. For the values of the parameters
in these models, we adopt the constraints obtained by
Nunes et al. [22] using two different data sets. The first data
set includes the recently released cosmic chronometers
(CC) data and the locally measured Hubble parameter H0,
and the second set adds to these the type Ia SNe joint light
curves (JLA) and BAO distance measurements. From the
predicted values of zmax, we identify those fðRÞmodels that
are consistent with the measured value of zmax.
The paper is organized as follows. In the next section, we

introduce fðRÞ theory and write down the field equations
for a spatially flat Friedmann-Robertson-Walker (FRW)
metric as a dynamical system involving dimensionless
variables. Then, in Sec. III, we consider each fðRÞ model
and numerically solve the system of equations to obtain the
angular-diameter distance dAðzÞ and the redshift zmax at
which it attains its maximum value. We discuss how well
the models account for the data and present our conclusion
in Sec. IV. Unless otherwise noted, we use units such
that 8πG ¼ c ¼ 1.

II. f ðRÞ GRAVITY

In fðRÞ theory, the Einstein-Hilbert action is modified by
replacing the Ricci scalar R in the gravitational Lagrangian
by an a priori arbitrary nonlinear function fðRÞ such that
the action becomes

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SðmÞ; ð2Þ

where SðmÞ is the matter contribution. Varying the action
above with respect to the (inverse) metric tensor gab yields
the following field equations,

f0ðRÞRab −
fðRÞ
2

gab ¼ ∇a∇bf0ðRÞ − gab□f0ðRÞ þ Tab;

ð3Þ

where a prime denotes differentiation with respect to R,
□≡ gab∇a∇b, and Tab is the energy momentum tensor
corresponding to the matter part of the action SðmÞ. Taking
the trace of these equations gives

□R ¼ 1

3f00ðRÞ ½T − 3f000ðRÞð∇RÞ2 þ 2fðRÞ − Rf0ðRÞ�;

ð4Þ
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with T ≡ ρ − 3p being the trace of Tab, where ρ and p are,
respectively, the energy density and pressure of the matter
distribution. Using (4) in (3), the field equations take the
Einstein form

Gab ¼
1

f0ðRÞ ðTab þ Teff
abÞ; ð5Þ

where

Teff
ab ¼

�
fðRÞ − Rf0ðRÞ

2
gab þ∇a∇bf0ðRÞ − gab□f0ðRÞ

�

ð6Þ
is the energy momentum tensor of the so-called curvature
fluid representing the higher order curvature corrections in
the action. From the Einstein form of the field equations in
(5), one can define the effective gravitational coupling to be
Geff ≡G=f0ðRÞ. Also using (5), it is straightforward to show
that the conservation of the total energy momentum implies
that the energy momentum tensor for the matter distribution
Tab is independently conserved, i.e., ∇aTab ¼ 0.
It is well known [46] that fðRÞ theory can actually be

considered as a scalar tensor theory, in the sense that it can
be expressed as Brans-Dicke (BD) theory [47] with ω ¼ 0
and a nonzero scalar potential VðϕÞ. This would seem to
invalidate the theory because, when ω ¼ 0, the post-
Newtonian parameter (PPN) γBD ¼ 1þω

2þω ¼ 1=2 does not
agree with γ ∼ 1 required by Solar System tests. However
standard BD-theory has a vanishing scalar potential, and
the PPN parameter for fðRÞ theory is given by a more
complicated expression than that of the BD theory [48],
allowing it to agree with the Solar System tests. For a
general fðRÞ, the scalar field and associated potential are
given by

ϕ≡ f0ðRÞ;
VðϕÞ≡ RðϕÞf0ðRÞ − fðR½ϕ�Þ: ð7Þ

Then, it is easy to show that Eqs. (3) and (4) reduce to the
field equations of BD theory with ω ¼ 0 and a nontrivial
potential VðϕÞ with dV=dϕ ¼ R. In order to obtain the
scalar potential VðϕÞ, the equation ϕ ¼ f0ðRÞ needs to be
invertible, and conversely, a given BD theory having ω ¼ 0
can be expressed as an fðRÞ theory provided that the
equation dVðϕÞ=dϕ ¼ R is invertible.
The general spatially flat FRW metric is given by

ds2 ¼ −dt2 þ aðtÞ2½dr2 þ r2ðdθ2 þ sin θ2dϕ2Þ�; ð8Þ

where aðtÞ is the normalized scale factor expressed in terms
of the cosmic time, such that at the present time t ¼ t0,
aðt0Þ ¼ 1. For this metric, the field equations (5) yield the
Friedmann equations

3H2 ¼ 1

f0

�
ρþ Rf0 − f

2
− 3Hf00 _R

�
; ð9Þ

and

2 _Hþ3H2¼−
1

f0

�
pþf000 _R2þ2H _Rf00 þ R̈f00 þf−Rf0

2

�
;

ð10Þ

where the overdot indicates a derivative with respect to
cosmic time t. Moreover, the Ricci scalar can be expressed
in terms of the Hubble parameter H ¼ _a=a by

R ¼ 6ð2H2 þ _HÞ: ð11Þ

In addition, conservation of the energy momentum for the
matter distribution leads to

_ρ ¼ −3Hðρþ pÞ: ð12Þ

It should be noted that any fðRÞ cosmological model must
satisfy a number of conditions related to its stability and the
prediction of a matter-dominated era (see Refs. [15,16]
for details), namely:

(i) f0ðRÞ > 0 for R ≥ R0 > 0, where R0 is the Ricci
scalar at the present time for the FRW metric
in (8). If the final attractor is de Sitter spacetime
with Ricci scalar R1, we also require that f0ðRÞ > 0
for R ≥ R1 > 0.

(ii) f00ðRÞ > 0 for R ≥ R0 > 0.
(iii) fðRÞ ≈ R − 2Λ for R ≫ R0, so that the model

reduces to ΛCDM at early times.
(iv) 0 < ðRf00f0 ÞðrÞ < 1 at r ¼ −Rf0=f ¼ −2.

TABLE I. Best fit values for the free parameters b andΩm using
CCþH0 and JLAþ BAO þ CCþH0 data sets, adopted from
Ref. [22], and the corresponding value of zmax calculated in this
paper and shown in Figs. 5 and 6.

Model Parameters CCþH0 JLAþ BAOþ CCþH0

b 0.107þ0.316
−0.158 0.048þ0.062

−0.077

HS Ωm 0.264þ0.069
−0.058 0.264þ0.059

−0.055

zmax 1.647þ0.093
−0.081 1.650þ0.089

−0.072

b 0.229þ0.254
−0.710 0.111þ0.070

−0.286

Starobinsky Ωm 0.261þ0.065
−0.055 0.269þ0.050

−0.042

zmax 1.657þ0.064
−0.080 1.646þ0.065

−0.062

b 0.425þ0.400
−0.424 0.196þ0.124

−0.195

Tsujikawa Ωm 0.261þ0.063
−0.056 0.284þ0.041

−0.044

zmax 1.657þ0.095
−0.079 1.625þ0.063

−0.048

b 0.289þ0.341
−0.289 0.130þ0.089

−0.130

Exponential Ωm 0.261þ0.064
−0.055 0.284þ0.040

−0.049

zmax 1.668þ0.102
−0.095 1.640þ0.090

−0.061
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Instead of using cosmic time, we can also express the
field equations in terms of the coordinate x ¼ ln a ¼
− lnð1þ zÞ, such that at the present time xðt0Þ ¼ 0.
In that case, Eqs. (11), (9), and (12) can be expressed as
a dynamical system of the form [24]

dH
dx

¼ R
6H

− 2H;

dR
dx

¼ 1

f00

�
ρ

3H2
− f0 þ Rf0 − f

6H2

�
;

dρ
dx

¼ −3ðρþ pÞ: ð13Þ

The boundary conditions are obtained by requiring that, for
large z (and large R), fðRÞ → R − 2Λ, such that we recover
the ΛCDM model, for which

H2

ðHΛCDM
0 Þ2 ¼ ΩΛCDM

m expð−3xÞ þΩΛCDM
r expð−4xÞ

þ ΩΛCDM
Λ ; ð14Þ

and

R
2Λ

¼ 2þ ΩΛCDM
m

2ΩΛCDM
Λ

expð−3xÞ; ð15Þ

where ΩΛCDM
Λ ≡ Λ=3ðHΛCDM

0 Þ2. The second equation is
obtained by taking the trace of Einstein’s field equations
Rab − 1

2
gabRþ Λgab ¼ Tab and assuming that the matter

and radiation components of the source are independently
conserved. The quantities ΩΛCDM

m , ΩΛCDM
r , ΩΛCDM

Λ , and
HΛCDM

0 are the current values of the cosmological param-
eters and Hubble parameter, respectively, as calculated in
ΛCDM. In general, these are different than the current
corresponding parameters Ω0

m, Ω0
r , Ω0

Λ and Hubble param-
eter H0 calculated in the fðRÞ model. It is easy to show
from the conservation equation for the source terms in (13),
however, that

ΩΛCDM
m ðHΛCDM

0 Þ2 ¼ Ω0
mH2

0 ¼
ρmðt0Þ

3
ð16Þ

and similarly for the radiation component.
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FIG. 1. Comparison of the Hubble parameter HðzÞ with that in ΛCDM, HΛCDMðzÞ, for (a) the HS model, (b) the Starobinsky model,
(c) the Tsujikawa model, and (d) the exponential models. The best-fit values for the free parameters ΩΛCDM

m and b used to obtain these
plots are those derived from CCþH0 data as given in Table I.
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The field equations (13) can be written using the
following dimensionless variables [24],

E≡ H
HΛCDM

0

; R≡ R
2Λ

; ð17Þ

in which case they take the form

dE
dx

¼ ΩΛCDM
Λ

R
E
− 2E;

dR
dx

¼ 2Λ
FRR

�
ΩΛCDM

m e−3x

E2
þ ΩΛCDM

r e−4x

E2
−
FR

2Λ

þ ðRFR − FÞΩΛCDM
Λ

2ΛE2

�
; ð18Þ

where FR ≡ dF
dR and FRR ≡ d2F

dR2. The boundary conditions
are given by

E2ðxiÞ ¼ ΩΛCDM
m e−3xi þΩΛCDM

r e−4xi þ ΩΛCDM
Λ ;

RðxiÞ ¼ 2þ ΩΛCDM
m e−3xi

2ΩΛCDM
Λ

; ð19Þ

where the position xi ¼ ln ai ¼ − lnðzi þ 1Þ is chosen such
that the model approaches ΛCDM. After solving the
dynamical system in (18) using the above boundary
conditions, one can obtain the angular diameter distance

dAðzÞ ¼
1

1þ z

Z
z

0

dz0

Hðz0Þ ¼ ex
Z

0

x

e−x
0

Hðx0Þ dx
0; ð20Þ

the turning point of which may be evaluated in order to find
the redshift zmax.

III. COSMOLOGICAL MODELS

In this section, we consider some of the more popular,
viable fðRÞ models, for which we solve the system of
equations in (18), and then calculate the redshift zmax and its
dependence on the deviation parameter b:

(i) The Hu-Sawicki (HS) model [16] is given by

fðRÞ ¼ R −m2 c1ðR=m2Þn
1þc2ðR=m2Þn, where c1 and c2 are free

parameters and m and n are positive constants, with
m2 ≈Ω0

mH2
0 being of the order of the Ricci scalar R0
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H(z)/HLCDM (z)
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1.020
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H(z)/HLCDM (z)
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FIG. 2. Comparison of the Hubble parameter HðzÞ with that in ΛCDM, HΛCDMðzÞ, for (a) the HS model, (b) the Starobinsky model,
(c) the Tsujikawa model, and (d) the exponential models. The best-fit values for the free parameters ΩΛCDM

m and b used to obtain these
plots are those derived from JLAþ BAOþ CCþH0 data, as given in Table 1.
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at the present time. This can be expressed in the
ΛCDM form [20] fðRÞ ¼ R − 2Λð1 − 1

1þðR=bΛÞnÞ,
with Λ ¼ c1m2=2c2 and b ¼ 2c1−1=n2 =c1. In our
case, we consider the case n ¼ 1, the conventional
approach seen in the literature.

(ii) In the Starobinsky model [17], fðRÞ¼R−c1m2½1−
ð1þR2=m4Þ−n�, where c1 is a free parameter and m
and n are positive constants, with m2 ≈Ω0

mH2
0 as

in the HS case. This can also be expressed as a
perturbation of ΛCDM [20], with fðRÞ¼R−
2Λð1− 1

ð1þ½ RbΛ�2Þn
Þ, where Λ¼c1m2=2 and b ¼ 2=c1.

Again, we take n ¼ 1.
(iii) The Tsujikawa model was proposed in Ref. [18] and

is given by fðRÞ ¼ R − λRc tanhð RRc
Þ, where λ and

Rc are positive constants. It was shown [49] that the
stability condition mentioned earlier requires that
λ > 0.905. It was also shown [50] that this constraint
for λ satisfies the Solar System and binary pulsar

tests as well. For R ≫ Rc, the model behaves like
the exponential model with fðRÞ ≈ R − λRcð1−
exp½−2R=Rc�Þ. The model can be expressed in the
form fðRÞ ¼ R − 2Λ tanhð R

bΛÞ, where the deviation
parameter b ¼ 2=λ < 2.21.

(iv) The exponential model was first proposed independ-
ently by Cognola et al. [13] and Linder [19], and
this model may be expressed in the form [24]
fðRÞ ¼ R − 2Λð1 − exp½− R

bΛ�Þ, where b > 0 is the
deviation parameter, such that it reduces to ΛCDM
when b → 0.

The table above shows the best-fit constrained values of
the free parameters b and Ωm (together with the corre-
sponding 1σ errors) for each fðRÞ model using the two
separate data sets, namely CCþH0 and JLAþ BAOþ
CCþH0 as obtained in Ref. [22], as well as the calculated
values of zmax and their corresponding errors shown in
Figs. 5 and 6. By solving the system of equations (18) for
each fðRÞ model using the constrained values shown in

CDM

m = 0.264

0.1 0.2 0.3 0.4 0.5
b

1.640

1.645

1.650

HS–zmax

(a)

m = 0.261

CDM

0.1 0.2 0.3 0.4 0.5
b

1.6570

1.6575

1.6580

1.6585

1.6590

1.6595
Star–zmax

(b)

m = 0.261

CDM

0.0 0.2 0.4 0.6 0.8
b

1.6570

1.6575

1.6580

1.6585

1.6590

1.6595

Tsuj–zmax

(c)

m = 0.261

CDM

0.3 0.4 0.5 0.6
b

1.60

1.64

1.66

1.68

Exp–zmax

(d)

FIG. 3. Dependence of the predicted redshift zmax on the deviation parameter b for (a) the HS model, (b) the Starobinsky model, (c) the
Tsujikawa model, and (d) the exponential model using the CCþH0 data as shown in Table I. The range of values of b for each model
corresponds to the uncertainty in its constrained value as discussed in the text. The constrained value of b itself and its associated zmax are
shown by a filled box. The value of the free parameterΩm for each case is included in each subfigure. The red dotted line marks the value
of zmax for ΛCDM (b ¼ 0) assuming the same cosmological parameters as in the fðRÞ model and is obtained from Eq. (21).
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Table I, we obtain numerically the Hubble parameter HðzÞ
that is compared with the corresponding value HΛCDM for
the ΛCDM model. This is shown for both data sets in
Figs. 1 and 2 above. As expected, all of the models deviate
from ΛCDM at small z (i.e., z < 2–3). It is also observed
that when the combined data set JLAþ BAOþ CCþH0

is used, the constrained value of the deviation parameter b
takes a smaller value and therefore, as seen from Figs. 1
and 2, the difference between the fðRÞ model and ΛCDM
is smaller.
After numerically solving the system of equations in

(18), we then calculate the angular diameter distance dAðzÞ
for each model using Eq. (20), and from this, we obtain the
redshift zmax at which dAðzÞ attains its maximum value.
Figures 3 and 4 show the dependence of zmax on the
deviation parameter b for each model using the CC + H0

and JLAþ BAOþ CCþH0 data sets, respectively. In
each case, the fixed value of Ωm corresponds to its
constrained value, as listed in Table I. The range of values
for b in each plot covers the uncertainty in b, as shown in
Table I. The filled box represents the position of zmax for the

constrained values of the parameters b and Ωm. Figures 5
and 6 show the dependence of zmax on Ωm, for the fixed
constrained values of b. Again in this case, the range of
values of Ωm corresponds to the uncertainty in this
parameter, as shown in Table I.
For each model, we also show (with a dotted red line in

Figs. 3 and 4 and a dashed curve in Figs. 5 and 6) the
redshift zmax for ΛCDM (b ¼ 0) assuming the same
cosmological parameters. For the ΛCDM, the angular
diameter distance is given by (1). In this case, one can
obtain (see, e.g., Eq. (10) in Ref. [51]) a closed form
expression for zmax as a function of ΩΛCDM

m in terms of
elliptic integrals, as follows,

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ΩΛCDM

m

p ½Fðϕ; kÞjð1þzÞ−1¼1 − Fðϕ; kÞjð1þzmaxÞ−1 �

¼ 1þ zmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛCDM

m ð1þ zmaxÞ3 þ ð1 −ΩΛCDM
m Þ

p ; ð21Þ

where

m 0.264

CDM

0.02 0.04 0.06 0.08 0.10
b

1.647

1.648

1.649

1.650

1.651

1.652

HS–zmax

(a)

m 0.269
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0.05 0.10 0.15 0.20
b

1.64540

1.64545
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1.64555
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(b)

m 0.284

CDM
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b

1.62535

1.62540

1.62545

1.62550

1.62555

1.62560

Tsuj–zmax

(c)

m 0.284

CDM

0.15 0.20 0.25 0.30
b

1.62

1.63

1.64

1.65

1.66

1.67

Exp- zmax

(d)

FIG. 4. Dependence of the predicted redshift zmax on the deviation parameter b for (a) the HS model, (b) the Starobinsky model, (c) the
Tsujikawa model, and (d) the exponential model using the JLAþ BAO þ CCþH0 data as shown in Table I. The range of values of b
for each model corresponds to the uncertainty in its constrained value as discussed in the text. The constrained value of b itself and its
associated zmax are shown by a filled box. The value of the free parameter Ωm for each case is included in each subfigure. The red dotted
line marks the value of zmax for ΛCDM (b ¼ 0) assuming the same cosmological parameters as in the fðRÞ model and is obtained from
Eq. (21).
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ϕ ¼ cos−1
�
−mð1þ zÞ þ ð ffiffiffi

3
p

− 1Þ
−mð1þ zÞ − ð ffiffiffi

3
p þ 1Þ

�
;

m ¼
�

ΩΛCDM
m

1 −ΩΛCDM
m

�
1=3

;

k2 ¼ 1

2
þ

ffiffiffi
3

p

4
;

g ¼ 1

31=4

�
1 −ΩΛCDM

m

ΩΛCDM
m

�
1=3

: ð22Þ

The above expression represents the dotted curves in
Figs. 5 and 6. In some cases, such as the Starobinsky and
Tsujikawa models, the dependence of zmax on Ωm is
practically indistinguishable from that in ΛCDM, con-
sidering that the Hubble parameter HðzÞ for these
models is very similar to HΛCDMðzÞ, even at low red-
shifts, as seen in Figs. 1 and 2. This happens even more
when the whole JLAþ BAOþ CCþH0 data set is
used, due to the smaller magnitude of the constrained
parameter b for each model. Moreover, the position of
zmax in Figs. 3 and 4 approaches its ΛCDM value as
b → 0, as expected. For the exponential model, the

system of equations (18) becomes stiff for the range
of values of b shown in Table I, so to solve these
equations, we have decided to use a Padé approximation
to the exponential function. This is the reason why in
this case zmax does not tend to the ΛCDM value as
b → 0.
In all the models we consider here, we find that the

predicted value of zmax is consistent to within 1σ with the
measured value 1.7� 0.2, throughout the previously con-
strained range of the deviation parameter b. We do find
potentially interesting differences and trends, however,
that one may hope to exploit with future, higher precision
measurements of zmax. For example, note that, while the
Starobinsky and Tsujikawa models predict a redshift zmax
that approaches the observed value as b increases, the
opposite behavior is seen from the Hu-Sawicki model,
where the predicted turning point zmax worsens with
increasing deviation relative to that inΛCDM. This remains
valid for both data sets, as can be seen clearly in Figs. 3
and 4. Eventually, this test may provide a reliable measure
of b, independently of all other previously employed
methods, should the tension between the prediction of
ΛCDM and the measured value of zmax persist as the
precision of the observations continues to improve.
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FIG. 5. Dependence of the predicted redshift zmax on the density parameterΩm for (a) the HS model, (b) the Starobinsky model, (c) the
Tsujikawa model, and (d) the exponential model using the CCþH0 data as shown in Table I. The range of values of Ωm for each model
corresponds to the uncertainty in its constrained value as discussed in the text. The constrained value of Ωm itself and its associated zmax
is shown by a filled box. The value of the deviation parameter b for each case is included in each subfigure. The dashed curve shows the
behavior of zmax with Ωm for ΛCDM (b ¼ 0) obtained using Eq. (21). The black dashed line marks the observed value of zmax.
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IV. DISCUSSION AND CONCLUSION

In this paper, we have compared four currently popular
and viable fðRÞ cosmological models on the basis of
their predicted turning point zmax in the angular diameter
distance. This has been done by first numerically solving
the coupled system (18) for HðzÞ and then using this in
the expression for the angular diameter distance in (20) to
locate where it attains its maximum value for the con-
strained range of the deviation parameter b in each model.
For these models, we have adopted the best-fit values of the
free parameters obtained in Ref. [22], using cosmic
chronometer data and the locally measured value of H0,
combined with the type Ia SN joint light curves and BAO
distance measurements. We should point out the issue that
the locally measured H0 used by Nunes et al. [22] in their
analysis is not consistent with the smoothed-out cosmo-
logical value in any cosmological model, including
ΛCDM, where it is in tension with the Planck value by
over 9%. The extent of this deviation between these values
of H0 for the fðRÞ models presented here is not clear to us

at this point. In addition, we should point out that the BAO
distance measurements are generally made with the adop-
tion of ΛCDM as the background cosmology in order to
resolve the redshift-space distortions [52]. As such, the
optimization of model parameters in Ref. [22] is at least
partially model dependent.
Our comparison of the predicted zmax with its measured

value must therefore be viewed with this caveat in mind.
Nevertheless, we have seen that in most cases the redshift
zmax of the turning point changes considerably, not only
between a given fðRÞ model and ΛCDM to which it
converges but also between the fðRÞ models themselves.
The promise of differentiating between the various versions
of fðRÞ theories using the measurement of zmax with
compact-quasar cores thus represents an entirely new probe
of the geometry of the Universe, which goes beyond the
reach of type Ia SNe. This diagnostic can be particularly
useful in those cases where fðRÞ models are almost
indistinguishable [25] from ΛCDM when using other
“conventional” cosmological data.
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FIG. 6. Dependence of the predicted redshift zmax on the density parameterΩm for (a) the HS model, (b) the Starobinsky model, (c) the
Tsujikawa model, and (d) the exponential model using the JLAþ BAO þ CCþH0 data as shown in Table I. The range of values ofΩm
for each model corresponds to the uncertainty in its constrained value as discussed in the text. The constrained value of Ωm itself and its
associated zmax are shown by a filled box. The value of the deviation parameter b for each case is included in each subfigure. The dashed
curve shows the behavior of zmax with Ωm for ΛCDM (b ¼ 0) obtained using Eq. (21). The black dashed line marks the observed value
of zmax.
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We point out, in particular, that the two most popular,
viable fðRÞ models in the literature, namely the Hu-
Sawicki and Starobinsky models, predict quite a different
behavior for zmax as a function of b, in spite of the fact that
both models recover ΛCDM when b → 0 and for large
values of z and R. In the former case, zmax decreases with b,
so it worsens the tension between ΛCDM and the data.
Though the precision of this measurement is not yet
sufficient for us to rule out either model in favor of the
other, the early indication is that the angular-diameter
distance test seems to slightly favor Starobinsky’s theory
over the Hu-Sawicki model. The other models indicate that
the turning point redshift zmax approaches the measured
value as the deviation parameter b increases, keeping their
viability intact. Moreover, this observed behavior does not
change when one takes into consideration the uncertainty in
the best-fit values of the free parameter Ωm.
For a next step, we plan to derive analytic expressions for

the angular-diameter distance dAðzÞ in the various fðRÞ

models, to be used in rather obvious extensions to the
work reported here. The promising outcome of our analysis
warrants an optimizaton of the model parameters—
particularly the deviation parameter b—utilizing a simul-
taneous fit to both the dAðzÞ and HðzÞ data. While some
debate still persists in the literature regarding whether or
not one may legitimately merge measurements of HðzÞ
using different techniques, there appears to be a consensus
growing that a determination of the Hubble parameter
based solely on the use of cosmic chronometers may be
made in a truly model-independent fashion [40,53–56].
With two sets of model-independent data available for
this cross-correlation—the angular diameter distance to
compact quasar cores and the differential time-redshift
relationship dt=dz obtained from cosmic chronometers—
there are therefore strong indications that a meaningful
prioritization of the various fðRÞ theories may emerge.
The outcome of this work will be reported elsewhere.
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