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We investigate the velocity and recoil momentum dependence of dark matter interactions with ordinary
matter. In particular we focus on the single-electron resolution semiconductor detectors, which allow
experimental assessment of sub-GeV dark matter masses. We find that, within a specific mass range
depending on the detector material, the dark matter interactions result in a signal characterized by daily
modulation. Furthermore, we find that the detailed structure of this modulation is sensitive to the velocity
and momentum dependence of dark matter interactions. We identify the optimal mass range for the
prevalence of these effects.
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I. INTRODUCTION

Cosmological and astrophysical observations provide
overwhelming evidence for the existence of dark matter
(DM) consisted of particles beyond the Standard Model
(SM). The well established paradigm is a weakly interact-
ing massive particle (WIMP), with an electroweak scale
mass Oð100Þ GeV. Direct detection of the DM particles
has been the target of numerous experimental programs
[1–3]. So far these experiments have not led to a consistent
discovery, but have provided solid constraints limiting the
strength of the interactions between dark and ordinary
matter. The current direct detection experiments are most
effective around the typical WIMP mass range of
Oð10Þ–Oð100Þ GeV, while at smaller masses the existing
experimental constraints [4] are less severe. This has
motivated an increasing interest to the low mass region
mDM ≲ 1 GeV, see e.g., [5] and the references therein.
Since the coherent elastic scattering of solar neutrinos
produce signals that mimic those expected from low mass
DM interactions, these experiment will eventually become

background limited and need to develop methods to
mitigate this irreducible background.
A promising method for direct detection of low mass

DM particles was presented in [6], based on single-electron
resolution semiconductor detectors. Assuming a direct
correlation between ionization and defect creation thresh-
olds in semiconductors, it was noted that due to the
anisotropic structure of the semiconductor crystals, the
ionization threshold can be sensitive to the recoil direction.
Hence this technique allows for a detection of a daily
modulation signal, due to the rotation of the earth with
respect to the direction of the DM wind.
The purpose of this paper is to extend the analysis

presented in [6], to cover the variety of nonrelativistic
operators describing the DM-SM scattering. The direc-
tional detection in the context of nonrelativistic effective
theory of DM-SM scattering has been discussed in [7,8],
where the angular recoil distributions expected for the
various effective operators have been described. Recording
the full angular recoil spectrum could thus be used to
identify the operator characterizing the DM-SM scattering,
and would reveal valuable information about the under-
lying theory of DM. See [9] for an overview of the
prospects in directional DM detection.
Our method, however, does not rely on recording the

angular differential recoil distribution, but rather in observ-
ing the daily modulation in the total integrated event rate,
the origin of which is in the directional sensitivity of the
threshold energy. Therefore, the question becomes, to
which extent is the modulation signal sensitive to the type
of the effective DM-SM scattering operator? Qualitatively,
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the following behavior is to be expected: The amplitude of
the daily modulation signal grows towards lighter DM
mass, as the threshold energy for creating the electron-hole
pair becomes more significant in comparison to the average
kinetic energy available for the recoil. On the other hand, as
the DM mass is decreased, the angular recoil spectrum
becomes peaked at forward direction for all effective
operators. This effect is due to the recoil kinematics i.e.,
if the recoil angle is large, only a small fraction of the
kinetic energy of the incoming DM particle is available for
the recoil energy of the nucleus.
In the followingwewill quantify the above assertions, and

provide analytic formulas for the relevant event rates. Based
on our results, we establish the following general picture i.e.,
in the small mass region where the daily modulation
amplitude is readily observable, the recoil dynamics are
largely insensitive to the effective DM-SM scattering
operator. As the DM mass increases, the different recoil
dynamics cause an increasing difference in the angular
distribution. However, this effect becomes masked by the
fact that the amplitude of the dailymodulation signal quickly
decreases as theDMmass increases, thus the effect becomes
less observable. We will thus arrive to the conclusion, that
depending on the detector material, there is a range of DM
masses below Oð1Þ GeV, wherein the direct detection
technique described in [6] is valid. At the lower edge of
this mass range, the shape of the modulation signal is
practically blind to the details of the underlying theory of
DM-SM scattering, but for increasing masses the shape of
the modulation signal strongly depends on the velocity
dependence of the underlying DM-SM interactions. The
most important parameter for the efficiency of this method is
the DM mass.
The paper is organized as follows: in Sec. II we introduce

the kinematics of the scattering event and the nonrelativistic
operators. In Sec. III we describe the directional sensitivity
of our detector concept and the resulting daily modulation
signal, and we conclude in Sec. IV. The analytic formulas
for the angular event rates are given in Appendix A.

II. BASIC FORMULAS

Consider scattering of a dark matter particle with
a nucleus. Denote the DM velocity by v.1 The double-
differential recoil rate per unit detector mass is [10]

d2R
dEdΩq

¼ ρ0
2πmDM

jMj2
32πm2

Nm
2
DM

δðv · q̂ − vminÞ; ð1Þ

where mDM and mN are the masses of the DM particle and
nucleus, respectively. The local DM density is denoted by
ρ0 ¼ 0.3 GeV=cm3 and the direction of the recoiling
nucleus by the unit vector q̂. The squared scattering matrix

element jMj2 is summed and averaged over the initial and
final spins. The δ-function imposes the kinematic of the
elastic scattering, and the minimum WIMP speed required
to excite a nuclear recoil of energy E ¼ q2=2mN is

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNE
2μ2DM;N

s
; ð2Þ

where μDM;N is the reduced mass of the DM-nucleus
system. The angular differential event rate is obtained
from (1) by integrating over energy:

dR
dΩq

¼
Z

Emax

Emin

d2R
dEdΩq

dE; ð3Þ

where Emin is the threshold energy for creating a detectable
recoil event, and Emax is the maximum energy allowed by
the event selection of the experiment. If no upper bound is
imposed by the detection technique, Emax can be taken to
infinity, as the convergence of the integral is ensured by the
integrability of the DM velocity distribution, to be dis-
cussed below. In this paper we will take Emax ¼ ∞ unless
otherwise noted.
To calculate the observable directional event rate in a

detector on earth, the distribution of DM velocities in the
galactic halo must be taken into account: the rate in Eq. (1)
must be integrated over all DM velocities weighted by the
distribution fðvÞ. In this work we will use the standard halo
model, defined as a truncated Maxwellian distribution

fSHMðvÞ ¼ N−1
e fMðvÞΘðve − vÞ; ð4Þ

where ve ¼ 537 km=s is the escape velocity, fMðvÞ ¼
ð2πσ2vÞ−3=2 expð−v2=2σ2vÞ is the Maxwellian distribution
with a standard deviation σv ¼ v0=

ffiffiffi
2

p
, the circular speed

v0 ¼ 220 km=s and the normalization constant is given by

Ne ¼ erf

�
veffiffiffiffiffiffiffi
2σ2v

p �
−

ffiffiffiffiffiffiffiffi
2

πσ2v

s
vee

− v2e
2σ2v : ð5Þ

Taking all the above together, the angular differential rate
becomes

dR
dΩq

¼ ρ0
2πmDM

1

32πm2
Nm

2
DM

Z
Emax

Emin

×dE
Z

d3vjMj2fSHMðvÞδðv · q̂−vminÞ: ð6Þ

The integration over the recoil energy E and the DM
velocity v is affected by the fact that the squared matrix
element can in principle depend both on q and v. For a
systematical analysis, we consider the nonrelativistic effec-
tive field theory constructed in [11]. The effective field
theory operator basis is constructed by imposing the
requirement of Hermiticity together with invariance under

1Throughout this paper we will denote three-vectors, such as v,
with a boldface font and their amplitudes with italic, as v.
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Galilean transformations and time reversal. In particular,
because of Hermiticity, the velocity dependence of these
operators is only through the combination

v2⊥ ¼ v2 −
q2

4μ2DM;N
; ð7Þ

which by construction satisfies v⊥ · q ¼ 0.
For our purposes it is sufficient to categorize

different interactions in terms of the velocity and energy
dependence they imply for the square of the averaged
matrix element appearing in Eq. (6). The possible depend-
ences are [8,11,12]

jMj2 ¼ a11þ a2q2 þ a3q4 þ b1v2⊥ þ b2q2v2⊥
þ b3q4v2⊥ þ � � � ð8Þ

where the ellipsis stands for operators of higher order in q2

and ai, bi are coefficients with mass dimension −2ði − 1Þ.
In addition to these, it is interesting to consider effects from
long rage interactions mediated by some light field. These
will lead to behavior ∼q−4.
Hence, in order to probe the full range of different

behaviors due to different interactions, we only need to
compute two different integrals over the velocity distribu-
tion. The radon transform, defined as

f̂ðvmin; q̂Þ ¼
Z

d3vfðvÞδðv · q̂ − vminÞ; ð9Þ

corresponds to the velocity dependenceOðv0Þ of the matrix
element. The only other possibility, then, is that the squared
matrix element is proportional to the square of the
perpendicular velocity v2⊥, and leads to the transverse
radon transform

f̂Tðvmin; q̂Þ ¼
Z

d3vfðvÞv2⊥δðv · q̂ − vminÞ: ð10Þ

The angular differential event rate (6) can then be
expanded as

dR
dΩq

¼ ρ0
4πmDM

σ0A2

μ2DM;N

×
Z

Emax

Emin

dEðða1 þ a2q2 þ � � �Þf̂SHMðvmin; q̂Þ

þ ðb1 þ b2q2 þ � � �Þf̂TSHMðvmin; q̂ÞÞ; ð11Þ
where A is the mass number of the nucleus and σ0 ¼
1=ð16πA2ðmDM þmNÞ2Þ is a reference DM-nucleon cross
section. For the SHM the integral over energy can be
performed analytically, and the necessary explicit formulas
are provided in the Appendix A.
Notice that the overall normalization of the terms in the

expansion (11) must include the corresponding nuclear
matrix elements [8]. In this work our goal is not to
determine these absolute normalizations, but to determine
the shape of the resulting observable signal which our
detector concept would measure given enough exposure,
and whether the shape of the signal, as a function of time, is
sensitive to the structure of the underlying operators.
Therefore we absorb the normalization of the operators
in the coefficients ai, bi. We also neglect the nuclear form-
factors which suppress high energy recoils. In the low-mass
region we are considering, the recoil energies are small and
the form factors are very close to one. We provide a
compilation of necessary general formulas for the event
rates, which complement existing literature and are
expected to be useful for similar studies within different
detector concepts currently under active investigation [5].

III. DIRECTIONAL ENERGY THRESHOLD

In semiconductor materials the threshold energy for
defect creation is a function of the recoil direction. The
representation of this effect for germanium and silicon is
shown in Fig. 1. To obtain this figure we have generated a

FIG. 1. The simulated defect creation energy threshold of germanium (left) and silicon (right) as a function of the recoil direction. The
recoil energies are given in units of eV.
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sample of 84936 randomly sampled directions in germa-
nium and 24155 directions in silicon, with the correspond-
ing energy thresholds, utilizing the data from the molecular
dynamics simulations [13,14] carried out in Ref. [6].
Briefly, Ge and Si atom recoils were simulated in randomly
generated directions in three dimensions. The directions
were selected to give a uniform distribution over solid
angle, i.e., the θ angle was selected as cos−1ð1 − 2uÞ where
u is a uniformly distributed random number between 0 and
1 [15]. For each direction, the recoil energy was increased
from 4 eV in 1 eV increments until a stable defect was
produced. Time-dependent density functional theory cal-
culations [13,16–18] showed that also the ionization has a
strong dependence on crystal directions. Unfortunately
these calculations are too demanding computationally to
obtain a full threshold map, and hence we continue to work
with the inference that the ionization energy threshold
correlates with the defect production threshold.
Consequently, the event rates obtained by integrating the

radon transforms (9) and (10) over energy become func-
tions of the recoil direction. Contrary to Ref. [6], in the
current work we did not average the threshold energy
surface over an angular interval. Instead, we use the list of
randomly sampled directions with the corresponding
energy thresholds to compute the event rate R ¼R
dΩðdR=dΩÞ directly as a Monte Carlo integral over

the solid angle Ω, as explained in more detail below.

A. Purely velocity dependent interactions

To understand the general behavior of the angular differ-
ential rate as a function of the DM mass, we begin by
showing the integrated radon transforms (forEmin ¼ 20 eV)
of the velocity distribution fSHM, in Fig. 2 for various values
of the WIMP mass. For the purpose of illustration, the
functions have been arbitrarily normalized so that theymatch
at the point θ ¼ π=4. We notice that for a small DM mass,
both functions are strongly peaked towards forward recoil,
θ ¼ 0, and hence the behavior of the angular differential rate
in the low-mass region will be similar regardless of the
v2⊥-dependence of the squared matrix element jMj2. For

larger values of the DM mass both distributions become
broader, and the transverse radon transform develops a
maximum at some nonzero recoil angle.
Then, to demonstrate the effect of the direction-

dependent energy threshold, we show the angular event
rate for the v0- (the radon transform) and v2⊥- (the trans-
verse radon transform) interactions in Fig. 3 for various
values of the WIMP mass. These figures are obtained by
integrating the radon transforms over energy, with Emin in
each direction given by the data shown in Fig. 1. For these
calculations, we have assumed the SHM velocity distribu-
tion and a germanium detector on the SNOLAB site
ð46.4719°N; 81.1868°WÞ on September 6, 2015 at 18:00.
The event rates correspond to the spin-independent DM-
nucleon cross section a1σ0 ¼ 10−39 cm2 in the v0-case, and
b1σ0 ¼ 10−33 cm2 for the v2⊥-interaction.
We notice that the distributions for the small DMmasses,

shown in the top row of the figure, are basically indis-
tinguishable by eye, and centered towards the average
direction of the DMwind. As the DMmass is increased, the
angular recoil distribution becomes wider. Eventually, for
large enough mDM, the information of the directionality of
the energy threshold becomes practically undetectable, as is
evident from the figures on the bottom row. Toward large
mDM, the off-zero maximum of the transverse radon
transform manifests as the ringlike feature around the
direction of the DMwind, visible in the bottom right figure.
As the Earth rotates around its axis, the direction of the

DM wind with respect to the lab-frame modulates. Due to
the directional dependence of the event rate shown above,
this results in a diurnal modulation of the integrated event
rate. Figure 4 shows the diurnal modulation in the event rate
for various values of the WIMP mass during September 6,
2015. We compute the event rate R ¼ R dΩðdR=dΩÞ by a
Monte Carlo integral over the solid angle Ω, utilizing
the list of 84936 randomly sampled directions with the
corresponding energy thresholds. Energy integrals of the
radon transforms are evaluated for each sampled point
ðθi;ϕiÞ on the surface of the unit-sphere, with the corre-
sponding value for the threshold energy Eminðθi;ϕiÞ

FIG. 2. Radon transform f̂SHM (black) and transverse radon transform f̂TSHM (red), integrated from Emin ¼ 20 eV to infinity, as a
function of the angle θ between the average WIMP velocity and the recoil momentum, for mDM ¼ 0.4 GeV (left), mDM ¼ 1 GeV
(center), mDM ¼ 5 GeV (right). The atomic mass of germanium, mN ¼ 72.64u ¼ 67.66 GeV has been assumed for the nuclear mass.
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obtained from the list. For each ðθi;ϕiÞ-point this pro-
cedure yields the corresponding differential event rate
dRðθi;ϕiÞ. The total event rate is then obtained as the
sum over the points in the list:

RðtÞ ¼ 4π

Npoints

XNpoints

i¼1

dRðθi;ϕi; tÞ; ð12Þ

where the dependence on time t follows from the time-
dependence of the laboratory’s motion in the galactic rest
frame VðtÞ, as explained in the Appendix A. We have
checked that the number of points is sufficient for an
accurate integral: Already for Npoints ¼ 5000 the result of
the sum is within 3% of the result for using the total
∼85000 points in the list.
As expected from the discussion above, the shape of the

diurnal modulation signal for the smallest DM mass
displayed here, mDM ¼ 0.3 GeV in the top left figure, is
very similar for the v0- and v2⊥-interactions. As the DM
mass is increased, the expected modulations become more
different, but the amplitude of the signal quickly drops
belowOð1%Þ, and thus undetectable. However, for the DM
mass, 340 MeV≲mDM ≲ 450 MeV, the shape of the daily
modulation signal can be used to determine the velocity-
dependence of the scattering amplitude.

To assess the feasibility of velocity-dependence detec-
tion from the shape of the daily modulation signal, we
analyze the Fourier-components of the daily event rates,
Cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
, where

an ¼
Z

1

0

RðtÞcosð2πntÞdt; bn ¼
Z

1

0

RðtÞsinð2πntÞdt;

ð13Þ

where t is time in units of day. We show the ratios C1=C2,
C3=C2 and C4=C2 in Fig. 5, for the v0-interaction in black
and v2⊥-interaction in red, as a function of the DMmass. For
any value of the DM mass above mDM ≳ 340 MeV at least
one of the ratios is substantially different to allow sepa-
ration of the v0 and v2⊥ interactions, as long as the Fourier-
components can be reliably reconstructed from the data.
Above mDM ≳ 450 MeV the amplitude of the daily modu-
lation rate drops below 1%, and the reconstruction of the
Fourier-components becomes prohibiting in the required
scale of the experiment. Figure 5 also shows the ratios
of the Fourier components for a silicon detector, where the
v0-interaction is shown by the gray dashed line, and the
v2⊥-interaction by the purple dashed line. Due to the smaller
atomic mass of silicon compared to germanium, the Si

FIG. 3. Angular differential event rate for the 1-operator (left) and the v2⊥-operator (right) for mDM ¼ 0.3 GeV (top row), mDM ¼
0.5 GeV (middle row) and mDM ¼ 5 GeV (bottom row).
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FIG. 4. Normalized event rate RðtÞ=hRi for v0 (black) and v2⊥ (red) interactions as a function of time for mDM ¼ 0.3 GeV (top left),
mDM ¼ 0.33 GeV (top right),mDM ¼ 0.36 GeV (middle left),mDM ¼ 0.4 GeV (middle right),mDM ¼ 0.45 GeV (bottom left),mDM ¼
0.5 GeV (bottom right).

FIG. 5. The ratios of the Fourier-components C1=C2 (left), C3=C2 (center) and C4=C2 (right), for the v0-interaction (black line) and
v2⊥-interaction (red line), as a function of the DM mass. The gray and purple dashed lines show the same ratios for a silicon detector.
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sensitive region falls at the lower values of the DM mass.
We identify the range of 250 MeV≲mDM ≲ 350 MeV as
the region where the velocity-dependence of the operator
can be identified in silicon.
To understand how the shape of the daily modulation

signal arises, we show in Fig. 6 the event rate for the
v0-interaction as a function of the recoil direction, for
mDM ¼ 0.3 GeV, corresponding to the top left panel of
Fig. 4, at the moments of minimum and maximum event
rates (at 04:00, 10:00, 16:00, 22:00 hours), assuming
a1σ0 ¼ 10−39 cm2. Comparing to Fig. 1, we see that the
maximum event rates (corresponding to 10:00 and 22:00),
shown on the right column of Fig. 6, occur when the
direction of the DM wind, shown by the blue dot in Fig. 6,

coincides with the low threshold energy directions that
appear as the dark spots in Fig. 1. Respectively, the minima
of the event rate (at 4:00 and 16:00, shown on the left)
occur when the direction of the DM wind is maximally far
away from the low threshold regions. The blue curve in the
figure shows the path of the direction of the DM wind on
the unit sphere during the 24 hour period.
We define the normalized RMS daily modulation by

RRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

hRi2Δt
Z
Δt
ðRðtÞ − hRiÞ2dt

s
; ð14Þ

where hRi is the average event rate over the time interval
Δt, and RðtÞ is the event rate as a function of time. Figure 7

FIG. 6. Differential event rate as a function of direction for the v0-interaction for mDM ¼ 0.3 GeV at the times of minimum and
maximum total event rate: 04:00 h (top left), 10:00 h (top right), 16:00 h (bottom left), 22:00 h (bottom right). The blue dot shows the
average direction of the incoming DM particles in the lab-frame. During the day the DM direction covers the curve shown in blue.

FIG. 7. Normalized RMS daily modulation in germanium (left) and silicon (right), for the intergrated radon transform (black) and
transverse radon transform (red) as a function of the WIMP mass for the date of September 6, 2015.
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shows RRMS as a function of the WIMP mass, for
germanium and silicon.

B. Energy dependent interactions

To demonstrate the behavior of the q2-dependent scat-
tering operators, we will focus here on the leading term in
the q2-expansion, the q2, and the long-range force effective
operator, q−4.
Figure 8 shows the integrated radon transform (with

Emin ¼ 20 eV) as a function of the recoil direction for the
operators 1 (black), q2 (red) and q−4 (blue), for various
values of the DM mass. Again we notice that the functions
become similar to each other for small values of the
DM mass.
This is also apparent in the daily rates, shown in Fig. 9,

for mDM ¼ 0.3 GeV and mDM ¼ 0.4 GeV wherein, the
normalized event rates are nearly equal for the 0.3 GeV
particle, but begin to deviate for larger values of the DM
mass. The RMS modulation as a function of the DM mass
is consistent with this observation, as shown in Fig. 10.
Finally, in Fig. 11 we show the same ratios of the

Fourier-components as was shown in Fig. 5 but here we

also include the long-range interaction q−4 and the q2-
interaction, presented by the purple dashed and the blue
dotted lines accordingly. We conclude that within the range
340 MeV≲mDM ≲ 450 MeV identified above, the long-
range interaction can also be identified based on the ratios
of the Fourier components. The case of the q2-interaction

FIG. 8. Radon transform of the SHM, integrated from Emin ¼ 20 eV to infinity, as a function of the angle θ between the average
WIMP velocity and the recoil momentum, for mDM ¼ 0.4 GeV (left), mDM ¼ 1 GeV (center), mDM ¼ 5 GeV (right). The black line
corresponds to the operator 1, the red line to the operator q2 and the blue line to the operator q−4.
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FIG. 9. Normalized event rate as a function of time on September 6, 2015, formDM ¼ 0.3 GeV (left) andmDM ¼ 0.4 GeV (right). The
black curve corresponds to the q−4 operator and the red curve to the q2 operator.

FIG. 10. Daily RMS modulation as a function of the DM mass
for the operators 1 (gray line), q2 (red line) and q−4 (black line).
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shown in blue is more subtle, as the ratios of the Fourier-
components for this interaction resemble those for the
v0-operator. However, within the most promising mass-
window, these two can be additionally separated by the use
of C1=C2-ratio.

IV. SUMMARY AND OUTLOOK

We have considered dark matter scattering in the single-
electron resolution ionization detectors wherein the quan-
tum of electronic excitation Emin depends on the recoil
direction. As established in [6], the signal of dark matter
scattering in this case is detectable via the observation of
diurnal modulation in expected event rates. We have
extended the analysis of [6] to cover the possible velocity
and energy dependencies of dark matter scattering on
ordinary matter as implied by the general low energy
effective theory of dark matter.
We carried out the analysis using the standard halo

model for the DM velocity distribution and our main
finding is that for a given detector material there is a range
of sub-GeV masses, wherein the modulation signal is
strong. Furthermore, near the lower boundary of this mass
range the shape of the modulation signal is practically
independent on the nature of the underlying DM inter-
action. However, above this lower boundary the signal
develops a strong dependence on the DM velocity and
scattering energy, allowing for discrimination of different
classes of interaction operators. At higher DM masses,
toward one GeV, the overall amplitude of the modulation
signal decreases and becomes less discernable.
In this study we have focused on germanium as the

detector material, for which we identified the mass interval
340 MeV≲mDM ≲ 450 MeV as the most promising win-
dow where the type of the DM-SM scattering operator can
be identified from the shape of the daily modulation signal.
We have also performed a preliminary study on silicon,
where we find qualitatively similar behavior, and identify
the separation window as 250 MeV≲mDM ≲ 350 MeV.
With a selection of detector materials, it could thus be
feasible to cover a larger range of DMmasses, with multiple
experiments having partly overlapping regions of sensitiv-
ity. The exploration of the directional dependence of the

ionization energy threshold in a variety of materials is
therefore strongly motivated.
There is a rising interest in the dark matter search

community to develop very low threshold detectors [19]
and single electron threshold has already been demon-
strated in phonon mediated detectors [20]. A careful
calibration of common semiconductors for dark matter
detection down to the single electron-hole excitation level
is necessary in order to interpret their results. Using
monoenergetic neutron beams, such efforts are currently
ongoing in various facilities and the results presented in this
work can be verified in those experiments. The experi-
mental thresholds and requirements for the current gen-
eration 2 (G2) low mass dark matter searches that are under
construction (such as SuperCDMS SNOLAB) are above
the single electron-hole pair excitation. The analysis
methods presented in this work can be used to guide future
“beyond G2” experiments wherein the single electron
excitation threshold become a sine qua non [21].
In a near future publication the authors will assess the

implication of this work to the dark matter detection
sensitivity and the possibility of using the near threshold
signal modulation and the cosmological signature thereof
in moving beyond the solar neutrino irreducible back-
grounds for mDM ≲ 1 GeV.
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APPENDIX: RADON TRANSFORMS AND THEIR
ENERGY INTEGRALS

Consider the radon transform of a function f, defined as

f̂ðw; ŵÞ ¼
Z

δðw − ŵ · vÞfðvÞd3v; ðA1Þ

and the transverse radon transform

FIG. 11. The ratios of the Fourier-components C1=C2 (left), C3=C2 (center) and C4=C2 (right), for the v0-interaction (black line),
v2⊥-interaction (red line), q−4-interaction (purple dashed line) and q2-interaction (blue dotted line), as a function of the DM mass.
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f̂Tðw; ŵÞ ¼
Z

δðw − ŵ · vÞðv⊥Þ2fðvÞd3v; ðA2Þ

where v⊥ ¼ v − ðv · ŵÞŵ.
Choosing the z-axis parallel to the unit vector ŵ

and assuming isotropic velocity distribution fðvÞ ¼ fðvÞ,
these can be expressed as an integral over the amplitude v
only:

f̂ðw; ŵÞ ¼ 2π

Z
∞

w
vfðvÞdv; ðA3Þ

f̂Tðw; ŵÞ ¼ 2π

Z
∞

w
vðv2 − w2ÞfðvÞdv: ðA4Þ

The motion with respect to the galactic rest frame is taken
into account via the coordinate transformation v → v − V,
where V is the velocity of the lab-frame with respect to the
galactic rest frame. We follow the parametrization given in
[9,22] for VðtÞ. In this case we have

f̂ðw; ŵÞ ¼ 2π

Z
∞

wþVz

vfðvÞdv; ðA5Þ

f̂Tðw;ŵÞ

¼2π

Z
∞

wþVz

vðv2−2ðwþVzÞVzþV2−w2ÞfðvÞdv; ðA6Þ

where Vz ¼ V · ŵ. For a Maxwell distribution fMðvÞ ¼
ð2πσ2vÞ−3

2 expð−v2=ð2σ2vÞ these are explicitly given as:

f̂Mðw; ŵÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p e
−ðwþVzÞ2

2σ2v ; ðA7Þ

f̂TMðw; ŵÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p ð2σ2v þ V2 − V2
zÞe

−ðwþVzÞ2
2σ2v : ðA8Þ

The SHM distribution (4) is fSHMðvÞ ¼ N−1
e fMðvÞΘ

ðve − vÞ, where ve is the escape velocity. Then the radon
transforms are given as:

f̂SHMðw;ŵÞ¼
N−1

effiffiffiffiffiffiffiffiffiffi
2πσ2v

p �
e
−ðwþVzÞ2

2σ2v −e
− v2e
2σ2v

�
Θðve− ðwþVzÞÞ;

ðA9Þ

f̂TSHMðw; ŵÞ ¼
N−1

effiffiffiffiffiffiffiffiffiffi
2πσ2v

p �
ð2σ2v þ V2 − V2

zÞe
−ðwþVzÞ2

2σ2v − ð2σ2v þ V2 þ v2e − 2V2
z − 2wVz − w2Þe−

v2e
2σ2v

�
Θðve − ðwþ VzÞÞ:

ðA10Þ

The directional event rate (3) is obtained by integration over energy:

Z
∞

Emin

f̂SHMðvmin; q̂ÞdE ¼ N−1
e

�
mVzerf

� ffiffiffiffiffiffiffiffiffi
Emin

p þ ffiffiffiffi
m

p
Vzffiffiffiffiffiffiffi

2m
p

σv

�
þ

ffiffiffi
2

π

r
mσv

�
e
−
2Vz
ffiffiffiffiffiffiffiffi
mEmin

p
þEminþmV2z

2mσ2v − e
− v2e
2σ2v

�

þ e
− v2e
2σ2vðEmin −mðve − VzÞ2Þffiffiffiffiffiffi

2π
p

σv
−mVzerf

�
veffiffiffi
2

p
σv

��
Θ
�
ve −

ffiffiffiffiffiffiffiffiffi
Emin

m

r
− Vz

�
; ðA11Þ

where we now denote Vz ¼ V · q̂ and m ¼ 2μ2DM;N=mN. For the transverse radon transform the integral over
energy reads:

Z
∞

Emin

f̂TSHMðvmin; q̂ÞdE ¼ N−1
effiffiffiffiffiffi

2π
p

σv

 
mσvð2σ2v þ V2 − V2

zÞ
" ffiffiffiffiffiffi

2π
p

Vz

�
erf

� ffiffiffiffiffiffiffiffiffi
Emin

p þ ffiffiffiffi
m

p
Vzffiffiffiffiffiffiffi

2m
p

σv

�
− erf

�
veffiffiffi
2

p
σv

��

þ 2σv

 
e
−
2Vz
ffiffiffiffiffiffiffiffi
mEmin

p
þEminþmV2z

2mσ2v − e
− v2e
2σ2v

!#

þ 1

6m
e
− v2e
2σ2v

�
6mEminð2σ2v þ V2 þ v2e − 2V2

zÞ − 8Vz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mE3

min

q
− 3E2

min −m2ðve − VzÞ2

× ð12σ2v þ 6V2 þ 3v2e − 2veVz − 7V2
zÞ
��

Θ
�
ve −

ffiffiffiffiffiffiffiffiffi
Emin

m

r
− Vz

�
: ðA12Þ
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For the q2 operator, the radon transform (A9) must be multiplied by q2 before taking the integral over energy.
The result is

Z
∞

Emin

q2f̂SHMðvmin; q̂ÞdE ¼ N−1
e

� ffiffiffi
2

π

r
mmN

� ffiffiffiffiffiffi
2π

p
mVzð3σ2v þ V2

zÞerf
� ffiffiffiffiffiffiffiffiffi

Emin
p þ ffiffiffiffi

m
p

Vzffiffiffi
2

p ffiffiffiffi
m

p
σv

�

þ 2σve
−
2Vz
ffiffiffiffiffiffiffiffi
mEmin

p
þEminþmV2z

2mσ2v ð−Vz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mEmin

p
þ Emin þmð2σ2v þ V2

zÞÞ

−
ffiffiffiffiffiffi
2π

p
mVzð3σ2v þ V2

zÞerf
�

veffiffiffi
2

p
σv

�
− 2mσve

− v2e
2σ2vð2σ2v þ v2e − 3veVz þ 3V2

zÞ
�

þmNe
− v2e
2σ2vðE2

min −m2ðve − VzÞ4Þffiffiffiffiffiffi
2π

p
σv

�
Θ
�
ve −

ffiffiffiffiffiffiffiffiffi
Emin

m

r
− Vz

�
: ðA13Þ

For the integral
R
∞
Emin

q−4f̂SHMðvmin; q̂ÞdE we find no analytic expression, and therefore perform the integral over energy
numerically in this case.
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