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We discuss the compatibility of the combined annual modulation effect measured by DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2 with an explanation in terms of inelastic scattering events induced by
the most general Galilean-invariant effective contact interaction of a weakly interacting massive particle
(WIMP) dark matter particle of spin 0, 1=2 or 1. We take into account all the possible interferences among
operators by studying the intersections among the ellipsoidal surfaces of constant signal of DAMA and
other experiments in the space of the coupling constants of the effective theory. In our analysis we assume a
standard Maxwellian velocity distribution in the Galaxy. We find that, compared to the elastic case,
inelastic scattering partially relieves but does not eliminate the existing tension between the DAMA effect
and the constraints from the null results of other experiments. Such tension is very large in all the parameter
space with the exception of a small region for WIMP mass mχ ≃ 10 GeV and mass splitting δ≳ 20 keV,
where it is partially, but not completely relieved. In such region the bounds from fluorine targets are evaded
in a kinematic way because the minimal WIMP incoming speed required to trigger upscatters off fluorine
exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. As a consequence, we also find
that the residual tension between DAMA and other results is considerably more sensitive on the
astrophysical parameters compared to the elastic case. We find that the configurations with the smallest
tension can produce enough yearly modulation in some of the DAMA bins in compliance with the
constraints from other experiments, but the ensuing shape of the modulation spectrum is too steep
compared to the measured one. For such configurations the recent COSINE–100 bound is evaded in a
natural way due to their large expected modulation fractions.
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I. INTRODUCTION

For more than 15 years the DAMA collaboration [1–4]
has been measuring a yearly modulation effect in a large–
mass low–background sodium iodide target compatible to
the signal of the dark matter (DM) particles that are
believed to make up 27% of the total mass density of
the Universe [5] and more than 90% of the halo of our
Galaxy. Indeed, weakly interacting massive particles
(WIMPs), which provide one of the most popular DM
explanations, are expected to have feeble interactions with
nuclear targets in a terrestrial detector with a scattering rate
that presents a modulation with a period of one year due to
the Earth revolution around the Sun [6]. In particular, with

the release of the latest DAMA/LIBRA-phase2 data [4] the
statistical significance of DAMA effect has reached almost
12σ. However, in the most popular WIMP scenarios used to
explain the DAMA signal as due to WIMPs, the DAMA
modulation appears incompatible with the results from
many other DM experiments that have failed to observe
any signal so far. Nevertheless, until recently none of the
experiments ruling out the DAMA effect used the same
target nuclei as DAMA/LIBRA, so that such incompati-
bility relied on both particle physics and astrophysics
assumptions. Such model dependence has been shown to
persist [7] also after the bound from the COSINE–100
collaboration [8], that has recently published an exclusion
plot for a standard elastic, spin-independent isoscalar
WIMP nucleus interaction and a WIMP Maxwellian
velocity distribution that for the first time rules out the
DAMA effect at low WIMP masses using 106 kg of NaI,
the same target of DAMA. Given the strong statistical
significance of the DAMA/LIBRA signal, and the scientific
implications, this prompted the need to extend the class of
WIMP models. Indeed, several scenarios have been intro-
duced trying to reconcile the DAMA effect with other null
results [7,9–23]. A more systematic approach is to compare
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DAMA and other null results exploiting the nonrelativistic
(NR) nature of the WIMP-scattering process, that allows
to express the interaction in terms of the more general
effective Hamiltonian allowed by Galilean invariance
[24,25], of the form:

HðrÞ ¼
X
τ¼0;1

X15
j¼1

cτjOjðrÞtτ; ð1Þ

where t0 ¼ 1 is the identity in isospin space, t1 ¼ τ3 is the
third Pauli matrix, and r denotes the dark matter-nucleon
relative distance and the operators Oj depend on the
exchanged momentum q⃗, the WIMP incoming velocity
v⃗, the WIMP spin S⃗χ and nuclear spin S⃗N . In Eq. (1) the
isoscalar and isovector (dimension -2) coupling constants
c0j and c1j , are related to those to protons and neutrons cpj
and cnj by cpj ¼ ðc0j þ c1jÞ and cnj ¼ ðc0j − c1jÞ. Truncating
the effective theory expansion to operators at most quad-
ratic in q≡ jq⃗j and v≡ jv⃗j the ensuing Hamiltonian
contains 8 independent couplings cτj for a scalar WIMP,
28 independent couplings for a spin–1=2 WIMP [24,25]
and 20 couplings for spin–1 [26]. The ultimate assessment
of the compatibility of DAMA with other constraints
requires a full exploration of such large parameter space,
where the relative sensitivities of different nuclear targets to
DM scattering events may vary by orders of magnitude.
While, due to the large dimensionality, its direct scanning
appears to be challenging this has been achieved by using
matricial techniques [27], exploiting the fact that in terms

of the couplings vector c ¼ ðcð0Þ1 ; cð1Þ1 ;…; cð0Þn ; cð1Þn ÞT for all
direct detection experiments the expected event rate can be
written in the form:

event rate ∝ cTXc; ð2Þ
whereX is a real symmetric 2n × 2nmatrix, which encodes
all the information about nuclear responses, the dark matter
velocity distribution, experimental efficiencies, etc., but
which is independent of the underlying particle physics
model (for a given dark matter mass). Due to this
factorization in the effective field theory parameter space
the surfaces of constant signal in different detectors are
ellipsoids, and, as discussed in Refs. [27,28], the determi-
nation of their geometrical intersections allows to effi-
ciently compare the results of various direct detection
experiments in the high-dimensional parameter space of
the nonrelativistic effective theory, without making any
a priori assumptions regarding the relative size of the
various Wilson coefficients cτk. In this way for a standard
halo model the DAMA/LIBRA–phase1 result [1–3] was
shown to be incompatible to the constraints from other
experiments in the case of elastic interactions of a WIMP
particle with spin ≤1=2 and the interaction Hamiltonian of
Eq. (1) with arbitrary couplings combinations [27].

As pointed out by the authors, the analysis in [27] did not
cover several alternative scenarios. One of them is inelastic
scattering. Indeed, one of the very few scenarios that
reconcile DAMAwith the constraints of other experiments
is proton–philic spin-dependent inelastic dark matter
(pSIDM) [7,29,30]. In such model the WIMP particle
interacts with nuclear targets through a spin-dependent
coupling that is suppressed on neutrons, in order to comply
to constraints using neutron-odd scattering targets (germa-
nium and xenon). Moreover inelastic scattering (IDM)
[31–33] reconciles the above scenario to fluorine detectors.
In IDM a DM particle χ1 of mass mχ1 ¼ mχ interacts with
atomic nuclei exclusively by up-scattering to a second
heavier state χ2 with mass mχ2 ¼ mχ þ δ. A peculiar
feature of IDM is that there is a minimal WIMP incoming
speed in the lab frame matching the kinematic threshold for
inelastic upscatters and given by:

v�min ¼
ffiffiffiffiffiffiffi
2δ

μχN

s
; ð3Þ

with μχN the WIMP–nucleus reduced mass. This quantity
corresponds to the lower bound of the minimal velocity
vmin (also defined in the lab frame) required to deposit a
given recoil energy ER in the detector:

vmin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNER
p

����mNER

μχN
þ δ

����; ð4Þ

with mN the nuclear mass.
In particular, indicating with v�Namin and v�Fmin the values of

v�min for sodium and fluorine, and with vesc the WIMP
escape velocity, in Refs. [7,29,30] constraints fromWIMP–
fluorine scattering events in droplet detectors and bubble
chambers were shown to be evaded when the WIMP mass
mχ and the mass gap δ are chosen in such a way that the
hierarchy:

v�Namin < vlabesc < v�Fmin; ð5Þ

is achieved. In fact, in such case WIMP scatterings off
fluorine turn kinematically forbidden while those off
sodium can still serve as an explanation to the DAMA
effect. So the pSIDM mechanism rests on the trivial
observation that the velocity v�min for fluorine is larger than
that for sodium.
In the present paper we wish to apply the technique

introduced in Ref. [27] to extend the analyses of [7,29,30] to
the general interactionHamiltonian of Eq. (1), or, conversely,
we wish to extend the analysis of [27] to the case of inelastic
scattering, updating it to the present experimental situation
and including the DAMA/LIBRA–phase2 data release
and the state of the art of all the constraints from other
experiments.
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The two most important improvements of DAMA/
LIBRA–phase2 compared to the previous phases are that
now the exposure has almost doubled and the energy
threshold has been lowered from 2 keVelectron-equivalent
(keVee) to 1 keVee. In particular this latter feature introduces
an important difference between the present analysis and
that of Ref. [27]. In the latter, for kinematic reasons and
irrespective of the effective interaction the DAMA/LIBRA–
phase1 data were only sensitive to scattering events off
sodium for a WIMP mass mχ ≲ 20 GeV, implying that in
such range of mass the scaling law induced by the effective
Hamiltonian (1) only entered in the comparison of the
scattering rate off sodium and that off the targets of other
experiments. However, due to the lower threshold, now for
mχ ≲ 20 GeV DAMA/LIBRA–phase2 is sensitive to both
the target nuclei, with WIMP-iodine scattering events
contributing to the expected rate in the new low-energy
range below 2 keVee and sodium at higher energy. This
implies that the scaling law among different targets is now
also relevant in explaining the energetic spectrum of the
modulation amplitudes measured by DAMA alone. Indeed,
due to this reason for a standard Maxellian velocity
distribution the goodness-of-fit of a WIMP explanation of
theDAMA/LIBRA–phase2 data has already been showed to
worsen compared to DAMA/LIBRA–phase1 for a standard
spin-independent interaction (SI) [34,35], requiring to tune
the ratio between theWIMP–proton and theWIMP–neutron
couplings in order to suppress WIMP–iodine scattering
events below 2 keVee. As shown in [36], with the exception
of O1 and O4, which in the notation of [24,25] correspond
respectively to the standard SI or spin-dependent (SD)
interactions, this problem is not present for all the other
operatorsOj of theHamiltonian [Eq. (1)]. This represents an
additional motivation to update the result of Ref. [27] to the
DAMA/LIBRA–phase2 data. Finally, the recent COSINE–
100 bound is potentially relevant to our analysis because any
probe of the DAMA effect using NaI is expected to lead to
conclusions independent on the WIMP–nucleus cross sec-
tion scaling law and so on the particular choice of the
couplings of the Hamiltonian [Eq. (1)]. However, as we will
show, an important dependence on theHamiltonian [Eq. (1)]
is still present when comparing COSINE-100 and DAMA.
This is due to the fact that, although an initial modulation
analysis of COSINE-100 with two-year data is forthcoming
and an additional low-threshold analysis is also actively
under development, COSINE-100 needs to collect several
years of data [37] in order to reach the sensitivity required to
probe the DAMA signal, and until then COSINE–100 will
only exploit the average count rate. So the results of the two
experiments are presently based on two different observ-
ables, the yearly modulation expected from the rotation of
the Earth around the Sun and the time-averaged rate, and
their relative size does depend on the specific model of
WIMP–nucleus interaction besides a standard SI or SD
interaction with nuclei.

The paper is organized as follows: in Sec. II we
summarize how we calculate WIMP direct detection rates
in NR effective theory; in Sec. III we outline the geomet-
rical method of Ref. [27] that we use to study the
intersections among the ellipsoidal surfaces of constant
signal of DAMA and other experiments in the space of the
coupling constants of the effective theory; our quantitative
analysis is contained in Sec. IV. We devote Sec. V to our
conclusions. For completeness we summarize the response
functions of a WIMP of spin ≤1 in Appendix A and we
provide the details of our treatment of experimental
constraints in Appendix B.

II. WIMP INELASTIC SCATTERING IN
NONRELATIVISTIC EFFECTIVE MODELS

In the present section we briefly summarize the ingre-
dients that we use to calculate for each experiment and for
each energy bin used in our analysis the matrix X
introduced in Eq. (2), needed to evaluate the expected rate
to compare to the experimental data.
The full list of operators Oj entering the Hamiltonian

of Eq. (1) for the nuclear scattering process of a WIMP
particle of spin Jχ ≤ 1 is given by:

O1 ¼ 1χ1N ; O2 ¼ ðv⊥Þ2; O3 ¼ iS⃗N ·

�
q⃗
mN

× v⃗⊥
�
;

O4 ¼ S⃗χ · S⃗N ; O5 ¼ iS⃗χ ·

�
q⃗
mN

× v⃗⊥
�
;

O6 ¼
�
S⃗χ ·

q⃗
mN

��
S⃗N ·

q⃗
mN

�
; O7 ¼ S⃗N · v⃗⊥;

O8 ¼ S⃗χ · v⃗⊥; O9 ¼ iS⃗χ ·

�
S⃗N ×

q⃗
mN

�
;

O10 ¼ iS⃗N ·
q⃗
mN

; O11 ¼ iS⃗χ ·
q⃗
mN

;

O12 ¼ S⃗χ · ðS⃗N × v⃗⊥Þ; O13 ¼ iðS⃗χ · v⃗⊥Þ
�
S⃗N ·

q⃗
mN

�
;

O14 ¼ i

�
S⃗χ ·

q⃗
mN

�
ðS⃗N · v⃗⊥Þ;

O15 ¼ −
�
S⃗χ ·

q⃗
mN

��
ðS⃗N × v⃗⊥Þ · q⃗

mN

�
;

O16 ¼ −
�
ðS⃗χ × v⃗⊥Þ · q⃗

mN

��
S⃗N ·

q⃗
mN

�
;

O17 ¼ i
q⃗
mN

·S · v⃗⊥; O18 ¼ i
q⃗
mN

·S · S⃗N: ð6Þ

In the equation above 1χN is the identity operator, q⃗ is the

transferred momentum, S⃗χ and S⃗N are the WIMP and

nucleon spins, respectively, while S ¼ 1
2
ðϵ†i ϵj þ ϵ†jϵiÞ is the

symmetric combination of polarization vectors in the case
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of a spin-1 DM particle and v⃗⊥ ¼ v⃗þ q⃗
2μχN

(with μχN the

WIMP–nucleon reduced mass) is the relative transverse
velocity operator satisfying v⃗⊥ · q⃗ ¼ 0. For a nuclear target
T the quantity ðv⊥T Þ2 ≡ jv⃗⊥T j2 can also be written as [38]:

ðv⊥T Þ2 ¼ v2T − v2min: ð7Þ

where vmin is given by Eq. (4).
Operator O2 is of higher order in v compared to all the

others, implying a cross section suppression of order
Oðv=cÞ4Þ ≃ 10−12 for the nonrelativistic WIMPs in the
halo of our Galaxy. Moreover it cannot be obtained from
the leading-order nonrelativistic reduction of a manifestly
relativistic operator [24]. So, following Refs. [24,25], we
will not include it in our analysis. Moreover, operator O16

is a linear combination of other operators, so can be
omitted. This implies a maximal number of 16 operators
in the effective Hamiltonian in Eq. (1), namely 4 operators
for a spin-0 DM particle, 14 operators for spin 1=2 and 10
operators for spin 1.
To reduce the parameter space of the effective interaction

of Eq. (1) in the following we will make a few simplifying
assumptions. First, we will only consider the case δ > 0,
i.e., upscatters of a light state to a heavier one; then we will
assume a contact effective interaction between the WIMP
and the nucleus, i.e., we will assume the coefficients cτj as
independent on the transferred momentum q and neglect
propagator effects. Moreover, we will consider real cτj’s,
although in general for an inelastic process they can be
complex [38]. Finally, we will not consider the possibility
of inelastic scattering among states of different spins [38].
The expected rate in a given visible energy bin E0

1 ≤
E0 ≤ E0

2 of a direct detection experiment is given by:

R½E0
1
;E0

2
� ¼ MT

Z
E0
2

E0
1

dR
dE0 dE

0; ð8Þ

dR
dE0 ¼

X
T

Z
∞

0

dRχT

dEee
GTðE0; EeeÞϵðE0ÞdEee; ð9Þ

Eee ¼ qðERÞER; ð10Þ

with ϵðE0Þ ≤ 1 the experimental efficiency/acceptance. In
the equations above ER is the recoil energy deposited in the
scattering process (indicated in keVnr), while Eee (indi-
cated in keVee) is the fraction of ER that goes into the
experimentally detected process (ionization, scintillation,
heat) and qðERÞ is the quenching factor, GTðE0; Eee ¼
qðERÞERÞ is the probability that the visible energy E0 is
detected when a WIMP has scattered off an isotope T in the
detector target with recoil energy ER,M is the fiducial mass
of the detector and T the live-time of the data taking. For a
given recoil energy imparted to the target the differential
rate for the WIMP–nucleus scattering process is given by:

dRχT

dER
ðtÞ ¼

X
T

NT
ρWIMP

mχ

Z
vmin

d3vTfðv⃗T ; tÞvT
dσT
dER

; ð11Þ

where ρWIMP is the local WIMP mass density in the
neighborhood of the Sun, NT the number of the nuclear
targets of species T in the detector (the sum over T applies
in the case of more than one nuclear isotope), while

dσT
dER

¼ 2mT

4πv2T

�
1

2jχ þ 1

1

2jT þ 1
jMT j2

�
; ð12Þ

with mT the nuclear target mass and, assuming that the
nuclear interaction is the sum of the interactions of the
WIMPs with the individual nucleons in the nucleus:

1

2jχ þ 1

1

2jT þ 1
jMT j2

¼ 4π

2jT þ 1

X
τ¼0;1

X
τ0¼0;1

X
k

Rττ0
k

�
cτj; ðv⊥T Þ2;

q2

m2
N

�
Wττ0

TkðyÞ:

ð13Þ
In the above expression jχ and jT are the WIMP and the

target nucleus spins, respectively, q ¼ jq⃗j while the Rττ0
k ’s

are WIMP response functions [that we report for com-
pleteness in Eq. (A1)] which depend on the couplings cτj as
well as the transferred momentum q⃗ and ðv⊥T Þ2. In Eq. (13)
theWττ0

TkðyÞ’s are nuclear response functions and the index k
represents different effective nuclear operators, which,
crucially, under the assumption that the nuclear ground
state is an approximate eigenstate of P and CP, can be at
most eight: following the notation in [24,25], k ¼ M, Φ00,
Φ00M, Φ̃0, Σ00, Σ0, Δ, ΔΣ0. The Wττ0

TkðyÞ’s are function of
y≡ ðqb=2Þ2, where b is the size of the nucleus. For the
target nuclei T used in most direct detection experiments
the functions Wττ0

TkðyÞ, calculated using nuclear shell
models, have been provided in Refs. [25,39] under
the assumption that the dark matter particle couples to
the nucleus through local one-body interactions with the
nucleons. In our analysis we do not include two-body
effects [40,41] which are only available for a few isotopes
and can be important when the one-body contribution is
suppressed. Finally, fðv⃗TÞ is the WIMP velocity distribu-
tion, for which we assume a standard isotropic Maxwellian
at rest in the Galactic rest frame truncated at the escape
velocity uesc, and boosted to the lab frame by the velocity of
the Earth. So for the former we assume:

fðv⃗T ; tÞ ¼ N

�
3

2πv2rms

�
3=2

e
−3jv⃗Tþv⃗E j2

2v2rms Θðuesc − jv⃗T þ v⃗EðtÞjÞ;

ð14Þ

N ¼
�
erfðzÞ − 2ffiffiffi

π
p ze−z

2

�
−1
; ð15Þ
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with z ¼ 3u2esc=ð2v2rmsÞ. In the isothermal sphere model
hydrothermal equilibrium between the WIMP gas pressure
and gravity is assumed, leading to vrms ¼

ffiffiffiffiffiffiffiffi
3=2

p
v0 with v0

the galactic rotational velocity.
With the exception of DAMA, all the experiments

included in our analysis are sensitive to the time average
of the expected rate for which hvEi¼v⊙ and v⊙ ¼ v0 þ
12 km= sec (accounting for a peculiar component of the
solar system with respect to the galactic rotation). In the
case of DAMA, the yearly modulation effect is due to
the time dependence of the Earth’s speed with respect to the
Galactic frame, given by:

jv⃗EðtÞj ¼ v⊙ þ vorb cos γ cos
�
2π

T0

ðt − t0Þ
�
; ð16Þ

where cos γ ≃ 0.49 accounts for the inclination of the
ecliptic plane with respect to the Galactic plane, T0 ¼
1 year and vorb ¼ 2πr⊕=ðT0Þ ≃ 29 km= sec (r⊕ ¼ 1 AU
neglecting the small eccentricity of the Earth’s orbit around
the Sun).
In our analysis for the two parameters v0 and uesc we take

v0 ¼ 220 km= sec [42] and uesc ¼ 550 km= sec [43] as
reference values, although in Sec. IV we will also discuss
the dependence of the results when the same parameters are
varied in the ranges v0 ¼ ð220� 20Þ km=s [42] and uesc ¼
ð550� 30Þ km=s [43]. Our reference choice of parameters
corresponds to the WIMP escape velocity in the lab rest
frame vlabesc ≃ 782 km=s. To make contact with other analy-
ses, for the dark matter density in the neighborhood of the
Sun we use ρWIMP ¼ 0.3 GeV=cm3, which is a standard
value commonly adopted by experimental collaborations,
although observations point to the slightly higher value
ρWIMP ¼ 0.43 GeV=cm3 [44,45]. Notice that direct detec-
tion experiments are only sensitive to the product ρWIMPσp,
so the results of the next section can be easily rescaled
with ρWIMP.
In particular, in each visible energy bin DAMA is

sensitive to the yearly modulation amplitude Sm, defined
as the cosine transform of R½E0

1
;E0

2
�ðtÞ:

Sm;½E0
1
;E0

2
� ≡ 2

T0

Z
T0

0

cos

�
2π

T0

ðt − t0Þ
�
R½E0

1
;E0

2
�ðtÞdt; ð17Þ

with T0 ¼ 1 year and t0 ¼ 2nd June, while other experi-
ments put upper bounds on the time average S0:

S0;½E0
1
;E0

2
� ≡ 1

T0

Z
T0

0

R½E0
1
;E0

2
�ðtÞdt: ð18Þ

Using the ingredients listed above, for a given value of
the two parameters mχ and δ both S0 and Sm can be
expressed as quadratic forms like Eq. (2), i.e., for each of
the experimental observable considered in our analysis a
real symmetric matrix can be obtained. Schematically, for

each energy bin n and both for DAMA and for each of the
other experiments exp:

SDAMA
m;n ðmχ ; δÞ ¼ cTSDAMA

m;n ðmχ ; δÞc ð19Þ

Sexp0;n ðmχ ; δÞ ¼ cTSexp
0;n ðmχ ; δÞc: ð20Þ

III. MAXIMAL DAMA SIGNALS
COMPATIBLE TO NULL RESULTS

Following the analysis in [27], in this section we will use
the property that, for a fixed value of the WIMP mass mχ

and of the mass splitting δ, constant-rate surfaces in the
couplings vector space are ellipsoids. In particular, given
the experimental upper bound Nexp

0;n for experiment exp
and energy bin n, the condition Sexp0;n < Nexp

0;n implies that
allowed configurations must lie inside the ellipsoid:

cTAexp
n ðmχ ; δÞc≡ cT

Sexp
0;n ðmχ ; δÞ
Nexp

0;n
c < 1: ð21Þ

As far as the DAMA modulation amplitudes are
concerned, the experimentally observed intervals
½SDAMA;min

m;k ; SDAMA;max
m;k � in energy bins k ¼ 1…N imply

the additional upper bounds:

cTADAMA
n ðmχ ; δÞc≡ cT

SDAMA
m;n ðmχ ; δÞ
SDAMA;max
m;n

c < 1; ð22Þ

which add to the previous constraints. From now on wewill
indicate all upper bound matrices as Aj, for j ∈ E, with E
the full set of experimental upper constraints including the
upper bounds on the DAMA modulation amplitudes, so
that the following conditions must be verified:

cTAjðmχ ; δÞc < 1; j ∈ E: ð23Þ

In our analysis we will include the 8 DAMA modulation
amplitudes for 1 keVee ≤ E0 ≤ 5 keVee [4], and selected
energy bins from XENON1T [46], PICO–60 (C3F8 target)
[47,48], COSINE–100 [8], COUPP [49], SuperCDMS [50]
and PICASSO [51]. The details of how we implemented
the DAMA effect and the bounds are provided in
Appendix B and in Table III. Given the DAMA modulation
amplitudes, an explanation of the effect in terms of WIMPs
implies also the lower bounds:

cTBnðmχ ; δÞc≡ cT
SDAMA
m;n ðmχ ; δÞ
SDAMA;min
m;n

c > 1: ð24Þ

Compatibility between DAMA and the other experi-
ments is achieved only if in the coupling constants
parameter space the intersection between the volumes
outside the ellipsoids cTBnðmχ ; δÞc ¼ 1, n ¼ 1;…N and
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the volume inside the ellipsoids cTAkðmχ ; δÞc ¼ 1, k ∈ E
is nonvanishing. To prove this it is sufficient to find a set of
real parameters ξk ≤ 0 that, for each DAMA energy bin n
satisfy [52]:

X
i∈E

ξi < 1;

X
i∈E

ξiAk − Bn is a positivematrix: ð25Þ

In particular, if the binary test above is verified no set of
couplings c exists for which the two conditions (23) and
(24) are satisfied at the same time. Geometrically, this
implies that the volume of intersection among the ellipsoids
Ak is fully contained in the DAMA ellipsoid of Bn. On the
other hand, when the matrix of Eq. (25) is not positive-
defined such set of couplings exists. Notice that, in such
case, since the Ak matrices include the upper bounds on the
DAMA modulation amplitudes, for that choice of ðmχ ; δÞ
the condition SDAMA;min

m;n ∈ ½SDAMA;min
m;n ; SDAMA;max

m;n � is auto-
matically satisfied in the energy bin n in compliance to all
other existing constraints, although this is not guaranteed
for the modulation amplitudes in the other energy bins. An
alternative way to show the result of the test above is to
calculate the maximal value of the modulation amplitude
allowed by present constraints, i.e., to take SDAMA;max

m;n

in Bn as a free parameter and find the minimal value
ŜDAMA;max
m;n for which the condition (25) is verified [27,28].

A schematic view of the intersection between the
cTSDAMA

m;n ðmχ ; δÞ=ŜDAMA;max
m;n c ¼ 1 ellipse and the edge of

the experimentally allowed volume in the coupling con-
stants space is provided in Fig. 1 for the case of a single
coupling and two upper bounds. Such value can then be
converted in a number of standard deviations nσ away from
the measurement (in absolute value). The tension between
DAMA and the other experiments can then be quantified as
the maximum of Nσ ≡maxðnσÞ among the DAMA energy
bins calculated in the following way: (i) we fix one target
energy bin n; (ii) we maximize the modulation signal in n;
(iii) for the corresponding set of couplings we calculate the
modulation signal also in the other bins; (iv) we take nσ as
the maximum tension among all the bins; (v) we loop over
the target bin n and take the minimum (since each target
bin yields a different model). Notice that the procedure
described above may not yield the model which better
reproduces the data in the bins where the maximal allowed
modulation exceeds the central value of the measurement.
In total, we have solved Eq. (25) using 27 matrices

(8þ 8 DAMA matrices plus 11 matrices for null results).

IV. ANALYSIS

In this section we discuss the Nσ parameter solving
Eq. (25) using PICOS [53], a Python interface to conic
optimization, together with the CVXOPT solver [54].

The main results of our analysis is shown in Fig. 2. In
such figure, for different value of the WIMP spin jχ , the
upper band shows Nσ as a function ofmχ in the elastic case
(δ ¼ 0), while the lower bands represent Nσ minimized in
terms of δ at fixed mχ . The bands indicate the variation
of Nσ when the parameters v0 and uesc of the Maxwellian
distribution of Eq. (15) are varied in the ranges v0 ¼
ð220� 20Þ km=s [42] and uesc ¼ ð550� 30Þ km=s [43],
while the solid line indicates the result for the reference
values v0 ¼ 220 km=s and uesc ¼ 550 km=s. The gray
shaded regions represent jχ ¼ 0, the red bands jχ ¼ 1=2
and the purple ones represent jχ ¼ 1. As far as the δ ¼ 0

case is concerned, a DAMA explanation is excluded at
more than ≃7 sigmas for all WIMP masses below 200 GeV.
Compared to the elastic case, inelastic scattering partially
relieves this tension with values as low as ≃4.0σ for jχ ¼ 0,
≃2.9σ for jχ ¼ 1=2 and ≃3.2σ for jχ ¼ 1. However Nσ is
considerably more sensitive on the astrophysical parame-
ters v0 and uesc compared to the elastic case. From this
figure one can conclude that neither the large range of
different interactions provided by the effective field theory
nor the modified kinematics due to inelasticity can elimi-
nate completely the tension between DAMA and exper-
imental constraints.
When the quantity Nσ is plotted in the mχ–δ plane

a general result common to all jχ values is that the region
of parameter space where the tension is relieved is
localized in a narrow region with δ≳ 20 keV. In
Figs. 3–5 we provide contour plots of Nσ centered on
such localized regions of the mχ–δ parameter space for

FIG. 1. A schematic view of the intersection between the ellipse
of maximal allowed constant modulation amplitude in one of the
DAMA bins and the edge of the experimentally allowed volume
in the coupling constants parameters space for the case of a single
coupling. The solid line passing through the origin represents
the direction singled out by the normalized eigenvector ĉ0 of
Eq. (26), while the arrow joining the origin to one of the two
intersections represents the vector c0;max of Eq. (27) containing
the set of couplings for the configuration that maximizes the
modulation amplitude.
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jχ ¼ 0, 1=2, 1, respectively, and for the three combinations
ðv0; uescÞ ¼ ð220; 550Þ; ð200; 520Þ; ð240; 580Þ km=s. In all
the plots the dotted (red) line represents the maximal value
of δ beyond which the minimal speed v�Namin introduced in
Eq. (3) exceeds the escape velocity in the lab frame, vlabesc,
while the (blue) short dashes show the minimal value of δ
beyond which v�Fmin < vlabesc. This implies that between the
two lines the condition of Eq. (5) is verified. The closed
contour where the tension Nσ drops tracks for different
astrophysical parameters the region between the two lines,
an unequivocal indication that the same kinematic mecha-
nism is at work as in the pSIDM scenario [7,29,30]
summarized in the Introduction. This also explains why,
as observed in Fig. 2, Nσ is considerably more sensitive on
the astrophysical parameters v0 and uesc compared to the
elastic case. So we conclude that the pSIDM scenario
described in ([7,29,30]) emerges as the unique mechanism
to ease the tension between DAMA and other constraints
from a general scan of the inelastic DM parameter space.

FIG. 2. Tension Nσ (maximized among DAMA bins for
1 keVee ≤ E0 ≤ 5 keVee) between the 90% C.L. lower bound
of the measured modulation fractions and the maximal value of
the same quantity allowed by 90% C.L. upper bounds from null
results. Solid lines show the results when the parameters v0 and
uesc of the Maxwellian distribution of Eq. (15) are fixed to the
reference values v0 ¼ 220 km=s and uesc ¼ 550 km=s, while the
bands indicate the variation of Nσ when v0 and uesc are varied in
the ranges v0 ¼ ð220� 20Þ km=s [42] and uesc ¼ ð550�
30Þ km=s [43]. The gray shaded regions represent jχ ¼ 0, the
red bands jχ ¼ 1=2 and the purple ones represents jχ ¼ 1. For
each value of jχ the upper band represents the elastic case
(δ ¼ 0), while the lower one the inelastic case, when Nσ is
minimized in terms of δ. at fixed mχ .

FIG. 3. Contour plots of Nσ in the mχ–δ plane for jχ ¼ 0,
from Nσ ¼ 4.5 to Nσ ¼ 6.5 from inside out. The points of
minimal Nσ are represented by a star, a circle and a square
for ðv0; uescÞ ¼ ð220; 550Þ; ð200; 520Þ; ð240; 580Þ km=s, respec-
tively, and surrounded by the corresponding contour plots of Nσ .
For each (v0, uesc) combination the dotted (red) line represents
v�Namin ¼ vlabesc, while the (blue) short dashes show v�Fmin ¼ vlabesc.

FIG. 4. The same as Fig. 3 for jχ ¼ 1=2.

FIG. 5. The same as Fig. 3 for jχ ¼ 1.
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In spite of the residual tension between DAMA and other
constraints it is interesting to discuss in detail the solutions
corresponding to the minimum values of Nσ . In order to do
so one needs to go back to Eq. (25). At the boundary of its
positivity the smallest eigenvalue of the matrix in that
equation is vanishing and the corresponding eigenvector
ĉ0 (jĉ0j ¼ 1):

�X
i∈E

ξiAk −
SDAMA
m;n

ŜDAMA;min
m;n

�
ĉ0 ≡Mmaxĉ0 ¼ 0; ð26Þ

individuates the line joining the origin to the points of
intersections between the extreme DAMA ellipsoid and
those of the constraints, as shown schematically by the
solid line in Fig. 1. On the other hand, the vector c0;max,
joining the origin to the intersection points and given by:

c0;max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŜDAMA;max
m;n

ĉT0S
DAMA
m;n ĉ0

s
ĉ0 ð27Þ

contains the set of couplings for the configuration of
maximal modulation amplitude in the bin n, and in
Fig. 1 is represented by the black arrow. The properties
of the specific point c0;max in the space of couplings can be
further elucidated if one takes a closer look at the matrices
in Eqs. (19), (20). Depending on the spin of the WIMP
particle they can have a different dimensionality, as can be

simply read-off from the WIMP response functions in
Eqs. (A1, A2). Moreover, not all couplings interfere, so that
the matrices can be decomposed into block-diagonal form.
The dimensionalities and noninterfering subspaces are
indicated in Table I for different values of the WIMP spin
jχ . This implies that also the matrixMmax is block-diagonal,
so that c0;max must belong to one of the subspaces of
Table I.
The properties of the extreme configurations found in

this way are given in Table II. Interestingly, the configu-
ration with the smallest tensions corresponds to a c7
coupling for jχ ¼ 0 [a spin–dependent interaction with
explicit velocity dependence and momentum suppression
q2)] and to approximately a c6 coupling for jχ ¼ 1=2 (a
spin–dependent interaction with momentum suppression
q4). These two couplings combinations correspond to two
of the possible generalizations of the pSIDM scenario
already discussed in [30]. On the other hand, for jχ ¼ 1 the
extreme configuration corresponds to a dominant c5 cou-
pling (associated to the WIMP coupling to the orbital
angular momentum operator) also with momentum sup-
pression q4, and a non-negligible c4 contribution. The role
of momentum suppression in relieving the tension between
the DAMA result and other constraints has already been
pointed out in [55].
Our procedure does not correspond to the minimization

of a χ–square, since we minimize the tension in one target
bin at a time. However, once a minimal tension configura-
tion is obtained, the quantity χ2 ¼ P½SDAMA

m;n − SDAMA
m;n;exp�2=

σ2exp (with SDAMA
m;n;exp and σexp the measured modulation

amplitudes and standard deviations) can be calculated.
In this way, for the configurations of Table II we get
χ2 ¼ 60.6, 25.7 and 33.5 for jχ ¼ 0, 1/2 and 1, respectively.
The corresponding predictions for the DAMA modula-

tion amplitudes are shown in Figs. 6–8 for the different
values of jχ and compared to the measured ones [4]. In such
figures the experimental points marked with a (red) circle
correspond to the energy bins included in the solution of
Eq. (25), while the point marked with an additional (blue)
inner circle corresponds to the DAMA energy bin where the
maximal tension with the bounds arises and that drives the

TABLE I. Noninterfering subspaces and dimensionality of the
coupling constants vector space of the NRWIMP effective theory
of a WIMP with jχ ≤ 1.

Spin Couplings Dimensionality

0 ðcτ1; cτ3Þ; cτ7; cτ10 2 × ð2þ 1þ 1Þ ¼ 8

1
2

ðcτ1; cτ3Þ; ðcτ4; cτ5; cτ6Þ;
cτ7; ðcτ8; cτ9Þ; cτ10;

ðcτ11; cτ12; cτ15Þ; cτ13; cτ14,

2 × ð2þ 3þ 1þ 2
þ1þ 3þ 1þ 1Þ ¼ 28

1 cτ1; ðcτ4; cτ5Þ; ðcτ8; cτ9Þ;
cτ10; c

τ
11; c

τ
14; c

τ
17; c

τ
18

2 × ð1þ 2þ 2þ 1
þ1þ 1þ 1þ 1Þ ¼ 20

TABLE II. Properties of the extreme configurations in the NR effective theory parameter space that minimize the tension Nσ for
different values of the WIMP spin jχ and fixing the astrophysocal parameters to v0 ¼ 220 km=s and uesc ¼ 550 km=s.

spin mχ;0 (GeV) δðkeVÞ σ0;max (cm2) ĉ0 Nσ

0 11.08 22.83 3.93 × 10−27 (ĉ07 ¼ 0.68, ĉ17 ¼ 0.73) 4.0

1=2 11.64 23.74 4.68 × 10−28 ðĉ04 ¼ −0.0014; ĉ14 ¼ −0.0015;
ĉ05 ¼ −0.032; ĉ15 ¼ −0.0166;
ĉ06 ¼ 0.692; ĉ16 ¼ 0.7217Þ

2.9

1 11.36 23.43 5.71 × 10−32 ðĉ04 ¼ 0.0717; ĉ14 ¼ 0.0753;
ĉ05 ¼ 0.1892; ĉ15 ¼ 0.9764Þ

3.2
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determination of Nσ. As one can see in the lower energy
bins the allowed modulation signal is large enough to
explain the DAMA signal, although the amplitudes spec-
trum decays faster with energy.
Introducing the vector c0 ≡ c0ĉ0 with c0 a free normali-

zation, c0 is common to all signals inside the eigenspace of
ĉ0. A convenient parametrization is through the introduc-
tion of the reference cross section:

σ0 ≡ c20
μ2χN
π

; ð28Þ

with μχN the WIMP–nucleon reduced mass. The direction
in coupling space singled out by the unit vector ĉ0, and that
individuates a specific set of coupling ratios that eases the
tension between DAMA and the constraints, can be seen as
the generalization in an arbitrary number of dimensions of
the concept of isospin-violating DM [56]. Once ĉ0 and δ are
fixed the DAMA signal and the bounds can be discussed
in a familiar mχ–σ0 plane. This is done in Figs. 9–11 for
the extreme configurations summarized in Table II and for
jχ ¼ 1, 1=2 and 1, respectively. In the same figure the (red)
circle represents the point ðmχ;0; σ0;maxÞ with mχ;0 the value
of the WIMP mass for the extreme configuration and

σ0;max¼c20;max
μ2
χN

π , c0;max ≡ jc0;maxj. The point ðmχ;0; σ0;maxÞ
intersects one or more of the most constraining boundaries
on σ0 at mχ ¼ mχ;0, providing a nice confirmation of the

FIG. 6. Predictions of the DAMA modulation amplitudes for
the configuration of minimal Nσ and jχ ¼ 0 shown in Table II vs
the DAMA experimental measurements. Experimental intervals
represent the combination of DAMA/LIBRA–phase1 and
DAMA/LIBRA–phase2 from [4]. The (black) solid line repre-
sents the predicted modulation amplitudes for NaI, while the
(green) dot-dashed line (vanishing above 2 keVee) and (blue)
dotted line show the separate contributions fromWIMP scattering
events off iodine and sodium, respectively. The experimental
points marked with a (red) circle correspond to the energy bins
included in the solution of Eq. (25), while the point marked with
an additional (blue) inner circle corresponds to the DAMA energy
bin where the maximal tension with the bounds arises and that
drives the determination of Nσ in Figs. 2 and 3.

FIG. 7. The same as in Fig. 6 for jχ ¼ 1=2.

FIG. 8. The same as in Fig. 6 for jχ ¼ 1.

FIG. 9. Experimental upper bounds (open lines) and 2σ DAMA
region (closed contour) in the mχ–σ0 parameter space for jχ ¼ 0.
In this figure the mass splitting δ and the direction in coupling ĉ0
are fixed to the values of Table II, while the effective cross section
σ0 is defined in Eq. (28).The (red) circle represents the point in
parameter space with minimal Nσ .
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numerical solution of Eq. (25). Actually, this can be directly
observed in Figs. 9–11 for jχ ¼ 0, 1=2 and 1, respectively,
where the point ðmχ;0; σ0;maxÞ lies on the intersection
between the bounds from XENON1T and PICO–60, in
a realization of the mechanism shown schematically in
Fig. 1. In all three cases, the extreme configuration hits also
the 90% C.L. upper bound on the modulation fraction in the
first bin, as shown in Figs. 6–8. In Figs. 9–11 the distance
from the DAMA region and the extreme point provides an
additional visual indicator besides Nσ of the tension
between DAMA and the constraints from null results.
Indeed, as already observed in [7], the condition (5) implies
that inside the energy range of the DAMA effect
the spectrum of the predicted modulation amplitudes
has a maximum corresponding to the recoil energy E�

R ≡
ERðv�Namin Þ ¼ jδjμχN=mN for scattering events off sodium.
On the other hand, the data from DAMA/LIBRA-phase2
are more compatible to a monotonically decreasing shape1

closer to elastic scattering. As a consequence, the DAMA
data pull to low values of δ. However, the solutions of
Eq. (25) with smallest tension with the constraints require
sizeable values of δ (δ≳ 20 keV) in order to verify Eq. (5).
As a consequence, when δ is fixed to such values the
DAMA data pull to higher values of the WIMP mass mχ to
dilute the effect of δ. This explains why, systematically, the
DAMA regions in Figs. 9–11 are at higher WIMP masses
compared to the values of mχ;0 in Table II. Moreover,
Figs. 6–8 show that configurations allowed by constraints
from null results can produce enough yearly modulation in
some of the DAMA bins, but the ensuing shape of the
modulation spectrum is too steep, so that the maximal
modulation at high energy is constrained by the bins at low
energy. In light of this observation, we interpret the fact that

all the smallest tension configurations of Table II have an
interaction with explicit momentum suppression as a way
to alleviate this problem by suppressing the DAMA
modulation amplitudes in the lowest-energy bins.
These findings are in agreements to those of Ref. [7],

obtained for the specific case of a standard spin-dependent
interaction.
Equation (25) can only be solved for a limited selection of

experimental bounds both because of computing time limits,
and because some of the constraints require more refined
treatments beside a simple comparison between theoretical
predictions and upper bounds as in Eq. (23) and Table III,
such as background subtraction or the optimal-interval
method [57]. In Figs. 9–11 all this standard machinery
[58] can instead be applied to the full set of existing
experiments, providing an a posteriori confirmation that
the set of bounds E used to solve Eq. (25) did not miss any
relevant constraint. In particular, besides the experiments
included in the solution of Eq. (25), in such figures we have
added CDMSlite [59], CRESST-II [60,61], the upper bound
from the average count rate of DAMA [62]), DarkSide–50
[63] and theCF3I target run of PICO–60 [64] (the details of
such bounds implementation are provided in Appendix B).
None of these additional null results further constrains the
extreme configurations (mχ;0; σ0;max).
We conclude by noting that the recent bound from

COSINE–100 [8], obtained with the same NaI target
material as DAMA, is not particularly binding in our
analysis, as can be seen again in Figs. 9–11. The reason
for this is that the bound of Ref. [8] is on the time-averaged
signal SCOSINE0 , while DAMA measures the yearly modu-
lation amplitudes expected from the rotation of the
Earth around the Sun SDAMA

m . In Appendix B we
estimate in COSINE–100 a residual count rate b ≃
0.13 events=kg=day=keV after background subtraction
while modulation fractions in DAMA are of the order of
0.02 events=kg=day=keV. The bound SCOSINE0 < b implies

FIG. 10. The same as in Fig. 9 for jχ ¼ 1=2. FIG. 11. The same as in Fig. 9 for jχ ¼ 1.

1The DAMA/LIBRA-phase1 data showed instead a maximum,
and for this reason inelastic scattering could provide a good fit to
the data [29].
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SDAMA
m =SDAMA

0 ¼SDAMA
m =SCOSINE0 ×SCOSINE0 =SDAMA

0 ≳0.12,
including a factor SCOSINE0 =SDAMA

0 ≃ 0.8 due to a difference
between the energy resolutions and efficiencies in the two
experiments. For a standard Maxwellian WIMP velocity
distribution in the SI elastic case the predicted modulation
fractions SDAMA

m =SDAMA
0 are below such bound (for in-

stance, for mχ ¼ 10 GeV SDAMA
m =SDAMA

0 is between ≃0.05
and ≃0.12 for Eee < 3 keVee) explaining why in Ref. [8]
the DAMA effect is ruled out. However expected rates
for inelastic scattering are sensitive to the high-speed tail of
the WIMP velocity distribution for which the modulation
fractions are sizeably higher [29,31], and this is particularly
true when the condition (5) is verified (for instance,
in the extreme configurations of Table II we find
SDAMA
m =SDAMA

0 ≳ 0.8 for E0 ≤ 3.5 keVee).

V. CONCLUSIONS

In the present paper we have discussed the compatibility
of the combined annual modulation effect measured by
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 [1–4]
with an explanation in terms of inelastic scattering events
induced by the most general Galilean-invariant effective
contact interaction of a spin 0, 1=2 or 1 WIMP dark matter
particle taking into account all the possible interferences
among operators by studying the intersections among the
ellipsoidal surfaces of constant signal of DAMA and other
experiments in the space of the coupling constants of the
effective theory, following the approach introduced in
Ref. [27]. In our analysis we have assumed a standard
Maxwellian velocity distribution in the Galaxy. Compared
to the elastic case, inelastic scattering partially relieves but
does not eliminate the existing tension between the DAMA
effect and the constraints from the null results of other
experiments. We have determined the ellipsoids using
90% C.L. upper bounds from selected energy bins from
XENON1T [46], PICO–60 (C3F8 target) [47,48],
COSINE–100[8], COUPP [49], SuperCDMS [50] and
PICASSO [51]. The tension, quantified as the maximum
of Nσ ≡maxðnσÞ among the DAMA energy bins below
5 keVee, exceeds 7σ in all the parameter space mχ <
200 GeV with the exception of a small region of parameter
space for mχ ≃ 10 GeV and δ≳ 20, where it drops to
values as low as ≃4σ for jχ ¼ 0, ≃2.9σ for jχ ¼ 1=2 and
≃3.2σ for jχ ¼ 1, and that overlaps to the proton-philic
spin-dependent inelastic dark matter (pSIDM) scenario
[7,29,30] already discussed in the literature for the specific
case of a standard spin-dependent interaction, where the
bounds from fluorine targets are evaded in a kinematic way
because the minimal WIMP incoming speed required to
trigger upscatters off fluorine exceeds the maximal WIMP
velocity in the Galaxy, or is very close to it. In particular,
from a general scan of the inelastic DM parameter space
such kinematic feature, together with momentum suppres-
sion in the effective operator, emerge as instrumental in

easing the tension between DAMA and other constraints.
As a consequence, the latter is considerably more sensitive
on the astrophysical parameters compared to the elastic
case. The configurations for which the tension Nσ is
partially relieved can easily produce enough yearly modu-
lation in the lowest-energy bins of the modulation spectrum
measured by DAMA in compliance with the constraints
from other experiments. However, the ensuing shape of
the modulation spectrum is too steep, so that, when not
excluded by other constraints, the maximal allowed modu-
lation at higher energies is constrained by the modulation
measured in the lowest energy bins.
The present analysis extends the scope of previous ones

in the task to explore a DAMA explanation in the full
WIMP direct detection parameter space, but is still not the
most general one. Possible extensions include: (i) long-
range interactions; (ii) allowing for complex couplings;
(iii) assuming a WIMP velocity distribution that departs
from a standard Maxwellian. In particular, given the large
dependence on the astrophysical parameters that we
observed in our results we expect the latter generalization
as very promising in order to find effective models that
reconcile the DAMA result with the null observations of
other experiments.
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COSINE–100 has released its first annual modulation
analysis, consistent at 68.3%C.L.with both a null hypothesis
and DAMA/LIBRA’s 2–6 keVee best–fit value [65].

APPENDIX A: WIMP RESPONSE FUNCTIONS

We collect here the WIMP particle-physics response
functions introduced in Eq. (13) and for the general case of
complex couplings [38] (although in the present analysis
real couplings have been assumed). For a WIMP particle of
spin Jχ ≤ 1

2
they are given by [24,25]:
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3
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0�
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2

m2
N
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ðA1Þ

On the other hand, for a WIMP particle with spin
Jχ ¼ 1 [26]:

Rττ0
M

�
v⊥2
T ;

q2

m2
N

�
¼ cτ1c

τ0�
1 þ 2

3

�
q2

m2
N
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5 þ v⊥2
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τ0�
8

þ q2

m2
N
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11 þ q2
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�
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�
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�
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�
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�
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�
¼ 2

3
Reðcτ5cτ
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τ0�
9 Þ q2

m2
N
: ðA2Þ

APPENDIX B: EXPERIMENTS

Equation (25) can only be solved for a limited selection
of experimental bounds both because of computing time
limits, and because some of the constraints require more
refined treatments beside a simple comparison between
theoretical predictions and upper bounds. In the solution of
Eq. (24) we have used the 8 DAMAmodulation amplitudes
for 1 keVee ≤ E0 ≤ 5 keVee [4], and selected energy bins
from XENON1T [46], PICO–60 (C3F8 target) [47,48],
COSINE–100[8], COUPP [49], SuperCDMS [50] and
PICASSO [51], as shown in Table III.
On the other hand, in the exclusion plots in Figs. 9–11

we have included an extensive set of constraints that are
representative of the different techniques used to search for
DM: XENON1T [46], CDMSlite [59], SuperCDMS [50],
PICASSO [51], PICO–60 (using a CF3I target [64] and
a C3F8 one [47,48]), CRESST-II [60,61], DAMA (modu-
lation data [1,2,4,66] and average count rate [62]),
DarkSide–50 [63]. providing an a posteriori confirmation
that the limited set of bounds in Table III used to solve
Eq. (25) did not miss any relevant constraint.
In the following, if not specified otherwise we adopt

for the energy resolution a Gaussian form, GðE0; EeeÞ ¼
GaussðE0jEee; σÞ ¼ 1=ð ffiffiffiffiffiffi

2π
p

σÞ expð−ðE0 − EeeÞ=2σ2Þ. The
quenching factor of bolometers (SuperCDMS, CRESST-II)
is assumed to be equal to 1.

1. Xenon: XENON1T

For XENON1T we have assumed 7 WIMP candidate
events in the range of 3PE ≤ S1 ≤ 70 PE, as shown in
Fig. 3 of Ref. [46] for the primary scintillation signal S1
(directly in photo electrons, PE), with an exposure of
278.8 days and a fiducial volume of 1.3 ton of xenon. We
have used the efficiency taken from Fig. 1 of [46] and
employed a light collection efficiency g1 ¼ 0.055; for the
light yield Ly we have extracted the best estimation curve
for photon yields hnphi=E from Fig. 7 in [67] with an
electric field of 90 V=cm.
For XENON1T experiment we have modeled the energy

resolution combining a Poisson fluctuation of the observed
primary signal S1 compared to hS1i and a Gaussian
response of the photomultiplier with σPMT ¼ 0.5, so that:
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GXeðER; SÞ ¼
X∞
n¼1

GaussðSjn; ffiffiffi
n

p
σPMTÞPoissðn; hSðERÞiÞ;

ðB1Þ
with Poissðn; λÞ ¼ λn=n! expð−λÞ.

2. Argon: DarkSide-50

The analysis of DarkSide-50 [63] is based on the ioniza-
tion signal extracted from liquid argon with an exposure of
6786.0 kg days. The measured spectrum forNe− < 50 (with
Ne− the number of extracted electrons) is shown in Fig. 7 of
[63], and shows an excess for 4 < Ne− < 7 Ne− compared
to a simulation of the background components from
known radioactive contaminants. Following Ref. [63] we
have subtracted the background minimizing the likelihood
function:

−2L ¼
X
i

ðσSi þ ρbi − xiÞ2
σ2i

; ðB2Þ

where i represents the energy bin, xi the measured spectrum
with error σi, while σSi and ρbi are the DM signal and the

background, respectively, with σ and ρ arbitrary normali-
zation factors (σ is identified with the effective WIMP-
proton cross section σp). In particular we obtain the
90% C.L. upper bound on σp by taking its profile like-
lihood with −2L − ½−2L�min ¼ n2 and n ¼ 1.28. We take
xi, σi and bi from Fig. 7 of [63]. The ionization yield of
argon has been measured only down to ≲10 keVnr, while
DS50 uses a model fit to calibration data. We use the latter
as taken from Fig. 6 of [63] with a hard cut at 0.15 keVnr,
the lowest energy for which it is provided. We take the
efficiency from Fig. 1 of [63].

3. Germanium: SuperCDMS and CDMSlite

The latest SuperCDMS analysis [50] observed 1 event
between 4 and 100 keVnr with an exposure of 1690 kg
days. We have taken the efficiency from Fig. 1 of [50]

and the energy resolution σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.2932 þ 0.0562Eee

p
from

[68]. To analyze the observed spectrum we apply the
optimal interval method [57].
For CDMSlite we considered the energy bin of

0.056 keV < E0 < 1.1 keV with a measured count rate

TABLE III. Visible energy intervals and 90% C.L. upper or lower bounds used to calculate the matricesAj and Bj
in Eq. (25).

Experiment Visible energy range 90% C.L. upper bound

DAMA 1 keVee < E0 < 1.5 keVee 0.0315 kg−1 day−1 keVee−1
1.5 keVee < E0 < 2 keVee 0.0268 kg−1 day−1 keVee−1
2 keVee < E0 < 2.5 keVee 0.0210 kg−1 day−1 keVee−1
2.5 keVee < E0 < 3 keVee 0.0236 kg−1 day−1 keVee−1
3 keVee < E0 < 3.5 keVee 0.0222 kg−1 day−1 keVee−1
3.5 keVee < E0 < 4 keVee 0.0144 kg−1 day−1 keVee−1
4 keVee < E0 < 4.5 keVee 0.0137 kg−1 day−1 keVee−1
4.5 keVee < E0 < 5 keVee 0.00569 kg−1 day−1 keVee−1

XENON1T 3 PE < S1 < 70 PE 11.77 events
PICO–60 ER > 2.45 keVnr 6.42 events

ER > 3.3 keVnr 2.3 events
COSINE–100 2 keVee < E0 < 2.5 keVee 0.13 kg−1 day−1 keVee−1

4.5 keVee < E0 < 5 keVee 0.13 kg−1 day−1 keVee−1
7.5 keVee < E0 < 8 keVee 0.13 kg−1 day−1 keVee−1

COUPP ER > 7.8 keVnr 6.68 events
ER > 11 keVnr 5.32 events
ER > 15.5 keVnr 11.6 events

SuperCDMS 4 keVnr< ER < 100 keVnr 3.89 events
PICASSO ER > 1.0 keVnr 3.45 kg−1 day−1 keVee−1

Experiment Visible energy range 90% C.L. lower bound

DAMA 1 keVee < E0 < 1.5 keVee 0.0171 kg−1 day−1 keVee−1
1.5 keVee < E0 < 2 keVee 0.0155 kg−1 day−1 keVee−1
2 keVee < E0 < 2.5 keVee 0.0150 kg−1 day−1 keVee−1
2.5 keVee < E0 < 3 keVee 0.0159 kg−1 day−1 keVee−1
3 keVee < E0 < 3.5 keVee 0.0151 kg−1 day−1 keVee−1
3.5 keVee < E0 < 4 keVee 0.00773 kg−1 day−1 keVee−1
4 keVee < E0 < 4.5 keVee 0.00812 kg−1 day−1 keVee−1
4.5 keVee < E0 < 5 keVee 0.000770 kg−1 day−1 keVee−1
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of 1.1� 0.2 ½keV kg day�−1 (Full Run 2 rate, Table II of
Ref. [59]). We have taken the efficiency from Fig. 4 of [59]
and the energy resolution σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2E þ BER þ ðAERÞ2

p
,

with σE ¼ 9.26 eV, A ¼ 5.68 × 10−3 and B ¼ 0.64 eV
from Sec. IV.A of [59].

4. Fluorine: COUPP, PICASSO and PICO–60
Bubble chambers are threshold experiments for which

we employ the nucleation probability:

PTðERÞ ¼ 1 − exp

�
−αT

ER − Eth

Eth

�
: ðB3Þ

COUPP is bubble chamber using a CF3I target. For each
operating threshold used in COUPP the corresponding
exposure and number of measured events are summarized
in Table IV. For fluorine and carbon we use α ¼ 0.15 in
Eq. (B3). For iodine we adopt instead a step function
with nucleation probability equal to 1 above the energy
threshold.
The PICASSO experiment [51] uses C4F10 as a target

and operated its runs with six energy thresholds. For
each threshold we provide the corresponding number of
observed events and statistical fluctuations in Table V
(extracted from Fig. 4 of Ref. [51]). For the nucleation
probability we used Eq. (B3) with αC ¼ αF ¼ 5.
One of the target materials used by PICO–60 isC3F8, for

which we used the complete exposure [48] consisting in
1404 kg day at threshold Eth ¼ 2.45 (with 3 observed
candidate events and 1 event from the expected

background, implying an upper bound of 6.42 events at
90% C.L. [69]) and 1167 kg day keV at threshold Eth ¼
3.3 keV (with zero observed candidate events and negli-
gible expected background, implying a 90% C.L. upper
bound of 2.3 events). For the two runs we have assumed the
nucleation probabilities in Fig. 3 of [48].

5. Fluorine + Iodine: PICO–60
PICO–60 can also employ aCF3I target. For the analysis

of Ref. [64] we adopt an energy threshold of 13.6 keV and
an exposure of 1335 kg days. The nucleation probabilities
for each target element are taken from Fig. 4 in [64].

6. Sodium Iodide: DAMA and COSINE–100
For DAMA we consider both the upper bound from

the average count rate (DAMA0) and the latest result
for the annual modulation amplitudes. For DAMA0 we
have taken the average count rates from [62] (rebinned
from 0.25-keVee- to 0.5-keVee-width bins) from 2 keVee
to 8 keVee. We use the DAMA modulation amplitudes
normalized to kg−1 day−1 keVee−1 in the energy range
1 keVee < E0 < 8 keVee from Ref. [4]. In both cases
we assume a constant quenching factors q ¼ 0.3 for
sodium and q ¼ 0.09 for iodine, and the energy resolution
σ ¼ 0.0091ðEee=keVeeÞ þ 0.448

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eee=keVee

p
in keV.

The exclusion plot for COSINE–100 [8] relies on a
Montecarlo [70] to subtract the different backgrounds of
each of the eight crystals used in the analysis. In Ref. [8]
the amount of residual background after subtraction
is not provided, so we have assumed a constant background
b at low energy (2 keVee < Eee < 8 keVee), and esti-
mated b by tuning it to reproduce the exclusion plot in
Fig. 4 of Ref. [8] for the isoscalar spin-independent
elastic case. The result of our procedure yields
b ≃ 0.13 events=kg=day=keVee, which implies a subtrac-
tion of about 95% of the background. We take
the energy resolution σ=keV ¼ 0.3171

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eee=keVee

p þ
0.008189Eee=keVee averaged over the COSINE–100 crys-
tals [71] and the efficiency for nuclear recoils from Fig. 1 of
Ref. [8]. Quenching factors for sodium and iodine are
assumed to be equal to 0.3 and 0.09 respectively, the same
values used by DAMA.

7. CaWO4: CRESST-II

CRESST-II measures heat and scintillation using
CaWO4 crystals. We considered the Lise module analysis
from [60] with energy resolution σ ¼ 0.062 keV and
detector efficiency from Fig. 4 of [72]. For our analysis
we have selected 15 events for 0.3 keVnr < ER <
0.49 keVnr with an exposure of 52.15 kg days.

TABLE IV. The operating thresholds with corresponding
exposures and measured events for COUPP [49].

Eth (keV) Exposure (kg day) Measured events

7.8 55.8 2
11 70 3
15.5 311.7 8

TABLE V. Observed number of events and 1–sigma statistical
fluctuations (extracted from Fig. 4 of Ref. [51]) for each operating
threshold used in PICASSO.

Eth (keV) Event rate (events/kg/day) Fluctuation

1.0 −1.5 3.8
1.5 −0.2 1.0
2.7 0.3 0.8
6.6 −0.8 1.8
15.7 −1.4 2.3
36.8 0.3 1.0
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