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We present new cosmological parameter constraints for general Horndeski scalar-tensor theories, using
CMB, redshift space distortion, matter power spectrum and BAO measurements from the Planck, SDSS/
BOSS and 6dF surveys. We focus on theories with cosmological gravitational waves propagating at the
speed of light, cGW ¼ c, implementing and discussing several previously unaccounted for aspects in the
constraint derivation for such theories, that qualitatively alter the resulting constraints. In order to ensure
our conclusions are robust, we compare results for three different parametrizations of the free functions in
Horndeski scalar-tensor theories, identifying several parametrization-independent features of the con-
straints. We also consider models, where cGW ≠ c in cosmological settings (still allowed after GW170817
for frequency-dependent cGW) and show how this affects cosmological parameter constraints.
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I. INTRODUCTION

General relativity (GR) at present remains firmly
entrenched as a cornerstone of the cosmological standard
model. Nevertheless we do know that GR is not the final
answer. It is an effective theory that breaks down at Planck
energies, is not geodesically complete and is plagued by
fundamental problems, most notably the (old) cosmological
constant problem. Since GR is the unique consistent theory
of a massless spin-2 field (assuming Lorentz invariance),
any attempt to modify or extend it in order to address one of
these shortcomings will generically introduce new gravita-
tional (light) degrees of freedom (dof). As such, one ought to
be on the lookout for any signs of such new dof, not just
because their detection would revolutionize our understand-
ing of gravity, but also since (in the absence of a detection)
this is the most stringent way to test and put constraints on
GR itself. With the increasing precision of current and
upcoming data, cosmology provides an ideal test bed for the
presence of such new gravitational dof.
Before contrasting theory with data, one ought to make a

choice on how to parametrize potential deviations from GR.
Horndeski scalar-tensor theories [1,2] have been the pri-
mary workhorse of modified gravity in recent times. They
encompass and provide a minimal extension of GR in the
sense that only one new single dof is introduced, yet this is
done with a set of theoretical constraints (notably Lorentz
invariance and the absence of higher-derivative ghosts) that
ensure one is working with a fundamentally sound theory
space. As Horndeski scalar-tensor theories include the vast

majority of scalar-tensor theories considered in the liter-
ature, but their theory space is nevertheless described by
only a few interaction terms in the Lagrangian, these
theories provide a simultaneously rich and well-constrained
setup in which to place constraints on deviations from GR
and the emergence of new gravitational dof.
In this paper, we therefore take Horndeski scalar-tensor

theories and constrain them using data from several
cosmological probes, specifically the cosmic microwave
background (CMB) [3,4], baryon acoustic oscillations
(BAOs) [5,6], redshift space distortions (RSDs) [7,8] and
the matter power spectrum [9]. In the process, we especially
focus on the following four questions: (I) What are the
cosmological parameter constraints for theories, where
gravitational waves propagate at the speed of light,
cGW ¼ c? (II) What are the corresponding constraints for
theories, where the speed of gravitational waves is allowed
to differ from that of light? What are the cosmological
constraints on cGW then and how does this additional
freedom impact constraints on other parameters? (III)
Horndeski theories are spanned by four free functions,
each in principle requiring an infinite number of parameters
to be fully specified.1 One therefore needs to choose a more
restrictive and specific ansatz for these functions in order to
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1Note that a number of known extensions to Horndeski scalar-
tensor theories exist, which introduce higher-order derivatives in
the equations of motion, yet do not propagate additional ghostly
degrees of freedom due to degeneracies/hidden constraints in
those specific theories. Examples include so-called “beyond
Horndeski” [10] and DHOST [11,12] theories, which introduce
a small number of additional free functions (especially at the level
of linear perturbations, which we will discuss in detail here).
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efficiently extract cosmological constraints. What para-
metrization(s) should one choose and what cosmological
constraints are robust under a change of parametrization?
(IV) What datasets provide the most stringent constraints?
Do they preferentially point towards specific modified
gravity theories and are there (hints of) deviations from
GR? What additional theoretical priors should one impose?
Outline: This paper is organized as follows. In Sec. II, we

recap Horndeski scalar-tensor theories, their linearly per-
turbed action and how these can be significantly simplified
by requiring gravitational waves to propagate at the speed
of light, cGW ¼ c (as extensively discussed in the wake of
GW170817 and GRB 170817A). In Sec. III, we then
consider different parametrizations for the remaining func-
tional freedom and discuss them alongside additional
theoretical (stability) constraints. This is followed by an
overview of the different datasets used to extract cosmo-
logical parameter constraints in Sec. IV. In Sec. V we then
present the constraints for theories with cGW ¼ c, discuss
what essential aspects drive the constraints and how to best
interpret the results, what constraints are robust under
changes of parametrizations and what they mean for dark
energy/modified gravity theories. In Sec. VI, we recap
cosmologically relevant caveats in the argument that infers
cGW ¼ c fromGW170817 andGRB170817A,which imply
that cGW ≠ c is still a valid setup on cosmological scales.We
discuss how constraints change, if the speed of gravitational
waves is allowed to vary, and present the corresponding
Monte Carlo Markov Chain (MCMC) analysis. Finally, we
conclude in Sec. VII and provide further details in the
Appendices.
Notation and conventions: Since we will be considering

scalar-tensor theories, the principal ingredients will be a
tensor gμν and a scalar ϕ. The covariant derivative asso-
ciated with gμν is ∇μ and we will introduce the shorthand
Φμν ≡∇μ∇νϕ. Finally, angular brackets denote taking the
trace, so, e.g., ½Φ� ¼ Φμ

μ and ½Φ2� ¼ ΦμνΦμν.

II. HORNDESKI GRAVITY

Here we briefly summarize the essential features of
Horndeski scalar-tensor theories in a gravitational context,
how they are defined, what free functions span the
associated theory space and how these can be efficiently
captured at the level of the linearized action.

A. Horndeski scalar tensor-theories

The most general Lorentz-invariant scalar-tensor action
that gives rise to second-order equations of motion (and is
consequently free of an Ostrogradski-ghost instability by
default), is Horndeski gravity [1,2]2:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½ϕ; gμν�
�
; ð1Þ

where the Li are scalar-tensor Lagrangians given by:

L2 ¼ G2ðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ½Φ�;
L4 ¼ G4ðϕ; XÞRþ G4;Xðϕ; XÞð½Φ�2 − ½Φ2�Þ;

L5 ¼ G5ðϕ; XÞGμνΦμν −
1

6
G5;Xðϕ; XÞð½Φ�3

− 3½Φ2�½Φ� þ 2½Φ3�Þ: ð2Þ

Four free functions (G2, G3, G4, G5) therefore completely
characterize this theory. The Gi are functions of a scalar
field ϕ and its derivative via X ≡ − 1

2
∇μϕ∇μϕ.3 Finally,

Gi;ϕ and Gi;X denote the partial derivatives of the Gi with
respect to ϕ and X, respectively.
In the aftermath of the near simultaneous detections of

GW170817 and GRB 170817A [14–18] it was shown in
[19–22] that imposing cGW ¼ c in a cosmological context
significantly reduces the full Horndeski theory space (2),
namely by eliminating G5 and G4;X, as we will discuss in
the next subsection. Note that we will revisit this argument
in Sec. VI, where we recap why extrapolating the meas-
urement of cGW ¼ c from GW170817 and GRB 170817A
to a cosmological context requires additional nontrivial
assumptions and we discuss varying cGW models in setups
where these assumptions do not hold. Putting this issue
aside for the time being, imposing cGW ¼ c in a cosmo-
logical context reduces Horndeski theory to

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p fG2ðϕ;XÞ−G3ðϕ;XÞ½Φ�þG4ðϕÞRg; ð3Þ

where there are now only three free functions left (G2, G3,
G4) and G4 is a function of ϕ only.4 For previous related
work on cGW ¼ c constraints see [24–33].

B. Linearized perturbations

With a cosmological setting in mind, the general
Horndeski action (1) can be expanded around a spatially

2See [13] for the equivalence between different formulations.

3The fact that the Lagrangian only depends on the first
derivative via X is a consequence of Lorentz invariance.

4(3) is essentially of the kinetic gravity braiding form [23].
Note that imposing cGW ¼ c for cosmology only enforces
G5;X ¼ 0, if the scalar dof affects the cosmological background
evolution, as it certainly should if it is at all related to dark
energy/modified gravity. However, this does mean, that for
theories where the scalar is sufficiently suppressed and does
not affect cosmological evolution, G5;X ¼ 0 may be consistently
violated [21], as is the case for Einstein-dilaton-Gauss-Bonnet
theories (EdGB), that are of interest e.g., in strong gravity
phenomenology.
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flat homogeneous and isotropic background. Doing so to
quadratic order in the (linear) perturbations yields the
linearized dynamics of [34–37]—also see [13,38,39].
Here we will not repeat the derivation of the associated
action, but instead note that the dynamics of linearized
perturbations is completely controlled by four functions
[34]: They are the effective Planck massMS and its running
αM, the kineticity αK that contributes to the kinetic energy
of scalar perturbations, the braiding αB that quantifies the
strength of kinetic mixing between scalar and tensor
perturbations, and the tensor speed excess αT , which is
related to the speed of sound of tensor perturbations cT via
c2GW ¼ 1þ αT . In terms of the model functionsGi these are
given by [34]

M2
S ≡ 2ðG4 − 2XG4;X þ XG5;ϕ − _ϕHXG5;XÞ;

HM2
SαM ≡ d

dt
M2

S;

HM2
SαB ≡ 2 _ϕðXG3;X − G4;ϕ − 2XG4;ϕXÞ

þ 8XHðG4;X þ 2XG4;XX −G5;ϕ − XG5;ϕXÞ
þ 2 _ϕXH2ð3G5;X þ 2XG5;XXÞ;

M2
SαT ≡ 2X½2G4;X − 2G5;ϕ − ðϕ̈ − _ϕHÞG5;X�; ð4Þ

where all the Gi as well as ϕ and X are evaluated for the
background configuration. We further use the shorthand
Gi ≡Giðϕ; XÞ and refer to [34] for the (lengthy) expression
for αK.
These expressions greatly simplify when we specialize

to the restricted Horndeski theories (3) with luminally
propagating gravitational waves. In that case, one trivially
obtains αT ¼ 0 and, collecting results for the αi, we obtain

M2
S ¼ 2G4;

HM2
SαM ¼ d

dt
M2

S;

H2M2
SαK ¼ 2XðG2;X þ 2XG2;XX − 2G3;ϕ − 2XG3;ϕXÞ

þ 12 _ϕXHðG3;X þ XG3;XXÞ;
HM2

SαB ¼ 2 _ϕðXG3;X −G4;ϕÞ;
αT ¼ 0: ð5Þ

Note that, as before, all parameters are determined in terms
of the three free functions (G2, G3, G4), where G4 is a
function of ϕ only and (G2, G3) can be functions of both ϕ
and X.

III. PARAMETRIZATIONS AND STABILITY
CONDITIONS

The αi functions discussed above map the functional
freedom from the full Horndeski action (captured by G2,
G3, G4, G5) into their physically relevant combinations at

the level of the linearized action. In order to extract
meaningful constraints for these functions, it is necessary
to reduce their inherent functional freedom by using some
parametrized form for these functions. Indeed this is also
the approach implemented in state-of-the-art Einstein-
Boltzmann solvers for Horndeski theories, such as hi_class
[40] and EFTCAMB [41]. The purpose of such para-
metrizations is to capture the dark energy evolution to
reasonable accuracy in the late-universe. While naturally
most simple parametrizations will not be able to capture the
complex behavior of fully-fledged dark energy theories at
all times, they should nevertheless recover leading-order
effects affecting late universe physics. We emphasize that
such parametrized and model-independent searches should
be seen as an initial coarse tool to identify promising
regions of theory space. Specific fundamental theories in
these regions can subsequently be further analyzed in more
targeted searches.

A. Parametrizing the background

In general Horndeski theories, there is sufficient func-
tional freedom such that the Hubble rate H can be set
independently of the αi [34].

5 Motivated by the observed
proximity of the background expansion to ΛCDM, in what
follows we will therefore follow the minimal approach of
[42,43] and fix the background to be that of ΛCDM,
considering and constraining perturbations around this
background.6

The background equations read

H2 ¼ ρtot; _H ¼ −
3

2
ðρtot þ ptotÞ; ð6Þ

where “tot” denotes a sum over all components contrib-
uting to the background dynamics (explicitly including
the dark energy component) and we note the specific choice
of units employed by CLASS and hi_class, especially
8πG ¼ 1 and a rescaling of all densities and pressures by a
factor of 3.

B. Parametrizing linear perturbations: The αi

Different parametrizations for the αi are discussed in
[34,42–48]. These parametrizations have been used in

5Note that this does not mean that this can be done for any
subclass of Horndeski. In quintessence theories, for example, any
nontrivial dynamics is associated with a (small) departure from
ΛCDM at the background level already. This is somewhat
analogous to how slow-roll solutions in inflationary theories
are never exactly de Sitter.

6We leave an extended analysis simultaneously constraining
deviations from ΛCDM at background and perturbation levels
(and using the observational datasets considered here) to future
work. Since (as wewill see below) current constraints on the αi are
Oð1Þ, whereas the background is known to more closely resemble
ΛCDM, it is in any case a reasonable first step to compute
constraints on the αi without also varying the background.
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Refs. [42,43,49–53] to both compute and forecast param-
eter constraints. However, conclusions about observational
constraints on dark energy obtained assuming a specific
parametrization will always be open to the question to what
extent that conclusion depends on the specific parametri-
zation chosen. In order to disentangle physical effects and
artefacts of choosing specific parametrizations, we will
therefore compute constraints for three different paramet-
rizations (already implemented in HI_CLASS), which we
now summarize:
Parametrization I: A one-parameter ansatz, where the αi

scale with ΩDE

αi ¼ ciΩDE; ð7Þ

where we emphasize that ΩDE here refers to the time-
dependent fractional energy density of dark energy, not its
value at one specific given time. Linking the parametriza-
tion to ΩDE ensures that the modification to GR only
becomes relevant once dark energy provides a sizeable
fraction of the background energy density. This paramet-
rization is known to accurately capture the evolution of a
wide sub-class of Horndeski theories [54,55], but not all
[45]. The effective Planck mass M2

S is inferred from the
parametrized αM via integrating HM2

SαM ≡ d
dtM

2
S.

Parametrization II: An alternative one-parameter ansatz,
with all αi proportional to the scale factor

αi ¼ cia: ð8Þ

The dependence on the scale factor ensures that the
modification switches off smoothly at early times (recall
that αi ¼ 0 is the GR limit) and is a feature shared by the
third parametrization below as well. We note that a initially
grows more quickly than ΩDE, which only begins to
increase at a faster rate than the scale factor around
z ¼ 1, before flattening out eventually. Therefore, dark
energy perturbations become relevant slightly earlier in
parametrization II than in parametrization I. As before, the
effective Planck massM2

S is inferred from the parametrized
αM via integrating HM2

SαM ≡ d
dtM

2
S.

Parametrization III: A two-parameter ansatz, where all
αi scale with powers of a, except for αM, which is implicitly
parametrized via the deviation of the effective Planck mass
from (the constant) MPl. Explicitly, we have

αj¼cjanj ;
M2

S

M2
Pl

¼1þcδManδM ; αM¼cδMnδManδM

M2
S

; ð9Þ

where the index j runs over fB;K; Tg, i.e. braiding,
kineticity and gravitational wave speed contributions and
the expression for αM follows from that for M2

S. Since the
time-dependence of each αi is freed up individually,
different αi need no longer be proportional to one another
here. A two-parameter ansatz (for each αi) such as (9) has

been argued to be well-suited for extracting the maximal
information from present data [46]. Here we in effect
choose the asymptotic late-time value as well as the rate at
which the modification switches on, independently for
each αi.
These three parametrizations are suitably rich and differ-

ent, that any conclusion invariant under a switch between
them should be relatively robust and therefore parametri-
zation-independent. At the same time, considering different
parametrizations will also allow us to get an understanding
of which features are a consequence of choosing a specific
parametrization, rather than a conclusion enforced by the
data themselves.

C. Stability conditions

Imposing stability conditions on the parameters of the
theory serves two purposes. First, observationally relevant
instabilities would exclude the associated parameter values
in any case, so checking for their potential presence before
computing the full cosmology in an MCMC run increases
computational efficiency, but does not alter the result.
Gradient instabilities are frequently of this type. Second,
some instabilities may not show up in the classical analysis
one performs in anMCMC run, but nevertheless undermine
the validity of the theory (e.g., once quantum effects are
taken into account). Ghost instabilities can be of this type,
leading to an exponential decay of the vacuum that any
purely classical analysis would be blind to. Checking
whether ghost instabilities are present therefore safeguards
against accidentally including theories that are ill-defined at
a fundamental level.
We will impose the standard stability conditions imple-

mented by hi_class. These are first ghost-freedom con-
ditions for the scalar and tensor mode, respectively given by

αK þ 3

2
α2B > 0; M2

S > 0: ð10Þ

If these were broken in the linear theory already, this is the
sign of a fatal instability for the theory. Note that for
Horndeski theories the no-ghost condition is explicitly k-
independent, so a would-be ghost is present at all scales/
energies here. In more general modified gravity theories k-
dependence can enter into a no-ghost condition [37], in
which case a more careful analysis of the precise nature of
the ghost is required (e.g., small k ghosts have been argued
to be harmless in [56]).
Second, we impose the absence of gradient

instabilities, i.e. a positive speed of sound (effectively this
amounts to considering the large-k limit of the “mass” term
in Fourier space and requiring this term to be positive).
In Horndeski theories with αT ¼ 0, i.e. for (3), the con-
dition for the absence of a tensor mode gradient instability
is trivially satisfied, while the scalar mode condition is
given by
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c2s ¼
1

αK þ 3
2
α2B

·

�
ð2 − αBÞ

�
1

2
αB þ αM −

_H
H2

�

−
3ðρtot þ ptotÞ

H2M2
S

þ _αB
H

�
> 0: ð11Þ

Using the background equations (6), we will find it useful
to recast this condition in the equivalent form

c2s ¼
1

αK þ 3
2
α2B

·

�
ð2 − αBÞ

�
1

2
αB þ αM

�

þ 2 _H
H2

�
1 −M2

S

M2
S

�
þ

d
dt ðαBHÞ

H2

�
> 0: ð12Þ

These conditions need to be modified, if the speed of
gravitational waves is left undetermined. In this case, the
absence of gradient instabilities for the tensor mode
requires

αT ≥ −1; ð13Þ

while for the scalar mode the gradient stability condition
becomes

c2s ¼
1

αK þ 3
2
α2B

·
�
ð2− αBÞ

�
1

2
αBð1þ αTÞ þ αM − αT −

_H
H2

�

−
3ðρtot þptotÞ

H2M2
S

þ _αB
H

�
> 0: ð14Þ

We emphasize that using the above gradient stability
conditions to exclude parameter space in exploring theories
ought to be used with caution. Cosmologies with signifi-
cant such classical instabilities will automatically be
excluded by the data, when exploring the full parameter
space with an MCMC run. While it is computationally
more efficient to only explore a reduced parameter space
based on the above stability cuts, one ought to be careful
not to place overzealous cuts and exclude physically viable
parameter space (thus biasing the results). We have there-
fore checked for a number of cases that constraints with and
without gradient stability priors indeed only show very
mild differences, so using the above cuts is well-justified.
Tachyon instabilities and the associated stability condi-
tions, on the other hand, are far more involved (for a
discussion see [37,57,58]), especially since the presence of
such instabilities can in fact be required to ensure the
physical validity of a model (the Jeans instability is the
prime example here). We therefore choose a maximally
safe approach and do not exclude any parts of parameter
space based on tachyonic stability cuts a priori, but instead
let the data exclude any cosmologies with significant such
instabilities. While this approach is less computationally
efficient, it guards against biasing our results by only
sampling part of the physically viable parameter space.

IV. DATA AND THEORETICAL MODELLING

In order to constrain general Horndeski scalar-tensor
theories, we combine several different datasets, which are
illustrated in Table I and detailed below.7

A. Data

CMB: We use CMB temperature and polarization data
from Planck’s second data release [3,59,60].8 Specifically,
we include low-l (2 ≤ l ≤ 29) temperature and polariza-
tion data as well as high-l (30 ≤ l ≤ 2508) temperature
data in form of the published Planck likelihood. In our
fiducial setup, we analyze high-l temperature data using
the PLIK LITE likelihood, which has been marginalized over
all nuisance parameters except for the Planck absolute

TABLE I. Overview of the datasets considered in this work.

Acronym Description Reference

P15 Constraints from Planck
Collaboration 2015,
TTþ lowP

[3]

P15þ lensing Constraints from Planck
Collaboration 2015,
TTþ lowP and CMB
lensing convergence.

[3,4]

BAO BAO measurements from
BOSS and SDSS.

[5,6]

SDSS DR7: zeff ¼ 0.15,
DVðzeffÞ¼ð664�25Þrd=rd;fidMpc
BOSSDR11∶ zeff ¼ 0.32,
DVðzeffÞ¼ð1264�25Þrd=rd;fidMpc

RSD RSD constraints from
BOSS and 6dF.

[7,8]

BOSS DR11: zeff ¼ 0.57,
DVðzeffÞ=rd ¼ 13.85� 0.17,
FðzeffÞ ¼ 0.6725� 0.0283,
fðzeffÞσ8ðzeffÞ ¼ 0.4412� 0.0435
6dF∶ zeff ¼ 0.067,
fðzeffÞσ8ðzeffÞ ¼ 0.423� 0.055

mPk Constraints from SDSS
DR4 LRG power
spectrum shape

[9]

7We note that there exist many datasets additional to the ones
discussed below. In this work, we choose a conservative approach
and exclude any datasets that could be correlated to each other,
as they probe the same underlying structures.

8We note that, while this work was being finalized, the Planck
Collaboration published its final results. The most significant
difference between these and the earlier results from 2015 is the
shift to a lower value of the optical depth to reionization, τreion, by
approximately 1.5σ. As there are no strong correlations between
the value of τreion and the αi parameters, we believe that these new
constraints will not significantly affect our conclusions.
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calibration parameter.9 We further complement these mea-
surements with the Planck CMB lensing likelihood [4] in
the angular multipole range 40 ≤ l ≤ 400.
RSD: We include two complementary RSD measure-

ments in our analysis. As a first dataset, we use the RSD
measurement derived from BOSS DR11 CMASS aniso-
tropic clustering at an effective redshift zeff ¼ 0.57 [8].
Further, we also include the RSD measurement at zeff ¼
0.067 obtained from 6dF galaxy clustering data in Ref. [7].
BAO: We complement the above datasets with isotropic

BAO measurements from BOSS and SDSS. Specifically
we include constraints on the volume averaged distanceDV
at zeff ¼ 0.32 from BOSS DR11 LOWZ data [5] and BAO
measurements at zeff ¼ 0.15 from the SDSS DR7 main
sample [6]. Note that we exclude the anisotropic BAO
measurement from CMASS, which is also given in Ref. [5],
as it is highly correlated with the RSD measurement of
Ref. [8]. Reference [6] showed that the cross-correlations
between the RSD and BAO datasets included in this work
are negligible and we thus assume all these datasets to be
independent.
mPk: Finally we include constraints on the shape of the

matter power spectrum (mPk) at zeff ¼ 0.35 from SDSS
DR4 luminous red galaxies (LRG) [9]. Ref. [9] measured
the galaxy clustering power spectrum PggðkÞ in three-
dimensional Fourier space for 20 k-bands in the range
0.01h Mpc−1 < k < 0.2h Mpc−1. In our analysis, we
only consider k-bands with k < 0.1h Mpc−1 in order to
minimize sensitivity to nonlinear clustering and scale-
dependent bias.

B. Theoretical modeling

We compute theoretical predictions for all observables
considered using the publicly-available code HI_CLASS10

[40], which extends the Boltzmann code CLASS
11 [61] to

subsets of Horndeski scalar-tensor theory [1]. For CMB
and BAO data we follow the implementations described in
Refs. [4,5,8,60]. Detailed explanations of theoretical mod-
eling choices employed for RSD and matter power spec-
trum data are given in Appendix A.

V. COSMOLOGICAL PARAMETER
CONSTRAINTS

We derive constraints on cosmological parameters in a
joint fit to the data discussed in Sec. IV. We make the
simplifying assumption that the cross-correlations between
all datasets are negligible,12 and we therefore assume a joint
Gaussian likelihood as

LðDjθÞ ¼ LCMBðDCMBjθÞLRSDðDRSDjθÞ
· LBAOðDBAOjθÞLmPkðDmPkjθÞ; ð15Þ

where θ denotes the vector of model parameters and Di a
given data vector. We sample LðDjθÞ in a Monte Carlo
Markov Chain (MCMC) with the publicly-available
code MONTEPYTHON13 [62,63], using the Metropolis-
Hastings algorithm [64,65]. We set the background
cosmological model to ΛCDM and, in addition to the
parameterization-dependent modified gravity parameters
detailed in Sec. III, vary the six cosmological parameters
fwcdm; wb; θs; ns; log 1010As; τreiong, where wcdm ¼ Ωcdmh2

is the fractional cold dark matter density today, h is the
Hubble parameter, wb ¼ Ωbh2 is the fractional baryon
density today, θs is the position of the first peak in the
CMB temperature anisotropy power spectrum, ns denotes
the scalar spectral index of initial perturbations, As is the
primordial power spectrum amplitude at a pivot scale of
k0 ¼ 0.05 Mpc−1 and τreion denotes the optical depth to
reionization. We also suppress the tensor-to-scalar ratio,
setting r ¼ 0, and impose that the asymptotic value of the
effective Planck massM at early times is indeedMPl, since
we do not wish to constrain early universe modifications of
gravity (for a different approach, see [42]). Following
Ref. [3], our fiducial model includes two massless and a
massive neutrino eigenstate and we fix the sum of their
masses to the minimal mass allowed by oscillation experi-
ments, i.e.

P
νmν ¼ 0.06 eV. In addition to the cosmologi-

cal parameters, we further vary three nuisance parameters
fAPlanck; b; ng, where APlanck denotes the Planck absolute
calibration parameter, b is a linear, redshift-independent
galaxy bias parameter and n parametrizes systematic uncer-
tainties due to shot noise and nonlinear evolution in the
matter power spectrum (for more details, see Appendix A).
When extracting parameter constraints we check for con-
vergence, in particular ensuring the Gelman-Rubin

9We have tested the impact of this choice, by rerunning our
analysis for a fiducial ΛCDM background cosmology using the
full Planck high-l temperature likelihood (with all of its addi-
tional nuisance parameters) instead of the premarginalized PLIK
LITE likelihood. Constraints obtained using the full Planck high-l
temperature likelihood and ones obtained using the PLIK LITE

likelihood agree very well—see Appendix B for details. Note that
this was to be expected, due to the explicit choice of a ΛCDM
background cosmology in our analysis—see the discussion in
Sec. III.

10The code can be found at: http://miguelzuma.github
.io/hi_class_public/.

11The code can be found at: http://class-code.net.

12This assumption is justified for the BAO and RSD datasets,
as we have not included any potentially correlated BAO or RSD
datasets in our analysis. In addition, CMB and LSS probes are
weakly correlated due to the ISW effect, which is therefore a
potentially constraining probe of general modified gravity the-
ories. We therefore expect that our constraints can only improve
upon inclusion of these cross-correlations and leave a detailed
investigation thereof to future work.

13The code can be found at: http://baudren.github.io/
montepython.html.
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diagnostic [66] R satisfies R − 1≲ 0.01 for all (cosmologi-
cal and nuisance) parameters.

A. Constraining the αi

In the following, we show parameter constraints for the αi
functions that parametrize departures from GR for various
combinations of the datasets listed in Table I and for the
different αi-parametrizations, (7), (8) and (9). In this section
we assume luminally propagating gravitational waves, so
work with (3) as the underlying action. Theories with
cGW ≠ c will be discussed in Sec. VI. Constraints shown
are marginalized over all standard ΛCDM and nuisance
parameters as discussed above. The reader is referred to
Appendix B for further details on parameter constraints for
these standard parameters and consistency checks.

1. The constrainable αi parameter space

Out of the four αi, it is important to note that αK is in
effect the combination of the Gi and their derivatives that is
“orthogonal” to the parameter space probed by linear
cosmology and therefore hardly constrained by the data
used here [42].14 For the purposes of the analysis here, one
can consequently fix αK to an essentially arbitrary fiducial
parameter, and we will do so in what follows.15 In addition,
we highlight that αB ¼ 2 is a singular point in the αi
parameter space16 in the following sense: When computing
the linear theory around a Friedmann-Robertson-Walker
(FRW) background in the context of Horndeski models (1),
one may focus on the scalar perturbations of the metric and
the scalar ϕ, expand the action to quadratic order in these
perturbations, gauge fix and integrate out auxiliary varia-
bles (for details, see [37]). This procedure results in a
kinetic term for the scalar perturbation δϕ of the following
form

Lð2Þ
kin ∝

ð3α2B þ 2αKÞH2M2
S

_δϕ2

ðαB − 2Þ2 : ð16Þ

Clearly the kinetic term diverges when αB ¼ 2. This is
because setting αB ¼ 2 eliminates mixing between the
metric perturbations Φ and B in the action, turning B into
a Lagrange multiplier—for details we again refer to [37].
As a result, the αB ¼ 2 theory propagates no gravitational

scalar degree of freedom and no physical model should
therefore evolve across this boundary, as this would imply a
discontinuity in the number of propagating dof. In the
parameter plots we are about to discuss, we will therefore
explicitly mark the αB ¼ 2 line whenever relevant and
forbid evolution across this boundary.17

2. Parametrization I: αi = ciΩDE

Constraints for this parametrization are shown in Fig. 1.
First, we note that the sharp, lower (small cM) boundary of
the contours is due to the onset of gradient instabilities. For
the CMB-only constraints, the other boundaries are mostly
determined by the late integrated Sachs-Wolfe (ISW) effect.
The ISW especially excludes cosmologies with large cM or
cB, as these lead to the generation of too much power for
the low-l CTT

l , which can be seen in Fig. 3. This is in good
agreement with the observation of [40] that modifications
to the late ISW are indeed the driving factor in CMB
constraints on the ci—also see [49]. Note that from CMB
constraints alone there is a “degeneracy direction” roughly
satisfying cM ∼ 2.5cB for small cM, where the effect of the
ci conspires to avoid large power for the low-lCTT

l . Adding
BAO and mPk data only very mildly improves constraints,
whereas RSD constraints on fσ8 rule out large, positive cM
values. Finally note that the singular αB ¼ 2 case discussed
above does not appear here, as in this parametrization and
for ΩDE;0 ∼ 0.7, αB ¼ 2 today corresponds to cB ∼ 2.86 (or
progressively larger as one goes back in time) and these
high-cB cosmologies are already strongly disfavored by
Planck CMB constraints.

3. Parametrization II: αi = cia

As can be seen from Fig. 1, analogously to above, the
CMB-only constraints lie along a “degeneracy direction,”
which in this parametrization is given by cb ∼ 1.8cM. Also
as before, BAO and mPk data do not add significant
additional constraining power. The contours around the
degeneracy direction are tightened in comparison with the
αi ¼ ciΩDE parametrization discussed above, resulting in a
correspondingly tighter correlation between cM and cB—
departures away from this direction lead to large excess
power on large scales again. Also in contrast to the first
parametrization, all negative cM values are ruled out by
requiring the absence of gradient instabilities in this para-
metrization. Finally notice that constraints not including
RSDs in fact favor large values of cB and cM, driving chains
in the analysis to preferentially explore regions close to the
singular point αB ¼ 2 (which is crossed in the past for
cB > 2). Combined with a somewhat bimodal distribution
for both ci when only using these datasets, this leads to

14This is related to the findings that (I) at leading order, αK
does not affect the dynamics in the quasistatic approximation and
(II) very large scale modes (sensitive to relativistic effects) have a
much smaller statistical weight on constraints for the αi than
smaller scale modes (for which quasistatic approximation holds
to high accuracy) [43].

15We have checked that our results do not change for a wide
variety of fiducial choices for αK. For concretenesswe have chosen
cK¼0.1 for all the results shown here. nK , in the context of
parametrization III, has been fixed to nK ¼ 3.

16We thank Emilio Bellini for several discussions related to
this point.

17Note that the plots in Figs. 1 and 2 present binned data, so
any points seemingly just over the αB ¼ 2 boundary appear as
such as an artefact of the binning.
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slowly converging chains for these cases. However, RSDs
rule out large cB, cM values, thus driving the preferred
values for the ci back closer to GR and removing any
bimodality.

4. Parametrization III: αj = cjanj

The constraints for parametrization III are shown in
Fig. 2. In order to correctly interpret the results, recall that
M2

SαM ¼ cδMnδManδM here, so the analogue to cM in the
previous parametrizations is cδMnδM, not cδM. We first note
that we impose an upper bound on the ni, namely ni ≤ 20,
as large ni essentially remove any observable cosmological
effect of the αi by suppressing them until very late times.18

Large ni cosmologies are therefore indistinguishable from
standard ΛCDM in practice, so that MCMCs will not
converge unless an upper bound is placed on the ni. This is
particularly manifest in the constraints for nB. nδM is far
better constrained, precisely for the above reason that cM in
the above parametrizations is analogous to cδMnδM here, so
nδM inherits some of the constraining power acting on cM.
In addition, removing the proportionality between αM and
αB removes any significant correlation between cδM and cB.
This can be seen by noting that cδM is still driven to low
values by RSD constraints, as before, but this does not lead
to a corresponding tightening of constraints on cB here. cB
is only weakly affected by adding RSD constraints and for
all datasets prefers values close to the singular cB ¼ 2
point. Note that parameter constraints using this para-
metrization have also been derived and discussed in
[49]. Our analysis differs from the results presented there
in two important aspects. First, we take into account
additional modified gravity effects on fσ8 in our analysis
(see Appendix A), resulting in stronger constraints from
RSDs. Second, as discussed in Sec. III, we do not exclude
models that display tachyonic instabilities. Since such
instabilities can be an essential part of well-motivated
physical models, we simply let the data decide which
models to accept. In this way one is sure to avoid
introducing unphysical biases as artefacts of overzealous
stability priors. Overall the differences in the analysis have
a strong effect on the parameter constraints obtained: [49]
found that the posterior for cδM (or M̃0 in the notation used
in [49]) displayed strong bimodality and was predomi-
nantly driven away from its GR value zero, as a result of
tachyonic instabilities.19 Our analysis shows no such
bimodality for the cδM posterior, qualitatively changing
constraints on the running of the Planck mass in compari-
son to [49], with the best-fitting cosmologies clustered

FIG. 1. Cosmological parameter constraints for the modified
gravity ci parameters, using parametrizations I (7) (αi ¼ ciΩDE)
and II (8) (αi ¼ cia). The inner (outer) contours correspond to 68%
(95%) confidence levels, respectively and we plot results for
different combinations of the datasets detailed in Sec. IV above.
The lower (negative) cM boundary is due to the onset of gradient
instabilities.Otherwise,withoutRSDdata, the shape of the contours
is primarily driven by the late ISW effect in the low-l CMB
temperature anisotropy power spectrumCTT

l (also see Fig. 3). Once
RSDs are taken into account, theirmeasurement offσ8 establishes a
strong upper bound for cM, thus strengthening constraints. Finally
note one additional feature for the (8) parametrization (right panel).
All models with cB > 2 herewill cross the singular αB ¼ 2 point in
their past evolution (for the left panel this would correspond to
cB ∼ 2.86, so does not affect constraints there) andwe consequently
do not explore such models, as discussed below.

18Negative ni introduce large modifications at early times,
so we do not discuss this case, since we are focusing on late-
time modifications here. The precise upper bound on ni is
arbitrary, but we have chosen ni ≤ 20 to facilitate the comparison
with [49].

19We thank Christina Kreisch for related discussions.
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around the GR value for this parameter. As can be seen
from Fig. 2, this change in posterior for cδM also quali-
tatively changes the constraints for the other parameters,
removing any strong suppression for large values of nδM in
the associated posterior (and similarly removing any
suppression for large values of nB in its posterior).

B. What drives the constraints?

Constraining power on the αi primarily comes from three
sources:

(i) CMB constraints limit deviations from GR by
effectively placing an upper bound on the αi. Large
αi in all parametrizations are generically associated
with too much power for the CTT

l on large scales
(small l) due to a modified late ISW effect. In the
context of the αi ¼ ciΩDE parametrization, this was

already discussed in [40] and is explicitly shown in
Fig. 3 for a number of illustrative choices of the ci
and their corresponding cosmologies.

(ii) The onset of gradient instabilities, associated to the
stability condition (11), rule out large negative
values for both αi.

(iii) RSD data further reduce the allowed αM, as can be
seen from Fig. 4. If αM is closely correlated/propor-
tional to αB, this results in analogously strong
constraints on αB.

For theCMBconstraints, note thatweused the high-l, low-l
and lensing likelihoods for Planck 2015.20 Constraints in

FIG. 2. Cosmological parameter constraints for the modified gravity parameters in parametrization III (9). The inner (outer) contours
correspond to 68% (95%) confidence levels, respectively and we plot results for the same datasets as in Fig. 1. In close analogy to that
figure, cM is tightly constrained, whereas freeing up the power-law dependence on cB weakens the constraints for that parameter,
illustrating that the cB constraints in Fig. 1 where significantly strengthened by choosing a parametrization for which αB ∝ αM. Also
again notice the singularity cut for cB ¼ 2. We impose bounds for the poorly constrained power-law parameters ni ≤ 20, since the
analysis will not converge otherwise: Arbitrarily large ni correspond to suppressing modified gravity effects until extremely late in the
evolution, so very large ni yield near-identical cosmological phenomenology. The constraint for nδM is stronger than that for nB, since in
this parametrization cδMnδM is analogous to cM in the above parametrizations—recall that here αj ¼ cjanj andM2

S ¼ M2
Plð1þ cδManδM Þ

so M2
SαM ¼ cδMnδManδM .

20We note that the addition of the lensing likelihood is crucial
to obtain optimal constraints—we have checked for a fiducial
cosmology that pure CMB constraints are significantly weakened
without the lensing likelihood.
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general are onlymildly improved by further addingBAOand
mPk data. For BAOs this is due to the fact that we have fixed
the background to be ΛCDM. As the angular diameter
distance and the Hubble scale (as constrained by the BAO
data used here) are background quantities, adding BAO data
does not directly add constraining power for the modified
gravity ci parameters. The constraining power of mPk on the
ci is also rather weak. This is because, for the scales
considered in our analysis, the ci mainly affect the amplitude
of thematter power spectrum, as can be seen fromFig. 4, and
this effect is degenerate with both galaxy bias and the
amplitude of fluctuations. For implementation details see
Appendix A.
The addition of RSD constraints primarily affects cM,

ruling out large values for this parameter. This is because
fσ8, as constrained by RSD measurements, traces the
growth of structure on the associated scales, which strongly
depends on the effective strength of gravity. This is
predominantly determined by the effective Planck mass,
which is increased at late times by larger cM values. So the
growth of structure as measured by the growth function f is
significantly more limited when including RSD data than
with CMB constraints alone. In addition there is also an
additional smaller effect on cB and effects on H0 and σ8,
which we will discuss in Appendix B. Note that fully
propagating modified gravity effects in mapping RSD
constraints onto bounds on the ci (via fσ8) is important
for extracting the full constraining power of RSDs on the
modified gravity parameter space we investigate here
(see Appendix A). Finally, recall that we use two sets of
RSD data, namely samples from the BOSS and 6dF
surveys. Interestingly both surveys individually add similar
constraining power in terms of the αi parametrization

FIG. 3. Illustration of the effect of modified gravity parameters
on the CMB TT power spectrum. The data points used in this
work are shown with 1σ uncertainties (specifically, the uncer-
tainties shown correspond to the square root of the diagonal
elements of the covariance matrix of the data and thus do not
include potential correlations between the data points) and we
plot a standard ΛCDM=GR cosmology as well as four other
cosmologies with nonvanishing ci. Since we focus on the effects
of the ci, all standard ΛCDM parameters are fixed to their Planck
2015 best-fit values here [3]. Note that the second (cM ¼ −0.16,
cB ¼ 0.47) cosmology corresponds to the best-fit values we
obtain for these parameters in our MCMC analysis for the αi ¼
ciΩDE parametrization (although the corresponding cosmology
here is close to, but not identical, to that best-fit, since we impose
the Planck best-fit choices for all other parameters). The third
cosmology shows that there is a “degeneracy” direction asso-
ciated with simultaneously enlarging cM and cB from CMB
constraints alone (and only for “small” ci, see Fig. 1). The final
two cosmologies illustrate that individually increasing cM or cB
eventually leads to too much added power on large scales via the
late ISW effect.

FIG. 4. Illustration of the effect of modified gravity parameters on the matter power spectrum and fσ8. The data points used in this
work are shown with 1σ uncertainties as before and we plot the same set of cosmologies as in Fig. 3. The matter power spectrum (left
plot) only weakly discriminates between the different cosmologies used here, due to a degeneracy between galaxy bias and the ci in their
effects on the amplitude of the power spectrum. We emphasize that shaded data points are excluded from our analysis, since their correct
interpretation requires modeling nonlinearities in a way that takes into account nonlinear modified gravity effects (which we do not). fσ8
constraints from RSDs (right plot), on the other hand, have strong constraining power. In this context we highlight the second and third
cosmology, which yield very similar CMB TT power spectra (see Fig. 3), but very different signatures for fσ8. As a result, the third
(large cM) cosmology is strongly disfavored by RSDs.
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parameters, with the BOSS RSD data being marginally
more constraining.

C. Robust conclusions

Having considered the constraints for individual para-
metrizations above, we would now like to extract those
conclusions that are generic and independent of the choice
of parametrization (at least within the representative set of
parametrizations we have considered here).

1. Parametrization-independent conclusions

For all parametrizations, αM can at most be mildly
negative due to gradient instability constraints. This places
a tight limit on how much smaller than MPl the effective
Planck mass MS can be. Depending on the functional form
of/parametrization chosen for αM this can be strengthened
up to ruling out negative αM altogether (e.g., in para-
metrization II). Similarly, while all parametrizations con-
sidered above allow mildly negative αB, positive αB is
always preferred at the 2σ level (see Table II). If αM ∝ αB,
then the parametrizations tested suggest that Planckþ
BAOþmPk constraints generically yield a preferred
direction in the associated cM, cB plane (see parametriza-
tions I and II in Fig. 1), at least for small αi=ci. This is of
interest in the context of models, where this proportionality
is a genuine feature of the model (e.g., for the Horndeski
subclasses discussed in [54,55], whose dynamics are very
accurately captured by parametrization I) and not just an
artefact of the parametrization. Including RSD data always
reduces the allowed parameter range for αM by ruling out
large positive values. This can also further restrict αB, but
only if it is sufficiently closely correlated to αM, e.g., if they
are proportional to one another (whether this is true is
model/parametrization-dependent).

2. Deviations from GR?

Since negative values of αM;B are strongly constrained by
the onset of gradient instabilities, GR occupies a special
place in the αM;B plane. In other words, observationally
admissible departures from GR are not symmetric in this
plane.21 In all parametrizations αM ¼ 0 provides a good fit
to the data. When considering only its marginalized
constraints, αB mildly prefers departures from GR at
roughly 2σ confidence level (see Table II). Note, however,
that any statement on model selection needs to take into
account both the full parameter space of a given model and
its number of degrees of freedom. Since a parametrized

analysis as performed here is blind to the true number of
underlying fundamental parameters and degrees of free-
dom, we do not perform any model selection analysis in
this work. Finally note that imposing additional theoretical
constraints, e.g., as motivated by radiative stability [67], has
a tendency to eliminate additional non-GR parameter space
and therefore tends to drive parameters closer to their GR
values. So any apparent tension with GR, for a given
parametrization, may at least partially be due to incomplete
information about the underlying models and should there-
fore be interpreted with caution.

VI. RESURRECTING cGW ≠ c FOR COSMOLOGY

Inferring the equality of the speed of gravitational waves
and the speed of light for cosmological energy scales
H0 ∼ 10−33eV from the measured equality of those speeds
for GW170817 and GRB 170817A (measured at energy
scales ∼10−13eV) implicitly assumes a scale/time/energy-
independent speed of gravitational waves. As such, this
caveat also applies to the derivation of (3). Importantly, and
as pointed out by [68], this means the energy scale probed
by GW170817 is significantly larger than that of late-
universe cosmology and lies very close to the naive cutoff
of theories involving a G3 interaction, usually taken to be
Λ3 ¼ ðMPlH2

0Þ1=3 ∼ 10−13eV. Making a measurement at
those scales therefore in principle tests the (unknown and
possibly partial) UV completion of the theory (3), assumed
to be governing cosmological dynamics. Indeed, as [69]
point out, generic Lorentz-invariant UV completions that
come in at scales parametrically smaller than Λ3 will bring

TABLE II. Constraints on the modified gravity parameters for
the different parametrizations used in this work. Note that we do
not include the ni parameters of parametrization III (9) here, since
these are only very poorly constrained—see Fig. 2. The un-
certainties/limits quoted denote the 95% c.l.. In the final para-
metrization, cT has a highly skewed, non-Gaussian posterior (see
Fig. 5), so we only give an upper limit at the 95% c.l. for this
parameter. For a detailed comparison with previous work, taking
into account the use of different datasets and theoretical priors,
see Secs. V and VI.

Parametrization Parameter Posterior

I cB 0.63þ0.83
−0.62

– — — — — — — — — – cM 0.20þ1.15
−0.82

II cB 0.48þ0.83
−0.46

– — — — — — — — — – cM 0.27þ0.54
−0.26

III cB 1.1þ0.89
−1.1

– — — — — — — — — – cδM 0.30þ0.77
−0.45

I (cT free)
cB 0.71þ0.88

−0.71
cM −0.01þ1.3

−0.87
cT < 0.26

21Note that this in fact applies for all theories with
αM ¼ 0 ¼ αB. Also, it is instructive to focus on the ci in testing
“convergence” to GR. In the first two parametrizations consid-
ered here this is trivial, but note that for the third parametrization
(αi ¼ ciani ), while ni → ∞ in a sense recovers GR-like phe-
nomenology for arbitrary ci, it is much cleaner to focus on ci → 0
as the GR limit of this parametrization as well.
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a potentially subluminal cosmological speed of GWs back
to luminal for the frequencies observed for GW170817.
This argument subtly depends on the energy scale(s)
associated to such a UV completion, so we refer to
[20,69] for a detailed discussion of the naturalness of such
a scenario—also see [68]. In any case, the large separation
in the energy scales of cosmology and those probed by
LIGO motivates exploring the cosmology-intrinsic bounds
when also varying cT . In this way any conclusion reached
does not rely on the properties of a (partial) UV completion
of the cosmological theory under consideration.
In this section we therefore discuss the constraints from

the datasets introduced in Sec. IV on the full Horndeski
theory (1), which also allows for a varying αT . We compute
constraints for the αi ¼ ciΩDE parametrization and impose
cT ≥ −1 to avoid unphysical, imaginary speeds for gravi-
tational waves (this follows from the gradient (in)stability
requirement αT ≥ −1). These constraints are shown in
Fig. 5. First of all notice that contours in the cM, cB plane
are only mildly changed from the case with fixed cT ¼ 0,
presented in Fig. 1(a). We explicitly compare these two
cases in Fig. 6, which shows that the primary difference is
due to the fact that a nonzero cT somewhat shifts the

gradient stability condition (14), allowing additional viable
cosmologies with mildly negative cM. The overall nature of
the constraints on cM and cB, however, is relatively
independent of the (non)evolution of cT (at least for this
parametrization). These constraints therefore appear rather
robust (under prior changes for cT). The addition of RSD
data interestingly significantly drives down allowed values
of cT , with a preference for negative values and hence
subluminal propagation of gravitational waves. In this
context, note that known bounds on subluminal cGW from
the observation of high energy cosmic rays [70] probe
energy scales even larger than LIGO, so should also be
ignored in a cosmological context, if the GW170817
constraint is set aside for a cosmological analysis using
the above reasoning.22 In fact, the preference for a sub-
luminal cGW from the data aligns nicely with the theoretical
observation, that the existence of a standard UV completion
rules out superluminal speeds for the propagation of tensor
or scalar perturbations (see e.g., [71,72]).

FIG. 5. Cosmological parameter constraints for the αi ¼ ciΩDE parametrization, allowing αT to vary as well. The inner (outer)
contours correspond to 68% (95%) confidence levels, respectively. Note that constraints in the cM, cB plane are very similar to those
obtained with a fixed cT ¼ 0 in Fig. 1—see Fig. 6 for a direct comparison. Note that, with the addition of RSD measurements, there is a
preference for subluminal cGW at the 1.6σ level—cf. Table II and recall that αT here satisfies c2GW ¼ c2ð1þ αTÞ ¼ c2ð1þ cTΩDEÞ.

22From this perspective it would also be interesting to revisit
indirect constraints from the energy loss of binary pulsars [31].
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Finally, let us briefly compare the constraints in Fig. 5
with those of Ref. [42], which performed a similar analysis,
with two important differences. First, [42] use a much
larger catalogue of RSD measurements than we do here (9
such measurements of fσ8 compared to the two used here).
We choose this conservative approach in order to safeguard
against potential cross-correlations. Second, [42] treat the
initial Planck mass as a free parameter, whereas we fix the
initial Planck mass to be MPl, as we are interested in late-
universe modified gravity/dark energy effects here and do
not wish to simultaneously constrain modifications at early
times. Keeping these two points in mind and comparing the
constraints from our Fig. 5 with Fig. 3 of [42], we obtain
similar features for cB, but the constraints on cM differ as
[42] prefer lower values of cM. However, this is expected
for the following two reasons: First, as discussed above,
RSD data tend to prefer lower values of cM, so it makes
sense that adding more RSD measurements and assuming
that they are independent strengthens this preference for
low cM. Note that [42] in fact prefer negative values for cM
(and hence a continuously decreasing effective Planck mass
in cosmology) at > 2σ, whereas there is no such preference
for negative cM for our datasets. In this context it would be
interesting to further investigate potential cross-correlations
between the different RSD measurements, as well as

possible correlations between RSDs and BAOs. Second,
their analysis does not fix the initial value of the effective
Planck mass and preferentially samples larger initial values
forMPl, which can be partially compensated for by reducing
αM. Given the tightly constrained range of allowed initial
values forMPl found by [42], we however expect this second
effect to be subdominant. Finally, [42] also observe a
preference of the data for subluminal cGW, i.e. negative cT .

VII. CONCLUSIONS

In this paper we have investigated cosmological param-
eter constraints for general Horndeski scalar-tensor theo-
ries, using CMB, redshift space distortion, matter power
spectrum and BAO measurements from the Planck, SDSS/
BOSS and 6dF surveys. We have focused on computing
new constraints for models with luminally propagating
gravitational waves (i.e. cGW ¼ c as e.g., motivated by the
recent measurements from GW170817 and the assumption
of a frequency-independent cGW), implementing and dis-
cussing several previously unaccounted for aspects in the
constraint derivation for such theories. These include a
careful handling of stability conditions, restricting the
datasets included to safeguard against a potential contami-
nation of results by unaccounted for cross-correlations and
taking into account modified gravity effects on the com-
putation of fσ8 (and hence on extracting RSD constraints).
Together they have strong qualitative effects on the con-
straints obtained. Extracting cosmological parameter con-
straints for any of the above models always requires
choosing a parametrization for the residual functional free-
dom in such models—at the level of linear cosmology these
are the αi defined in (4). To avoid erroneously identifying
artefacts of these parametrizations as features of the models
to be tested, we compared results for three different para-
metrizations of the free functions in Horndeski scalar-tensor
theories and identified parametrization-independent fea-
tures of the constraints. The main constraints are shown
in Figs. 1 and 2 for three different parametrizations of the
αi∶ αi ¼ ciΩDE,αi ¼ cia andαi ¼ ciani , where all ci andni
are constants. Finally, we also investigated models, where
cGW is treated as a free function for cosmology (motivated by
the fact that the stringent constraints on cGW, such as from
GW170817,measure this speed at energy scales/frequencies
far removed from those relevant for cosmology) and dis-
cussed how this affects constraints—see Figs. 5 and 6. Key
findings are the following:

(i) The running of the Planck mass, αM, is tightly
constrained in models where cGW ¼ c. Depending
on the parametrization, it can at most be mildly
negative, due to strong gradient instabilities that
plague models with an effective cosmological Planck
mass significantly smaller thanMPl. Complementar-
ily, RSD constraints strongly disfavor models with
large positive αM. In models where αM ∝ αB, RSD
constraints also break degeneracy directions in the

FIG. 6. Comparison of constraints for cM and cB using the αi ¼
ciΩDE parametrization, contrasting the case of a fixed luminal
speed of gravitational waves (cT ¼ 0) vs. the analogous con-
straints when that speed is allowed to vary. The inner (outer)
contours correspond to 68% (95%) confidence levels, respec-
tively. Here we use the full P15þ lensingþ BAO þmPkþ RSD
dataset. Note that, in the cM − cB plane, the primary effect of
allowing cT to vary is that the lower boundaries are extended,
which is directly related to the fact that a varying cT affects the
onset of gradient instabilities [cf. Eq. (14)] and allows additional
cosmologies with mildly negative cM to avoid developing such
instabilities.
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associated cM − cB plane, exhibited by CMB con-
straints alone. αB is preferentially driven to take
positive values in all parametrizations.

(ii) CMB constraints are driven by the late ISW effect,
with large regions of modified gravity parameter
space ruled out by too much power in the TT CMB
power spectra on large scales—see Fig. 3 and notice
previous discussions of this effect in [40,49]. RSD
measurements are the second main driver of con-
straints and act via placing tight bounds on fσ8,
where fully modeling dark energy/modified gravity
effects is crucial in order to extract the maximal
constraining power.

(iii) GR is consistent with the parameter constraints de-
rived here at ∼2σ (see Table II for parametrization-
specific values). At the level of the “modified gravity
functions” αi, any preference for departures from GR
is typically driven by the braiding function αB.

(iv) For models with cGW ≠ c in a cosmological
setting (still allowed by GW170817 for a frequency-
dependent cGW—see [69] and the discussion in
Sec. VI), we show constraints in Fig. 5. Jointly
using CMB and RSD data leads to a 1.6σ preference
for subluminally propagating gravitational waves in
cosmology—cf. related constraints in [42].

(v) Constraints on αM and αB are mildly affected by
freeing up cGW (at least for the parametrization
tested—see Fig. 6) in an interesting way. Due to a
modified gradient stability condition, additional via-
ble cosmologies with negative αM are present in
this case.

Several future extensions of the work presented here
suggest themselves, especially related to the addition of
further observational and/or theoretical constraints. On the
observational front, local constraints e.g., from lunar laser
ranging [73,74], may place additional strong constraints for
models that have a sufficiently large cutoff (such that the
energy scales tested by such local tests are within the
regime of validity of the theory). “Standard sirens” asso-
ciated to future gravitational wave observations will also
yield further constraints (see e.g., [75,76] and references
therein). At larger scales e.g., additional RSD measure-
ments (cf. [42]), weak lensing data and galaxy-ISW cross-
correlations (cf. [30,77,78]) promise to add additional
constraining power for testing deviations from GR. On
the theoretical front, e.g., a better understanding of con-
straints from radiative stability [67] and positivity bounds
[71,72] for gravitational scalar-tensor theories will help in
further narrowing down the range of allowed models. By
reducing the inherent functional freedom in modified
gravity and dark energy theories this will also improve
observational bounds on such theories in the process [67].
The work presented here will hopefully be a useful stepping
stone for such future extensions, establishing a number of
robust constraints on dark energy and modified gravity
models with current data.
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APPENDIX A: THEORETICAL MODELING OF
OBSERVATIONS: IMPLEMENTATION DETAILS

RSD: Redshift space distortions measure the anisotropic
clustering of galaxies in redshift space and are sensitive to
the parameter combination fðzeffÞσ8ðzeffÞ, where fðzeffÞ is
the logarithmic linear growth rate, and σ8ðzeffÞ is the rms of
matter fluctuations in spheres of radius 8 h−1Mpc at the
effective redshift of the galaxy sample zeff . In GR, the
expression for the logarithmic linear growth rate is given by

fðzeffÞ ¼
d logD
d loga

; ðA1Þ

where D is the growth factor. Within GR, the growth factor
D can be estimated using the Heath integral [82] forΛDCM
cosmologies or by solving a GR-specific differential
equation for late-time matter perturbations (also valid for
a number of minimally coupled dark energy cosmologies—
see e.g., [83]). These two approaches are not valid for
general modified gravity theories and we therefore estimate
fðzeffÞ through

fðzeffÞ ¼
dP½

mm;linðk; aÞ
d loga

				
k¼kfid

: ðA2Þ

We evaluate (A2) at a fiducial wave vector value kfid using a
three-point numerical derivative. As the linear growth rate
is defined to be manifestly scale-independent, we choose a
fiducial wave vector value such that we can approximate
fðzeffÞ as scale-independent. Specifically, we consider
the dependence of f on k at a fixed redshift. As shown
in Fig. 7(b), we find the growth rate to be relatively scale-
independent for general Horndeski models, except at large
scales. We therefore choose a fiducial wave vector well in
the scale-independent regime, i.e. kfid ¼ 0.05 Mpc−1.23

Note that the issue of scale-dependence is also
related to the observational modeling required to extract

23We note that, be default, the growth factor D is computed
using the Heath integral within HI_CLASS and it is thus important
to implement the approach outlined above in order to capture all
modified gravity effects. We thank Emilio Bellini for pointing
this out to us.
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measurements of fσ8 from galaxy surveys, which are
typically constructed based on GR and validated using
GR mock catalogues. Comparison with dedicated Dvali-
Gabadadze-Porrati mock catalogues (displaying scale-in-
dependent linear growth) showed that using the standard
fσ8 measurements remains appropriate at least for these
models [84]. On the other hand, at least for some models
with scale-dependent linear growth a more dedicated
observational modeling is required to extract the correct
fσ8 measurements for such theories [85].24

mPk: The matter power spectrum at small scales is
affected by nonlinear clustering and potential scale-
dependent galaxy bias. Reference [9] model these effects
using the fitting formula derived in Ref. [86]. This
expression parametrizes the relation between linear matter
power spectrum and nonlinear galaxy power spectrum,
calibrated from N-body simulations. Furthermore, Ref. [9]
also take into account the BAO smoothing due to nonlinear
evolution. In this work, we choose an alternative approach
following Ref. [87]: as shown in Ref. [87], the smoothing
of BAO peaks does not significantly affect the derived
constraints on cosmological parameters and we therefore
do not include this effect into our analysis. Furthermore, we
choose to model the galaxy power spectrum PggðkÞ as in
Ref. [87] i.e.

PggðkÞ ¼ b2Pnonlin
mm ðkÞ þ n: ðA3Þ

The quantity Pnonlin
mm ðkÞ is the nonlinear matter power

spectrum, b denotes a linear galaxy bias parameter and
n parametrizes systematic uncertainties due to shot noise
and nonlinear evolution. It has been shown in Ref. [87] that
the model given in Eq. (A3) gives parameter constraints
consistent with Ref. [9], while being motivated from
perturbation theory. In our work, we model Pnonlin

mm ðkÞ using
the revised HALOFIT fitting function [88,89]. We note that
HALOFIT does not include modified gravity effects on the
nonlinear matter power spectrum. However, corrections
due to nonlinear clustering are small for the wave vector
ranges considered in this work and can be captured by the
nuisance parameter n. As the addition of the matter power
spectrum does not significantly modify the derived con-
straints on modified gravity parameters (they are driven by
Planck and RSD data), we thus believe this choice to not
affect our conclusions. When estimating constraints on
cosmological parameters, we finally marginalize over b
and n.

APPENDIX B: ADDITIONAL CONSTRAINTS AND
CONSISTENCY CHECKS

Planck temperature high-l likelihoods: In Fig. 7(a) we
show a comparison of pure Planck 2015 constraints on the
ci parameters of the αi ¼ ciΩDE parametrization obtained
using the full Planck high-l temperature likelihood (with
all of its additional nuisance parameters—16 in total) vs.
the premarginalized PLIK LITE likelihood (which has one
nuisance parameter). These two sets of constraints agree
very well, justifying the use of the PLIK LITE likelihood in
the derivation of the constraints shown throughout the
majority of this paper. Note that the PLIK LITE likelihood
has been premarginalized assuming a ΛCDM cosmology,
so the fact that we find good agreement is at least partially
due to our choice of a ΛCDM background cosmology
throughout this paper and, in that sense, unsurprising. If

FIG. 7. (a) Comparison of constraints from P15þ lensing,
where the high-l likelihood used is either the premarginalized
high-l PLIK LITE temperature likelihood or the full high-l
temperature likelihood. We have marginalized over all other
cosmological and nuisance parameters here. The two results
agree very well. (b) Illustration of the growth rate f as a function
of wave vector k for a fiducial cosmological model with various
choices of ci for the parametrization (7). The vertical line shows
our fiducial wave vector kfid ¼ 0.05 Mpc−1. We emphasize that
the growth rate becomes scale-independent for k ≥ kfid for all
cosmologies probed here.

24We thank Alex Barreira for related discussions.
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different background cosmologies are explored, more
caution ought to be exercised in using the PLIK LITE

likelihood.
Constraints on other cosmological parameters:

Throughout this paper we have focused on constraints
for the modified gravity and dark energy parameters as

captured by the αi and their respective parametrizations. In
Fig. 8 we now for completeness also show constraints for
the standard cosmologicalΛCDM parameters for one of the
parametrizations used, namely αi ¼ ciΩDE. Here we show
constraints obtained using P15þ lensingþ BAOþmPk
data and constraints obtained once RSD data are added.

FIG. 8. Cosmological parameter constraints for all ΛCDM cosmological parameters in addition to the modified gravity/dark energy ci
parameters, using parametrization (7) for the “Horndeski” contours. For comparison we also show the constraints obtained for a standard
ΛCDM model without any additional degrees of freedom. Nuisance parameters are marginalized over and not shown in both cases. As
datasets we use P15þ lensingþ BAOþmPk data vs. the same dataset with additional RSD data, all as described in Sec. IV. Pure
ΛCDM contours are only very mildly affected by the addition of the two RSD measurements we use, so we only plot constraints for the
combined datasets in that case.
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Figure 1(a) then is essentially a zoom-in on the cM, cB of
Fig. 8, so those constraints are of course identical. For
comparison we also show constraints on the ΛCDM
parameters obtained for a vanilla ΛCDM model without
any additional degrees of freedom and for the same
datasets. In terms of the ΛCDM parameters in modified
gravity/dark energy models, the main effect of adding RSD
data is on σ8 andH0. Both are pushed towards lower values

by adding RSD data. In the case ofH0 this shift is only mild
and still leads to a best-fitH0 larger than in the pure ΛCDM
case. For σ8 the shift is more notable and one can also
notice a “degeneracy direction” in the cM − σ8 plane for
CMBþ BAOþmPk constraints, that is broken by adding
RSD measurements. This is because σ8 effectively controls
the number density of collapsed objects at a given scale. If
cM increases, this means the effective Planck mass at late

TABLE III. Common parameters varied in the MCMC analysis for the different parametrizations used in this paper with their
respective priors and posteriors. The uncertainties shown denote the 95% confidence level. APlanck, b and n are nuisance parameters.
Param I* refers to parametrization I with a varying cT . The cM=cδM row shows posteriors for cδM for parametrization III and for cM for
all other parametrizations.

Parameter Prior Param. I Param. II Param. III Param. I*

100θs Flat unbound 2.25� 0.04 2.24� 0.04 2.24� 0.04 2.25� 0.04
wcdm Flat unbound 0.117þ0.002

−0.003 0.117� 0.003 0.117� 0.003 0.117� 0.003
wb Flat unbound 0.0104� 0.0008 0.0104� 0.0008 0.0104� 0.0008 0.0104� 0.0008
ns Flat unbound 0.973� 0.009 0.972� 0.009 0.972� 0.009 0.973� 0.009
log 1010As Flat unbound 3.05þ0.053

−0.037 3.05þ0.06
−0.05 3.06� 0.05 3.04þ0.05

−0.04
τreion Flat ∈ ½0.04;−� 0.0588þ0.0276

−0.0177 0.0662þ0.0302
−0.0239 0.0677þ0.0267

−0.0237 0.0588þ0.0280
−0.0177

cM=cδM Flat unbound 0.20þ1.15
−0.82 0.27þ0.54

−0.26 0.30þ0.77
−0.45 −0.01þ1.30

−0.87
cB Flat unbound 0.63þ0.83

−0.62 0.48þ0.83
−0.46 1.1þ0.89

−1.10 0.71þ0.88
−0.71

APlanck Flat ∈ ½0.9; 1.1� 1.00� 0.5 1.00� 0.5 1.00� 0.5 1.00� 0.5
b Flat ∈ ½1.; 3.� 2.19� 0.06 2.16þ0.10−0.12 2.19þ0.09

−0.11 2.22þ0.11
−0.13

n Flat ∈ ½0.; 21390:� 1494:þ3000:
−1430: 1427:þ2764:

−1360: 1434:þ2862:
−1374: 1477:þ2913:

−1415:

FIG. 9. Illustration of the BAO (top left) and CMB data used in this work (note that the CTTl are shown in Fig. 3). The cosmologies
plotted are the same as in Figs. 3 and 4 and the results here should be seen as consistency checks—as discussed in Appendix B, one does
not expect there to be any strong signal of modified gravity effects for the observables plotted here.
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times increases, so gravity is stronger and objects collapse
more efficiently. So it makes sense that these two param-
eters are correlated. However, while increasing cM
increases σ8 at low redshifts (σ8 in Fig. 8 is measured at
redshift zero), at redshifts relevant for CMB constraints
different values of cM have almost no effect on σ8. This
explains why both σ8 measured at redshift zero and cM are
only relatively weakly constrained by CMBðþBAOþ
mPkÞ measurements. Adding RSD data then adds addi-
tional and direct sensitivity to the late-universe effects of
cM (and σ8), reducing cM and bringing the posterior for σ8
into excellent agreement with the one derived from stan-
dard ΛCDM. Finally, there are also small differences for
ωcdm and ns, which can both be understood in terms of their
correlation with H0, i.e. this correlation drives the mild
differences in those parameters. Note that, motivated by
observations of the Gunn-Peterson trough (see e.g., [90]),
we impose a prior τreion ≥ 0.04, corresponding to zreion ≳ 6.
In Table III we furthermore collect parameter constraints

for the common parameters varied in all parametrizations
for the full P15þ lensingþ BAOþmPkþ RSD dataset.
Additional CMB and BAO constraints: In Fig. 9 we show

the remaining constraints from BAOs and the other CMB
power spectra for the same cosmologies as shown in Figs. 3
and 4 as consistency tests. The BAO measurement of
DVðzÞ=rs, being a background measurement, unsurpris-
ingly does not discriminate between cosmologies with the
same ΛCDM background cosmology (but different pertur-
bations controlled by the ci parameters). The BB power
spectrum is identically zero, since we have set the (pri-
mordial) tensor-to-scalar ratio r ¼ 0 and the additional
scalar modes in Horndeski ST theories do not source
tensor=B modes. E modes are also hardly affected at all,
so this is a good consistency check that almost all of the
CMB constraining power does indeed come from the scalar
modes (as thoroughly probed by the T modes), which are
modified in the theories we investigate here.
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