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Global fits of primary and secondary cosmic-ray (CR) fluxes measured by AMS-02 have great potential
to study CR propagation models and search for exotic sources of antimatter such as annihilating dark matter
(DM). Previous studies of AMS-02 antiprotons revealed a possible hint for a DM signal which, however,
could be affected by systematic uncertainties. To test the robustness of such a DM signal, in this work we
systematically study two important sources of uncertainties: the antiproton production cross sections
needed to calculate the source spectra of secondary antiprotons and the potential correlations in the
experimental data, so far not provided by the AMS-02 Collaboration. To investigate the impact of cross-
section uncertainties we perform global fits of CR spectra including a covariance matrix determined from
nuclear cross-section measurements. As an alternative approach, we perform a joint fit to both the CR and
cross-section data. The two methods agree and show that cross-section uncertainties have a small effect on
the CR fits and on the significance of a potential DM signal, which we find to be at the level of 3σ.
Correlations in the data can have a much larger impact. To illustrate this effect, we determine possible
benchmark models for the correlations in a data-driven method. The inclusion of correlations strongly
improves the constraints on the propagation model and, furthermore, enhances the significance of the DM
signal up to above 5σ. Our analysis demonstrates the importance of providing the covariance of the
experimental data, which is needed to fully exploit their potential.
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I. INTRODUCTION

Antimatter in cosmic rays (CRs), and in particular
antiprotons, have been extensively investigated as a power-
ful means to search for exotic CR sources, such as dark
matter (DM) annihilation in the Galaxy [1–16]. The recent
very accurate measurement of the CR antiproton flux by the
AMS-02 experiment [17] has significantly increased the
sensitivity to a DM signal. A DM contribution as low as
about 10% of the antiproton flux can now in principle be
detected, provided that the theoretical and experimental
systematic uncertainties are under control at that level.
Indeed, strong limits on heavy DM have been derived from
global CR fits [18]. At the same time, the data have also
revealed a tentative signal of DM, corresponding to a DM
mass of around 40–130 GeV and a thermal annihilation

cross section, hσvi ∼ 3 × 10−26 cm3=s [19–21]. This sig-
nal, if confirmed, is compatible with a DM interpretation
of the Galactic center γ-ray excess (GCE) for a variety of
annihilation channels. It is also expected to provide a
detectable signal in antideuterons [22], and it is compatible
with a variety of different beyond-the-standard-model
scenarios [21,23–29]. However, given the small experi-
mental errors, several important sources of systematic
uncertainties, which before could be neglected, now
become increasingly important and need to be further
investigated.
One such uncertainty concerns the predictions for the

antiproton cross sections, needed to model antiproton
production through scattering of CR protons and helium
with the interstellar medium (ISM) in the Galactic disk.
Recent progress in the determination of antiproton cross
sections from nuclear experimental data [30] has been
found to have a significant impact on the DM interpretation
of cosmic rays [15]. A second important source of
uncertainty are possible correlations in the AMS-02 data,
which are dominated by systematic uncertainties in most
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parts of the determined energy range.1 The AMS-02
Collaboration has only released absolute systematic uncer-
tainties, without providing information about their corre-
lations. However, most of the systematic uncertainties are
expected to exhibit sizable correlations.
In this paper we systematically study the above-

mentioned sources of uncertainties. We examine their
impact on the significance of the potential DM excess in
the CR antiproton data and hence scrutinize the robustness
of this finding. Furthermore, we shed light on the impact of
systematic uncertainties on the parameter determination of
the CR propagation model. To this end, we first reproduce
the finding of [19] in an updated setup, using themost recent
cross-section parametrization from [31] and an improved
treatment of solar modulation. This fit is considered as the
default setup providing the reference for the following
investigations.
We study the impact of uncertainties in the antiproton

production cross section following two approaches. The
first approach is similar to the one taken in [15]. We
incorporate the cross-section uncertainties in the CR fit by
including a covariance matrix extracted from a separate fit
to nuclear measurements. In the second approach we
perform a joint fit of the CR propagation and antiproton
cross-section parameters to the AMS-02 and the nuclear
data. Such a joint fit provides important information about
possible correlation between propagation and cross-section
parameters.
We investigate the potential impact of correlations in the

experimental data by assuming that the systematic uncer-
tainties consist of three components: a part which is
uncorrelated, a part correlated over a certain number of
neighboring rigidity bins, and a part which is fully
correlated. We determine these properties in a data-driven
method, which allows us to constrain the viable range of the
various components and to define four corresponding
benchmark models. We perform global fits for these four
benchmark models, each with and without a primary source
of antiprotons from DM.
The paper is structured as follows. In Sec. II we review

CR propagation and highlight some new features of our
setup which extend the standard treatment. Furthermore,
we discuss solar modulation and justify our choice to omit
low-rigidity data from the global fit. In Sec. III we detail the
numerical implementation and describe our default setup
for propagation and the corresponding results, considering
the case with and without an additional source of anti-
protons from DM annihilation. The uncertainties from
antiproton cross sections are discussed in Sec. IV, following
the two approaches mentioned above. Finally, in Sec. V we

discuss the potential impact of correlated errors in the
AMS-02 data, following again two different methods. We
conclude in Sec. VI.

II. COSMIC-RAY PROPAGATION AND SOLAR
MODULATION

The propagation of CRs through the Galaxy can be
described by the well-known diffusion equation for the
phase-space densities of CRs [32]:

∂ψ iðx;p;tÞ
∂t ¼ qiðx;pÞþ∇ · ðDxx∇ψ i−Vψ iÞ
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∂pp
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The equation can either be solved analytically, utilizing
various simplifying assumption [33,34], or fully numeri-
cally, as implemented in codes like GALPROP [35,36],
DRAGON [37,38] and PICARD [39].
For a given primary CR species i, the equation has a

source term qiðx; pÞ which is assumed to factorize into a
space- and rigidity-dependent part,

qiðx; pÞ ¼ qiðr; z; RÞ ¼ q0;iqr;zðr; zÞqi;RðRÞ; ð2Þ

where r and z are cylindrical coordinates with respect to the
Galactic center and R denotes the rigidity. The rigidity
dependence is taken to be a smoothly broken power law
with break position R0, and spectral indices γ1;i and γ2;i
above and below the break, respectively, while the smooth-
ing is controlled by a parameter s:

qRðRÞ ¼
�
R
R0

�
−γ1

�
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�−sðγ2−γ1Þ
: ð3Þ

The spatial dependence of the source term is parametrized as

qr;zðr; zÞ ¼
�
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�
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�
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�
−
jzj
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�
; ð4Þ

with parameters α ¼ 0.5, β ¼ 2.2, rs ¼ 8.5 kpc, and
z0 ¼ 0.2 kpc.2

Several processes contribute to CR propagation, in
particular diffusion, reacceleration, convection and energy
losses. Spatial diffusion is assumed to be isotropic and

1The proton and helium fluxes are dominated by systematic
uncertainties in the whole energy range from 1 GeV to 3 TeV,
while in the antiproton-to-proton ratio systematic uncertainties
are dominant from 1.8 to 50 GeV only.

2These are the default values in GALPROP V56, which slightly
differ from the values obtained from supernova remnants [40,41].
However, as pointed out in [42] the spatial dependence of the
source term distribution has a negligible effect on the local CR
fluxes.
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homogeneous and is described by a rigidity-dependent
diffusion coefficient Dxx. We use a broken power law in
rigidity in light of the recent measurements by AMS-02 of
the secondaries boron, lithium and beryllium [43], which
favors the interpretation of the observed CR break around
300 GV as a break in diffusion rather than CR injection:

Dxx ¼

8>>><
>>>:

βD0

�
R

4 GV

�
δ

if R < R1 and

βD0

�
R1

4 GV

�
δ
�
R
R1

�
δ2

otherwise;

ð5Þ

where δ and δ2 are, respectively, the indices below and
above the break at R1, D0 is the overall normalization, and
β ¼ v=c the velocity of the CRs. The velocity of convective
winds, VðxÞ, is assumed to be constant and orthogonal to
the Galactic plane, VðxÞ ¼ sgnðzÞv0;cez. Diffusive reaccel-
eration is parametrized by the velocity vA of Alfvèn
magnetic waves [44,45]:

Dpp ¼ 4ðpvAÞ2
3ð2 − δÞð2þ δÞð4 − δÞδDxx

: ð6Þ

This formula exhibits an ambiguity regarding the choice of
δ when, as in our case, spatial diffusion has a break. We
choose to use a single δ at all rigidities, specifically the δ
below the break R1 introduced in Eq. (5). Finally, CR
propagation is affected by energy losses, continuous,
adiabatic and catastrophic, for which we use the default
GALPROP implementation. Explicitly, in Eq. (1) continuous
energy losses are described by the term dp=dt, and
catastrophic losses through fragmentation or decay are
described by the respective lifetimes τf and τr. Catastrophic
energy losses provide a source term for secondary CRs (see
Sec. IV for details). Consequently, the propagation equa-
tions for the different CR species (primary and secondaries)
constitute a coupled system of differential equations.
Beside secondary production by CR proton and helium

interactions with the ISM, annihilation of DM in the
Galaxy may lead to an additional source of antiprotons
from the fragmentation and decay of the annihilation
products [1–15]. The corresponding source term reads

qðDMÞ
p̄ ðx; TÞ ¼ 1

2

�
ρðxÞ
mDM

�
2X

f

hσvif
dNf

p̄

dT
; ð7Þ

where mDM and ρðxÞ are the DM mass and DM energy-
density profile, respectively. The sum runs over all DM
annihilation channels f. The corresponding velocity-
averaged cross section and antiproton energy spectrum per
annihilation are denoted by hσvif and dNf

p̄=dT, respectively,
where T is the kinetic energy. Note that the factor 1=2
corresponds to Majorana fermion DM. The energy spectra

per annihilation at production, dNf
p̄=dT, depend on the DM

mass, thekinematics of the annihilation process and details of
the fragmentation and decay of the annihilation products. In
this article, we consider the annihilation into bottom quarks,
DMDM → bb̄, for illustration. Note that the antiproton
spectra of other hadronic channels exhibit similar shapes.
Therefore, we expect this choice to be suitable to analyze a
potential DM signal even though the true composition of
annihilation channelsmay bevery different. The correspond-
ing best-fit DM mass may, however, differ for different
annihilation channels, as discussed in [21]. We employ the
spectra presented in [46].
The DM density profile is still subject to sizable

uncertainties. However, CR probes of DM do not exhibit
a strong sensitivity on the chosen profile [18]. Within this
work we use the Navarro-Frenk-White density profile [47],
with a characteristic halo radius as rh ¼ 20 kpc and
normalization so as to obtain a local DM density ρ⊙ ¼
0.43 GeV=cm3 [48] at the solar position r⊙ ¼ 8 kpc.
We assume that CRs are in a steady state, which is a good

approximation for nuclei. The geometry of the Galaxy is
approximated by a cylindrical box with an extension of
r ¼ 20 kpc and z ¼ �zh. We solve the diffusion equation
numerically with the GALPROP code [35,36,49]. GALPROP

solves the equation on a grid in the kinetic energy per
nucleon and in the two spatial dimensions r and z. The
radial and z grid steps are chosen as Δr ¼ 1 kpc and
Δz ¼ 0.1 kpc, respectively. The grid in kinetic energy per
nucleon is logarithmic between 1 and 107 MeV with a step
factor of 1.4. We use versions GALPROP 56.0.2870 and
GALTOOLLIBS 855 [50] as the basis and implement several
custom modifications. Most importantly, first, we include
the antiproton production cross sections from di Mauro
et al. [51] and Winkler [30] (with updated parameters from
Korsmeier, Donato, and Di Mauro [31]). We allow for
either using default cross sections from tables or the full
parametrization of the Lorentz invariant cross sections. In
the latter case the Lorentz transformation and angular
integration is performed on the fly. Secondly, we imple-
mented the possibility of using a smoothly broken power
law in the injection spectrum.
At low energies, CRs are deflected and decelerated by

solar winds and the solar magnetic field. The strength
varies in a 22-yr cycle and is, therefore, commonly referred
to as solar modulation. The effect starts to be significant
below few tens of GV and increases towards low energies.
Solar modulation can be described by a propagation
equation similar to the one of interstellar CR propagation
but adjusted to the situation in the heliosphere. It can be
solved numerically and compared to data [52–55]. Progress
in the understanding of CR propagation in the heliosphere
has been made recently [56,57] especially thanks to (i) the
data of the Voyager I probe which has left the heliosphere a
few years ago and thus determines the CR fluxes before
they are influenced by the solar effects and (ii) the data of
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PAMELA, which provided time-dependent CR fluxes.
Further progress is expected from the analysis of the
time-dependent CR fluxes released recently by AMS-02
[58,59]. Nonetheless, a detailed understanding is still
missing at the moment. For this reason we resort to the
commonly used force-field approximation [60], where the
CR flux near Earth is calculated as

ϕ⊕;iðE⊕;iÞ ¼
E2
⊕;i −m2

i

E2
LIS;i −m2

i
ϕLIS;iðELIS;iÞ; ð8Þ

E⊕;i ¼ ELIS;i − ejZijφSM;i: ð9Þ

Here, e is the elementary charge, Zi and mi are the charge
number and mass of the species i, respectively, and φSM;i is
the corresponding solar modulation potential. The variables
ELIS, and E⊕;i describe the total CR energy before and after
solar modulation, respectively. To minimize the deviations
of solar modulation from the force-field approximation we
limit the analysis to rigidities larger than 5 GV. In this
respect various comments are in order:

(i) The recent publication by AMS-02 on time-
dependent proton and helium fluxes [58] indicates
that the proton to helium ratio is in general constant,
except for data taken after May 2015 at rigidities
below 3 GV. We will use proton and helium data
before May 2015, and we can thus use the same
modulation for the two species.

(ii) It is well established that solar modulation is charge-
sign dependent. The AMS-02 measurements of the
time-dependent proton and helium fluxes [58] as
well as the electron and positron fluxes [59] provide
a further confirmation of this effect. To take this
effect into account we will use a different solar
modulation potential for antiprotons as compared to
p and He; see Sec. III.

(iii) The AMS-02 time-dependent data show explicitly a
deviation from the force-field approximation. For
example, the proton spectra from different periods
exhibit crossings,3 an effect that is not possible in the
force-field approximation. This in particular is seen
at low energies below ∼5 GV and during the
maximum of solar activity.

We conclude that below 5 GV the force-field approxi-
mation starts to lose its reliability. Hence we discard data
below5GVbydefault in our analysis. Note also that the data
we use do not include the solar maximum. Nonetheless, we
also performed test fits with different lower cuts on the
rigidity, still within the force-field approximation. From
these fits we will further show that a cut of 5 GV is
conservative from the point of view of DM searches.

III. DEFAULT SETUP

Here we provide a short summary of the fit setup which,
in general, is rather similar to the one used in [19,42].
However, there are some important differences which
we point out below. We use AMS-02 proton and helium
fluxes [61,62], which both span the data period from May
2011 to November 2013, and the AMS-02 antiproton to
proton ratio [17], taken during the period May 2011 to May
2015. Furthermore, we use proton and helium data from
Voyager [63] and, in some fits, complement with data from
CREAM [64].
In general, the likelihood for the CR fit is given by the

product of the likelihoods of all experiments and CR
species:

−2 logðLCRÞ¼ χ2CR

¼
X
e;s

X
i;j

ðϕðeÞ
s;i −ϕðmÞ

s;e ðRiÞÞððVðe;sÞÞ−1ÞijðϕðeÞ
s;j −ϕðmÞ

s;e ðRjÞÞ:

ð10Þ

Here ϕðeÞ
s;i is the flux measured by the experiment e for the

CR species s at the rigidity Ri and ϕ
ðmÞ
s;e is the corresponding

GALPROP model. The covariance matrix Vðe;sÞ describes the
uncertainty of the flux measurement. In the default setup

we assume uncorrelated uncertainties, Vðe;sÞ
ij ¼ δij½σðeÞs;i �2.

We suppress the explicit dependence of ϕðmÞ on all the fit
parameters.
Cosmic-ray propagation is described by a total of 15 (or

17, when including DM) parameters. They are partly
described in Sec. II, but, for convenience, we list them
again below. Six parameters are used to describe the
injection spectrum of protons and helium, i.e., the slopes
below and above the rigidity break, γ1;p,γ1, γ2;p, γ2, the
common rigidity break R0 and a common smoothing
parameter s. Five more parameters describe propagation,
i.e., the normalization D0 and slope δ of the diffusion
coefficient, the velocity of Alfvèn magnetic waves, vA, the
convection velocity v0c, and the Galaxy’s half-height zh. In
the default setup we limit the fit range of AMS-02 data from
5 to 300 GV. A more detailed discussion and justification of
these numbers is given further below. We notice, however,
that in this way we avoid fitting the two parameters
describing diffusion above 300 GV, which are instead
fixed to R1 ¼ 300 GV and δ2 ¼ δ − 0.12. Two further
parameters, mDM and hσvi, are used to parametrize the
considered DM model when antiprotons from DM anni-
hilation are included in the fit. These 11 (13) parameters are
scanned using MULTINEST [65]. For the MULTINEST setup
we use 500 live points, an enlargement factor EFR ¼ 0.7,
and a stopping criterion of TOL ¼ 0.1. The final efficiency
of the scan is typically around 7% and the number of
likelihood evaluation around 200 000.

3For instance, the proton fluxes from November 2013 (Bartels
rotation 2460) and March 2015 (Bartels rotation 2476) cross at
∼4 GV.
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The remaining four parameters are treated in a simplified
way. Two are the normalization of the proton and helium
fluxes, Ap and AHe, respectively, and the other two are the
solar modulation potential, φSM;AMS-02;p;He, referring to p
and He as well as φSM;AMS-02;p̄ referring to p̄. We do not
apply priors on φSM;AMS-02;p;He, while for φSM;AMS-02;p̄ we
apply a very weak Gaussian prior; i.e., we add to the main
likelihood the term −2 logðLSMÞ ¼ ðφSM;AMS-02;p;He −
φSM;AMS-02p̄Þ2=σ2φ, where σφ ¼ 100 MV. We profile over
these four parameters on the fly at each MULTINEST like-
lihood evaluation following [66]. More precisely, for each
evaluation in the fit within the 11- (13-) dimensional
parameter space the likelihood is maximized over the four
remaining parameters. This maximization is performedwith
MINUIT [67]. To interpret the scan result we use a frequentist
framework, and we build one- and two-dimensional profile
likelihoods in the different parameters, from which we
derive contours which are shown in various figures in the
following.
There is a subtlety in the treatment of solar modulation.

As mentioned above, the AMS-02 p̄=p ratio data—and
hence the proton data used in this ratio—are taken from a
different period than the AMS-02 p and He data. Thus the
two p datasets should be modulated by a different solar
modulation potential to be self-consistent. An obvious
improvement would be to use p and p̄=p datasets from
the same time period, which are, however, not available in
the AMS-02 publication [17]. Alternatively, the p̄ absolute
data (which are available in [17]) could be fitted instead of
the p̄=p ratio. This procedure is, however, suboptimal,
because in the ratio some systematic uncertainty cancels
out and thus the p̄ data have a larger relative error than the
p̄=p ratio data. Moreover, the use of the p̄=p ratio data
considerably simplifies the fit since the ratio is considerably
less sensitive to the injection parameters than the absolute p̄
flux. To resolve this issue we proceed as follows. We derive
an “effective” p spectrum from p̄=p ratio and p̄ flux from
[17] taking p̄=ðp̄=pÞ. We then divide the published p
spectrum [61] by this effective p spectrum. As expected,
this ratio is consistent with 1 above ∼40 GV and slowly
decreases at low rigidities due to solar modulation, up to a
maximum deviation of 5% at 1 GV. As a function of rigidity
this ratio is then approximated by a smooth log-parabola,
which in turn is used to multiply the published p and He
data [61,62] to create an effective p and He dataset that
corresponds to the same period as the p̄=p ratio. During our
study the AMS-02 publication [58] became available
providing time-dependent p and He fluxes. This provides
us with an alternative possibility to derive the p and He
effective fluxes corresponding to the period of the p̄=p
ratio, namely, averaging the given monthly fluxes over that
period. This second method is expected to be more robust.
Nonetheless, we found that the effective p and He fluxes
build from the two methods perfectly agree, except below
3 GV, where we find a difference of the order of 2%, which

is comparable with the error bars. Using these effective p
and He fluxes we can self-consistently use the modulation
potential φSM;AMS-02;p;He for the absolute fluxes of p and He
and for the p in the p̄=p ratio and the modulation potential
φSM;AMS-02p̄ for the p̄ in the p̄=p ratio. In the future, to
avoid these issues, we recommend experimental collabo-
rations to periodically release global datasets including the
measurements of the fluxes of all species available and all
referring to the same time period.
As a default production cross section for the secondary

antiprotons we use the model from Winkler et al. [30,68]
with updated parameters from Korsmeier, Donato, and Di
Mauro [31] (referred to as param. MW in the following).
The results of an alternative cross-section parametrization
by di Mauro et al. [51] (param. MD) and the effect of
uncertainties of the cross-section parameters are discussed
in detail in Sec. IV.
The results of the fit with this default setup, with and

without DM, are shown in Figs. 1–3 and listed in the first
two columns of Table I. Figure 1 contains the comparison
of the best-fit proton and helium spectra to data from AMS-
02 and Voyager. The respective plots from the fit including
DM look very similar. The residuals in the lower panels
show a perfect agreement of the AMS-02 data with the
GALPROP model. However, they also already hint at a
problem: The fluctuation of data points around the best fit is
much smaller that the dominating systematic uncertainty. If
this uncertainty is taken to be uncorrelated, the fit results in
a χ2 per degree of freedom (dof) much smaller than 1. We
elaborate on possible correlation scenarios in more detail
in Sec. V.
Figure 2 shows the best fit of the antiproton-to-proton

ratio. Considering the fit regime from 5 to 300 GV there is a
clearly visible improvement in the residuals, if DM is
included in the fit. The significance in terms of χ2 difference
between the fits excluding and including DM isΔχ2 ≃ 12.7,
which formally corresponds to 3.1σ. For the considered bb̄
channel an annihilation cross section around 10−26 cm3=s
and a mass around 75 GeV provides the best fit. As already
found in [19] we point out that the DM signature constitutes
a spectral shape which is very different from the astrophysi-
cal secondary or tertiary components.
Finally, we summarize the best-fit CR and DM param-

eters in the triangle plot displayed in Fig. 3. Note that,
compared to previous results in [19] and due to the change
of the standard cross section, the value of δ has increased to
0.42 and 0.38 in the casewithout andwith DM, respectively.
Thesevalues are inmuch better agreementwith expectations
from B/C data which points to 0.4–0.45 [69,70]. The
additional, embedded plots display the profiles for solar
modulation. There is a small but nonsignificant preference
for a slightly smaller solar modulation potential for anti-
protons. From a theoretical point of view it is not exactly
clear whether we expect a larger or smaller solar modulation
potential for protons or antiprotons. The behavior is
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expected to depend on the polarity of the solar magnetic
field. Since there is a change of polarity in 2013, which is in
the middle of the period of the AMS-02 measurement of the
antiproton-to-proton ratio, the exact situation is unclear.
Future more detailed analyses of the recent monthly data by
AMS-02 will provide a better understanding of this issue.
In the following we will discuss step by step the

difference in our default setup with respect to the previous
analysis performed in [19]. In particular there are three
main points: We

(i) removed data from CREAM, as it provides a source
of tension with high-rigidity data from AMS-02 that
is likely to stem from a systematic uncertainty in the
normalization which were not properly addressed,

(ii) changed the p̄ production cross section from Tan
and Ng [71] to the more recent param. MW,

(iii) introduced a separate solar modulation potential
for p and He, with respect to p̄ as described
above.

Besides the change of the best-fit propagation parameters
(in particular δ) mentioned above, also the significance of
the potential DM signal changes. In [19] Δχ2 was found to
be at the level of 25, corresponding to a significance of
∼4.5σ. We performed several additional fits to trace the
origin of the difference with respect to the current analysis.
The Δχ2 changes

(i) from 25 to 21, when removing CREAM data and
fitting data only below 300 GV,

FIG. 2. Comparison of our best-fit antiproton-over-proton ratio as a function of rigidity with AMS-02 data. The left plot shows the
default setup without DM, while the plot in the right panel shows the corresponding setup with DM. In addition, we show the tertiary
component, the DM component, and the best fit before solar modulation (φ⊙ ¼ 0). The fit range is R ¼ 5–300 GV
(between the dotted lines).

FIG. 1. Comparison of our best-fit proton and helium fluxes as a function of rigidity with AMS-02 and Voyager data. Both plots show
the default setup without DM. In addition, we show the best fit before solar modulation (φ⊙ ¼ 0). The fit range is R ¼ 5–300 GV
(between the dotted lines).
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(ii) from 21 to 11, when changing the p̄ cross section to
param. MW,

(iii) and finally from 11 to 12.7, when introducing
separate modulation potentials.

This investigation shows that the cross-section parametri-
zation has a potentially large impact on the DM signifi-
cance. We will investigate the robustness of the signal
against cross-section uncertainties in the next section.
In order to examine the compatibility of our new setup

with CREAM data we perform one further fit. We include
data from CREAM and allow for four additional fit
parameters. First, we include the break position of the

diffusion coefficient, R1, and slope above this break, δ2,
which are sampled by MULTINEST. Secondly, we introduce
two normalization parameters of the CREAM proton and
helium data which we leave free in order to take into
account a possible systematic uncertainty (especially in the
energy scale, which is degenerate with an uncertainty in the
normalization for a pure power law the spectrum, as it is
the case for the CREAM data in the limited energy range
∼1–10 TeV). These nuisance parameters relieve the above-
mentioned tension present when the data are used with the
nominal normalization. Going from the default fit to this
extended setup with a total of 19 (21) parameters does not

FIG. 3. Triangle plot with the fit parameters of the default fit which is the baseline for the following analyses. The black (red) contours
show the 1σ to 3σ best-fit regions in the setup without (with) DM. On the diagonal the χ2 profiles are plotted for every fit parameter. The
two additional plots show the χ2 profiles of the solar modulation potential of AMS-02 p, He and its difference to the potential of p̄,
respectively.
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introduce significant complications since the two extra
MULTINEST parameters R1 and δ2 are mainly determined
by the data above 300 GVand are thus largely uncorrelated
with the rest of the parameter space, while the two
normalization CREAM parameters are profiled over sim-
ilarly as described above. The result of the fit is included in
Table I as the third and fourth columns. It justifies
our choice R1 ¼ 300 GV and δ2 ¼ δ − 0.12 made above.
The DM significance is similar to the default setup and only
increases slightly toΔχ2 ¼ 15.1, which corresponds to 3.5σ.
Finally, as announced in Sec. II we briefly discuss the

effect of taking into account data below 5 GV while still

using the force-field approach to describe solar modulation.
To this end we performed three additional fits following the
above default setting (17 parameters) but with a rigidity cut
at 3, 2 and 1 GV. The corresponding values for the χ2 are
shown in Table II. We observe a significant gradual
worsening of the overall fit quality with decreasing rigidity,
in particular between 2 and 1 GV. This applies for both fits
with and without DM. It indicates that the model becomes
less and less able to explain the data at lower energies, as
expected from various effects like deviations from the force
field, or, possibly, deviations from the simple scenario of
convection reacceleration. The significance of a DM signal

TABLE I. The best-fit parameters of the fits with and without DM. The double column contains the results of our default setup. We
show for comparison a fit that includes CREAM data and AMS-02 above 300 GeV.

Parameter Default setup Extended setup

XS parametrization Param. MW Param. MW
DM incl. excl. incl. excl.
γ1 1.71þ0.02

−0.25 1.72þ0.04
−0.12 1.64þ0.05

−0.12 1.72þ0.02
−0.11

γ1;p 1.78þ0.003
−0.19 1.75þ0.03

−0.10 1.73þ0.04
−0.06 1.73þ0.05

−0.07
γ2 2.41þ0.03

−0.002 2.38þ0.01
−0.02 2.44þ0.01

−0.02 2.38þ0.01
−0.01

γ2;p 2.45þ0.03
−0.002 2.42þ0.01

−0.02 2.48þ0.01
−0.02 2.41þ0.01

−0.01
R0 [MV] 6950þ330

−1640 7380þ910
−1450 6519þ1045

−824 7695þ563
−1375

s0 0.38þ0.06
−0.04 0.34þ0.05

−0.04 0.38þ0.06
−0.01 0.37þ0.04

−0.03

D0 ½1028 cm2=s� 5.43þ0.45
−3.17 2.90þ1.33

−1.21 3.46þ2.46
−1.19 1.97þ1.27

−3.81

δ 0.38þ0.01
−0.03 0.42þ0.02

−0.01 0.35þ0.02
−0.01 0.42þ0.01

−0.02
vA ½km=h� 18.0þ2.1

−1.4 16.2þ1.0
−2.5 18.59þ0.00

−3.25 15.81þ0.87
−1.99

v0;c ½km=h� 0.08þ9.09
−0.08 0.52þ2.32

−0.51 0.35þ4.94
−0.14 0.79þ2.19

−0.77

zh ½kpc� 6.45þ0.30
−4.26 3.58þ2.36

−1.52 3.36þ3.47
−1.13 2.47þ1.58

−0.43

logðmDM=½GeV�Þ 1.89þ0.03
−0.08 1.88þ0.05

−0.00

logðhσvi=½s=cm3�Þ −26.16þ0.78
−0.04 −25.56þ0.20

−0.47
δ2 0.23þ0.01

−0.00 0.30þ0.02
−0.02

R1 [GV] 344þ26
−20 338þ49

−40

φSM;AMS-02;p;He [MV] 616þ71
−72 625þ55

−85 566þ19
−71 567þ19

−66

φSM;AMS-02p̄ [MV] 604þ112
−114 561þ135

−112 577þ43
−82 561þ35

−106

χ2AMS-02;p 3.2 2.6 4.9 7.0

χ2AMS-02;He 4.0 4.8 10.4 12.0

χ2AMS-02;p̄ 11.1 22.1 12.2 20.0

χ2Voyager;p 3.2 3.8 2.7 3.6

χ2Voyager;He 1.3 1.9 3.4 4.1

χ2CREAM;p 1.0 1.0

χ2CREAM;He 1.0 2.9

χ2φSM
0.0 0.4 0.0 0.0

χ2CR 22.9 35.6 35.6 50.7

χ2=dof 22.9=143 35.6=145 35.6=177 50.7=179

Δχ2 12.7 15.1

DM significance 3.1σ 3.5σ
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is maximal for a energy cut of 3 GV with a Δχ2 of around
19 and then decreases to Δχ2 ≃ 11 for a cut at 2 GV and
Δχ2 ≃ 0 for a cut at 1 GV, where, however, the overall fit
quality is significantly worse as mentioned above. The cut
at 5 GV, hence, does not maximize the significance of a
possible DM signal. Note that the values of the other CR
parameters do not change significantly with the different
rigidity cuts, while the errors have a slight improvement.
Thus, the estimation of the CR parameters seems robust
with respect to the variation of the lower rigidity cut.

IV. ANTIPROTON CROSS SECTIONS

A. Introduction

As we have seen in the previous section, the p̄ produc-
tion cross section has an important impact on the fit and on
the significance of the DM signal. In this section we thus go
more into depth in the investigation of this issue. The CR
antiprotons in our Galaxy are dominantly produced by the
interaction of CR protons and helium with the ISM in the
Galactic disk. The source term for the CR projectile nucleus
i and the ISM nuclei component j is given by

qijðx;Tp̄Þ¼
Z

∞

T th

dTi4πnISM;jðxÞϕiðTiÞ
dσij
dTp̄

ðTi;Tp̄Þ: ð11Þ

Here ϕi is the CR flux, nISM;j is the density of the ISM, and
dσi;j=dTp̄ is the energy-differential cross section for anti-
proton production. The parameters Ti and Tp̄ denote the
kinetic energy of the CR projectile and antiproton, respec-
tively. High-energy experiments measure the fully
differential cross sections which are usually stated in the
Lorentz-invariant form, Ep̄dσ=dp3

p̄. There are two different
strategies to extract the energy-differential cross section from
the experimental data. On the one hand, Monte Carlo
generators are tuned to the data and afterwards used to
extract the required cross section [72,73]. However, at the
moment these approaches lack consistencywith data at either
low or high energies, depending on the specific generator
[74]. On the other hand, an analytic parametrization of the
Lorentz-invariant cross section is fitted to the experimental
data. In this case, the energy-differential cross section is
obtained by, first, performing a Lorentz transformation to the
frame where the ISM component is at rest and, secondly, an

angular integration [30,31,51,68]. This approach works
reasonably well throughout the whole energy range of
AMS-02, namely, from a rigidity of 1–400 GV. Therefore,
we rely on the parametrization approach in the following.
More details are given in [31,74]. We exploit the two
parametrizations, param. MW [30] (used in the default setup
above) and param.MD [51], forwhichwe use the parameters
updated to the most recent data from NA61 and LHCb as
presented in [31]. The uncertainty on the antiproton source
term, solely due to cross sections, is at about 5% above Tp̄ ¼
5 GeV and increases to 10% below. To take this uncertainty
properly into account we apply two different methods.

B. Covariance matrix method

In the first method, we propagate the error of the cross-
section parametrization to the flux of the CR antiprotons.
This method was already suggested and applied in
Ref. [15]. The procedure works as follows. We use the
covariance matrix of the cross-section fits from Ref. [31]
and sample N ¼ 1000 random parameter combinations k

and the corresponding antiproton source terms qðkÞp̄ . From
these we determine the covariance matrix of the relative

source term qðkÞp̄ ðRiÞ=qðbest fitÞp̄ ðRiÞ at rigidities Ri of AMS-
02 data points i. It is given by

V
ðqp̄;relÞ
XS;ij ¼ 1

N − 1

XN
k¼1

�
qðkÞp̄ ðRiÞ

qðbest fitÞp̄ ðRiÞ
− 1

�

×

�
qðkÞp̄ ðRjÞ

qðbest fitÞp̄ ðRjÞ
− 1

�
: ð12Þ

(In formulas, tables and figures we abbreviate cross section
with XS.) We assume that the covariance matrices of the
relative source term and of the relative flux are identical.4 In
other words, the covariance matrix of the antiproton flux is
given by

V
ðϕAMS−02

p̄=p Þ
XS;ij ¼ V

ðqp̄;relÞ
XS;ij ϕ

ðAMS−02Þ
p̄=p;i ϕðAMS−02Þ

p̄=p;j : ð13Þ

TABLE II. Fit quality for the best-fit parameter points without (second column) and with (third column) DM for various choices of the
rigidity cut. The last column shows the absolute Δχ2 between the respective fits with and without DM.

χ2=ndf

Rigidity cut [GV] Excl. DM Incl. DM Δχ2 DM significance

5 35.6=145 ¼ 0.245 22.9=143 ¼ 0.160 12.7 3.1σ
3 52.7=160 ¼ 0.329 34.2=158 ¼ 0.216 18.5 3.9σ
2 68.2=172 ¼ 0.396 57.1=170 ¼ 0.336 11.1 2.9σ
1 105.4=182 ¼ 0.579 105.6=180 ¼ 0.586 −0.2

4This is a good approximation since the relative uncertainty is
invariant under propagation which is described by a linear
differential equation.
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Here ϕðAMS−02Þ
p̄;i is the antiproton flux measured by AMS-02

at the rigidity Ri. Accordingly, for the log-likelihood of
the antiproton data in our fit the covariance matrix is
replaced by

V
ðϕAMS−02

p̄=p Þ
ij ¼ V

ðϕAMS−02
p̄=p Þ

XS;ij þ δij½σðAMS−02Þ
p̄=p;i �2: ð14Þ

Obviously, this method has one weakness: Error propaga-
tion in terms of a covariance matrix assumes that the
likelihood of the original cross-section parameters and the
corresponding likelihood in the space of AMS-02 anti-
proton flux data points are well approximated by a
multivariate Gaussian distribution. However, the true like-
lihood might be more complicated. Furthermore, the
method assumes that there is no correlation between
the cross-section uncertainties and CR propagation uncer-
tainties. To take into account these shortcomings we thus
consider a second method below.

C. Joint fit method

In the second method we perform a joint fit of CRs and
the antiproton production cross section. By simultane-
ously fitting the CR and cross-section parameters to CR
fluxes and experimental cross-section data, the full
likelihood is correctly taken into account. The price that
we have to pay is an increase in the number of
parameters for an already high-dimensional and hence

time-consuming fit. In our default setup the CR fit
contains 11–13 MULTINEST parameters; the fit of cross
section uses 7–10 free parameters. Thus, naively merging
the fit would lead to Oð20Þ free MULTINEST parameters,
which is extremely challenging. Therefore, we reduce the
number of free parameters in the cross-section para-
metrization to those which affect the shape of the CR
antiproton source term the most (as discussed further
below) and fix the remaining parameters. We focus on
param. MW of the Lorentz-invariant cross section
since the meaning of the single parameters is more
obvious compared to param. MD. The parametrization
MW for prompt antiproton production in proton-proton
collisions depends on the center-of-mass energy

ffiffiffi
s

p
of

the collision, the energy of the antiproton divided by
the maximal antiproton energy xR, the transverse momen-
tum of the antiproton pT, and the six parameters
C ¼ fC1…C6g:

Ep̄
d3σ
dp3

p̄
ð ffiffiffi

s
p

;xR;pTÞ

¼ σinRXSC1ð1−xRÞC2

�
1þ X

GeV
ðmT−mpÞ

� −1
C3X; ð15Þ

where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

p

q
. The inelastic cross section σin

of pp scattering is defined in [30]. The factor

RXS ¼

8>><
>>:

�
1þ C5

�
10 −

ffiffiffi
s

p
GeV

�
5
�
· exp

�
C6

�
10 −

ffiffiffi
s

p
GeV

�
ðxR − xR;minÞ2

�
;

ffiffiffi
s

p
≤ 10 GeV

1; else

ð16Þ

describes the scaling violation of the cross section at lowffiffiffi
s

p
, and X is defined by

X ¼ C4 log2
� ffiffiffi

s
p
4mp

�
: ð17Þ

For nonproton nuclei in the projectile CR or target ISM
state we rescale the pp cross section as described in [31].
Furthermore, the total antiproton source term includes
antiprotons produced by the decay of intermediate anti-
neutrons or antihyperons. We apply the scalings from [30].
The total likelihood for the joint fit is given by the product
of the CR and cross-section likelihoods:

logðLjointÞ ¼ logðLCR;SMÞ þ logðLXSÞ: ð18Þ

The procedure to fit the cross-section data follows [31]. We
fit to the same datasets [NA49 [75], NA61 [76], Dekkers

et al. [77], NA49 (pC) [78], and LHCb (pHe) [79]5] and
use the same likelihood definition:

−2 logðLXSÞ ¼
X
e

X
i

�
ωeσ

ðeÞ
inv;i − σðmÞ

inv ð
ffiffiffi
s

p
i; xRi; pTiÞ

ωeσσðeÞinv;i

�2

þ
X
e

�
1 − ωe

σωe

�
2

: ð19Þ

As before, e denotes experiments (this time of cross-section
measurements) with data points i, while m denotes the
cross-section parametrization. The symbols σinv and σσinv
represent the Lorentz-invariant cross section and its

5During our analysis LHCb published the final analysis [80] of
the cross section. They differ from the preliminary results by a
scale factor of about 10%. However, since we include a scale
uncertainty of 10% in our analysis, we do not expect a significant
effect on the results.
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uncertainty, respectively. We account for a scale uncertainty
ωe of each cross-section measurement e. It is constrained
by a Gaussian prior, namely, the second term in Eq. (19).
During the fit, these parameters are treated in a simplified
way, similar to the normalizations and solar modulation
parameters (cf. Sec. III). For each MULTINEST step the ωe’s
are profiled over by performing a MINUIT fit.
Wenowdiscuss our choice of parameters considered in the

fit. The uncertainty of the antiproton production cross section
has different origins. At high energies, above

ffiffiffi
s

p ¼ 10 GeV,

the shape of the cross-section data is constrained extremely
well. The largest uncertainty is the normalization of the cross
section. The origin of this uncertainty is the experimental
difficulty to determine the luminosity better than a few
percent. At lower energies, data are more scarce and less
precise. Furthermore, the theoretically motivated and exper-
imentally confirmed concept of scaling invariance of the
cross section is broken. Therefore, extrapolations are less
trustworthy.We thus identify theparametersC1 andC5,C6 as
the most relevant for our purpose. They determine the

TABLE III. The best-fit parameters of various fits to test the impact of cross-section uncertainties. For details refer to Sec. IV.

Parameter Default setup, different XS XS uncertainty by covariance matrix Joint fit (CRþ XS)

XS parametrization Param. MD Param. MW Param. MD Param. MW

DM incl. excl. incl. excl. incl. excl. incl. excl.

γ1 1.55þ0.11
−0.05 1.65þ0.09

−0.09 1.65þ0.07
−0.21 1.68þ0.07

−0.09 1.52þ0.08
−0.06 1.64þ0.09

−0.06 1.57þ0.06
−0.05 1.67þ0.09

−0.09

γ1;p 1.67þ0.08
−0.02 1.69þ0.09

−0.07 1.76þ0.03
−0.17 1.73þ0.05

−0.08 1.64þ0.08
−0.05 1.69þ0.07

−0.05 1.68þ0.06
−0.05 1.70þ0.07

−0.05

γ2 2.43þ0.01
−0.01 2.39þ0.01

−0.02 2.43þ0.02
−0.02 2.37þ0.02

−0.01 2.43þ0.02
−0.01 2.28þ0.01

−0.01 2.44þ0.01
−0.03 2.38þ0.01

−0.03

γ2;p 2.48þ0.01
−0.01 2.42þ0.01

−0.02 2.47þ0.02
−0.02 2.40þ0.02

−0.01 2.47þ0.02
−0.01 2.41þ0.01

−0.01 2.48þ0.01
−0.03 2.42þ0.01

−0.03

R0 [MV] 5860þ870
−300 6700þ1490

−620 6910þ470
−1710 6880þ1200

−940 5840þ510
−430 6830þ730

−130 5950þ640
−370 6910þ970

−890

s0 0.43þ0.01
−0.08 0.41þ0.02

−0.06 0.38þ0.10
−0.02 0.36þ0.04

−0.06 0.41þ0.04
−0.03 0.38þ0.02

−0.04 0.43þ0.01
−0.08 0.37þ0.04

−0.05

D0 ½1028 cm2=s� 2.70þ2.72
−0.25 2.10þ0.89

−0.50 5.64þ0.50
−3.60 2.94þ0.68

−1.06 2.27þ0.90
−0.13 1.86þ0.61

−0.19 2.47þ4.21
−0.01 1.72þ1.81

−0.26

δ 0.35þ0.02
−0.01 0.41þ0.02

−0.02 0.35þ0.03
−0.02 0.43þ0.01

−0.03 0.35þ0.02
−0.02 0.42þ0.02

−0.01 0.35þ0.04
−0.02 0.42þ0.02

−0.0004

vA ½km=h� 16.8þ2.7
−1.8 14.6þ1.9

−1.7 19.5þ0.5
−4.9 15.0þ2.1

−0.6 17.2þ2.7
−2.2 14.3þ1.4

−1.8 17.9þ0.3
−2.2 15.2þ0.66

−1.38

v0;c ½km=h� 4.80þ2.44
−4.41 1.97þ4.11

−1.95 2.63þ6.21
−2.44 0.66þ1.65

−0.61 4.22þ3.67
−3.66 2.78þ1.01

−2.40 1.17þ5.39
−0.15 0.27þ2.02

−0.19

zh [kpc] 2.62þ2.49
−0.23 2.54þ1.24

−0.53 5.76þ0.50
−3.70 3.72þ0.82

−1.48 2.20þ0.81
−0.14 2.28þ0.86

−0.22 2.46þ4.21
−0.11 2.15þ2.61

−0.15

logðmDM=½GeV�Þ 1.85þ0.02
−0.05 1.88þ0.07

−0.06 1.82þ0.04
−0.03 1.89þ0.04

−0.03

logðhσvi=½s=cm3�Þ −25.50þ0.01
−0.36 −25.88þ0.59

−0.09 −25.32þ0.01
−0.41 −25.47þ0.10

−0.42

φSM;AMS-02;p;He [MV] 554þ101
−13 544þ44

−58 582þ90
−64 582þ54

−25 582þ38
−46 556þ7

−28 584þ39
−80 598þ22

−61

φSM;AMS-02p̄ [MV] 549þ31
−45 522þ62

−115 592þ120
−90 605þ56

−114 600þ54
−56 553þ17

−55 498þ166
−81 537þ152

−61

C1 ½10−3 ðGeVÞ−2� 50.1þ0.5
−1.0 51.0þ0.5

−1.7

C5 ½10−3� 0.32þ0.24
−0.02 0.27þ0.08

−0.17

C6 3.82þ0.27
−0.40 3.73þ0.81

−0.10

χ2AMS-02;p 2.4 3.8 2.6 2.6 2.2 2.6 2.8 2.6

χ2AMS-02;He 4.4 4.6 4.1 5.1 4.1 4.3 3.9 4.7

χ2AMS-02;p̄ 11.0 21.1 11.4 21.3 11.3 22.4 11.7 19.9

χ2Voyager;p 3.5 3.7 3.2 3.7 3.1 3.8 2.8 3.5

χ2Voyager;He 0.9 1.0 1.7 1.1 1.1 1.0 1.1 1.9

χ2φSM
0.0 0.1 0.0 0.1 0.0 0.0 0.7 0.4

χ2CR 22.2 34.2 23.0 33.9 22.0 34.2 23.2 33.0

χ2XS 791.4 792.2

χ2=dof 22.2=143 34.2=145 23.0=143 33.9=145 22.0=143 34.2=145 814.5=799 825.2=801

Δχ2 12.0 10.9 12.2 10.7

DM significance 3.0σ 2.9σ 3.1σ 2.8σ
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normalizationof thewhole cross-section parametrization and
the shape at low energies, respectively. In the following joint
fit, we vary those parameters only, while all the other
parameters are chosen to be fixed to the values from [31].
Note that adding these three parameters and the cross-section
data to the global fit complicates the structure of the like-
lihood. Using the same configuration ofMULTINEST the total
number of likelihood evaluations increases up to 500 000.
This is a clear disadvantagewith respect to the approachwith
a covariance matrix which, instead, does not significantly
complicate the fit.

D. Results

In total, we perform eight fits to study the effect of
cross sections and their uncertainty on the results. These
corresponds to four different setups with respect to the
cross-section parametrization, while for each setup we
perform one fit with and one without DM. The results
of all fits are summarized in Table III. The residuals of the
antiproton spectra are shown in Fig. 4. We start by

discussing the effect on the fits without DM. In the first
setup, we change to cross section param. MD. As a result
the fit quality improves marginally from χ2min ¼ 35.6 to
34.2. The best-fit parameters are compatible and their
uncertainty is very similar. In Fig. 5 we show the com-
parison of the fit contours with our default setup. The
contours of this setup are slightly increased, in particular
towards a larger v0;c, but they are not systematically shifted.
Then, we apply the covariance matrix method to both cross-
section parametrizations. We find that the effect on the best-
fit parameters and their uncertainties is negligible. It is,
however, interesting to observe that in the residual plot of
this fit there is a systematic shift of all points towards larger
values. This is because in the energy range above 5 GV the

cross-section covariance matrix V
ðϕAMS−02

p̄ Þ
XS mostly encodes

the cross-section normalization uncertainty.
The results of the joint fit method are compatible with

both the previous two fits, the one without cross-section
uncertainties and the covariance matrix method. The resid-
uals are mostly unchanged, and the parameter estimation

(i)

(ii)

(iii)

(iv)

FIG. 4. Residuals of the antiproton-over-proton ratio for different fit setups for the antiproton production cross section. The plot on the
left-hand side originates from a fit setup without DM while the plot on the right-hand side is the corresponding setup including DM.
From top to bottom the setups are changed compared to our default setup in the following way: (i) the parametrization of the antiproton
production cross section is changed to param. MD, (ii) cross-section uncertainties are treated effectively by means of a covariance matrix
imposed on the antiproton data using the MW parameterization, (iii) the cross-section uncertainties are treated effectively by means of a
covariance matrix and the parametrization is changed to param. MD, and (iv) in addition to the CR parameters we fit a selection of cross-
section parameters simultaneously to CR and cross-section data (joint fit).
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and the corresponding uncertainty are similar. Nevertheless,
the joint fit provides very interesting insights allowing for
further cross-checks. In particular, it allows us to investigate
whether the CR parameters and the cross-section para-
metrization are correlated. In the extreme case, one might
even imagine that the very precise CR data could
constrain the cross-section parametrization. Figure 6 dis-
plays the part of the parameter triangle which shows the
correlation of the cross-section parameters with all CR
parameters. We conclude that there is no significant
correlation between the CR and cross-section fit param-
eter. Consequently, we expect that the cross-section

parametrization is not affected by the CR data. This is
confirmed in Fig. 7, which shows the Δχ2 profiles of the
three cross-section parameters varied in the fit. We
compare the profile of the total likelihood with the profile
of a fit to only the cross-section data: Both profiles agree
well within their respective uncertainties. In fact, only C5

is shifted to slightly lower values in the joint fit. This
absence of correlation likely explains also why the
covariance matrix method performs reasonably well
and gives similar results.
The impact of the cross-section uncertainty on the

possible DM hint in the antiproton spectrum can be

FIG. 5. Uncertainty contours (1–3σ) of the propagation parameters. The triangles show the effect of changing the cross-section
parametrization from param. MW to param. MD (upper left), the effect of taking cross-section uncertainties into account by a covariance
matrix within param. MW (upper right) and param. MD (lower left), and the effect of the joint fit (lower right).
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understood looking at the residuals in Fig. 4 for the case of
the fits with DM. In all scenarios the flattening of the
residuals is similar. In terms of χ2 ’s the improvement of the
fit with DM compared to the fit without DM was Δχ2 ¼
12.7 for the case of a fixed MW parametrization (default
setup). The covariance matrix and joint fit methods
decrease the Δχ2 to 10.9 and 10.7, respectively, indicating
that the evidence for DM is not strongly affected by the
cross-section uncertainties. Furthermore, the result of the
best-fit DM mass and velocity-averaged annihilation cross
section is not strongly affected by the uncertainties. We
show the comparison of the best-fit contours in Fig. 8. For
comparison we also show the cross-section limit derived
from gamma-ray observations of dwarf spheroidal galaxies
[81] and the best-fit region of the GCE [82] for the
considered bb̄ channel. All observations are compatible,
in particular, since they are affected by astrophysical
uncertainties in different ways providing additional free-
dom to alleviate a certain tension among them; see [21] for
a detailed analysis of the subject.
Above, we have focused on fits and results where we

exclude data below 5 GeV, since as argued in the intro-
duction, the results using data down to 1 GV are more
prone to further systematic uncertainties, especially solar
modulation. Nonetheless, it is interesting to have a look at

FIG. 7. The three panels show the χ2 profiles of the cross-section parameter [cf. Eq. (15)] included in the joint fit of CR and cross-
section data. The black solid (red dashed) line shows the profile from the fit without (with) DM. For comparison we show the χ2 profile
from cross-section data only (blue dotted line).

FIG. 8. Contours of the 1σ and 2σ best fit in the plane of DM
mass and annihilation cross section. We overlay the result of the
two different methods to treat cross-section uncertainties, the
covariance matrix approach and the joint fit, with our default fit.
For comparison we show the limit for the DM annihilation cross
section derived from the observation of dwarf spheroidal galaxies
[81] and the 2σ best-fit region of the GCE [82].

FIG. 6. Correlation of the CR propagation parameters with the antiproton production cross-section parameters in the joint fit without
DM. The black contours show the 1σ to 3σ region. The plot on the very right contain the χ2 profiles of the cross-section parameters. The
y axis ranges from Δχ2 ¼ 0 to 10; cf. Fig. 7 for more details.
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the fit results including the low-energy data from a
methodological point of view. The cross-section (shape)
uncertainties are most severe at low energies, while at
higher energies only the normalization is uncertain.
Therefore, it is not very surprising that the results of
both methods are very similar. If, however, we include
data at low energies, the picture changes. We investigated
how the best-fit parameters are affected by the two
methods and find that both methods have a still small
but similar effect on the parameter space. Furthermore, we
observe that the error contours of the covariance matrix
method are a bit larger compared to the joint fit method; in
other words, the former is more conservative. We regard
this as proof of concept: The covariance matrix method,
which is easier to implement and less time consuming in
the fit, is a reasonable approximation to the more complete
joint fit method.
The above results are somehow at odds with the results

of [15], where flat p̄ residuals are achieved down to 1 GV
and no significant preference for a DM signal (a global
significance of 1.1σ) was found. The authors of this study
use a covariance matrix method to account for the cross-
section uncertainties. They conclude that the inclusion of
these uncertainties is the main reason why their analysis
does not provide a hint for DM. Nonetheless, the results
shown above indicate that the cross-section uncertainties do
not have such a strong impact. An important difference is
that in [15] only the p̄ spectrum is fitted, with the source
terms for p̄ being fixed using the observed p and He spectra
corrected for solar modulation. This has the advantage that
the injection parameters do not need to be fitted, although it
requires some assumption on how to extrapolate the
observed local p and He spectra to the ones for the whole
Galaxy needed for the secondary source terms. Instead, in
our approach p̄, p and He are fitted simultaneously and we
include p and He injection parameters in the fit. Fitting the
p and He spectra provides extra constraints on the
propagation with respect to fitting p̄ only. For example,
it is well known, e.g., [83], that strong reacceleration
produces a low-energy (≲10 GeV) bump in the p spec-
trum, which is not observed. The p spectrum, thus,
provides strong constraints on the amount of reacceleration,
although this is, in part, degenerate with the break in the
injection [83]. We thus suspect that in [15] it is possible to
accommodate the secondary p̄ spectrum, while this is not
possible anymore when constraints from p and He are
included as it is the case in our analysis. Further differences
concern a different treatment of reacceleration (which in [15]
is confined to the Galactic disk only, while it is uniform
over the whole diffusion region in our case), adiabatic
energy losses from convection and a two-dimensional
source term distribution used in our analysis. Therefore a
direct comparison is not easily achievable andwould require
a substantial modification of our setup, which is left for
future work.

V. AMS-02 CORRELATIONS

With the era of space-based CR detectors the statistics
and quality of collected data have significantly increased.
This also means that the relative weight of systematic
uncertainties with respect to the statistical error has become
more important. For example, the error budget of the
measured proton and helium spectra is now completely
dominated by systematics in most of the energy range. The
question of how to assess and treat these uncertainties in a
statistically correct way has thus become more pressing.
The commonly used strategy is to add statistic and
systematic uncertainties in quadrature and consider the
new errors uncorrelated in energy. This, as we have seen in
the previous sections, typically results in quite low χ2

values of the fit to the data. Table I shows that the typical
values of the χ2=dof are of the order 0.06–0.1 for the proton
and helium and 0.25–0.50 for the antiproton-over-proton
ratio, whereas for a consistent treatment of all uncertainties
one would expect a χ2=dof close to 1. We conclude that
either the systematic uncertainties of AMS-02 are over-
estimated or there is a sizable correlation of the systematic
uncertainty which is not correctly taken into account. The
fact that our χ2 values are significantly smaller than
expected has potentially problematic consequences: First,
we cannot say anything about the goodness of fit, and,
secondly, the uncertainties deduced for our fit parameters
could be affected. Thirdly, the significance of the potential
DM signal may depend on the correlations in the systematic
uncertainties. A proper assessment of this problem would
require the experimental collaborations to provide the
covariance matrix of the data points based on the knowl-
edge of the detector. Since this is not available at the
moment, our goal below is to use a simple approach and
gain an approximate understanding of the effects of
neglecting correlations.

A. Methodology

We follow two different strategies to answer the above
questions. In the first one, we simply set the systematic
uncertainty to 1% of the flux or flux ratio before adding it to
the statistical uncertainty in squares.6 The typical system-
atic uncertainty stated in the AMS-02 publications of
proton, helium, and antiproton fluxes is on the order of
a few percent. The remaining systematic uncertainty is thus
assumed to be fully correlated among the rigidity bins, i.e.,
equivalent to an overall normalization uncertainty. Since
normalizations are already profiled over in our fit setup, this
kind of uncertainty is already taken into account and does
not need to be included again as an uncertainty in the data.
Thus, in practice, this approach implies a significant
reduction of the uncertainty with a potentially equally
significant effect.

6A similar approach was taken in [84].
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The above approach, however, does not address the
question about the presence of shorter-range correlations
among the data points. The most complete approach to the
problem would be to start from the knowledge of the
detector and model the systematic uncertainties which
contribute to the total error budget. In the AMS-02
publications the various contributing systematics are listed.
They contain the acceptance uncertainty, trigger uncer-
tainty, rigidity scale uncertainty, and uncertainty from
energy unfolding. By studying the single systematic effects
and modeling them, it would be possible to build the
covariance matrix of the data. Unfortunately, again, this
requires an inside knowledge of the detector which is not
publicly available. We thus resort, in the following, to a
simpler, data-driven approach which is expected to model
the effect of correlated uncertainties reasonably well. With
this approach we aim at determining the systematic
uncertainty and a possible correlation between data points.
The focus of this strategy, in particular, is on the study of a
possible short-range (in rigidity) correlation component.
This component is potentially more critical for our analysis
since it can affect the significance of sharp features like the
ones expected from DM. On the contrary, as argued above,
long-range correlations are basically equivalent to a nor-
malization uncertainty and have a small impact. As a first
step, we thus split the covariance matrix of the CR datasets
into a sum of three parts:

V ¼ Vstat þ Vshort þ V long: ð20Þ

Here, the first part Vstat contains all statistical, i.e.,
uncorrelated, uncertainties. In other words, the entries of
the correlation matrix for the ith and jth data point are given
by Vstat;ij ¼ δijðσstat;iÞ2. The statistical error alone is gen-
erally available in the corresponding publications. The third
part V long describes the long-range correlations. Typical
examples which would fall into this kind of uncertainty are
normalization or tilts of the whole dataset. The second part
is Vshort, which describes the correlation of up to a few
neighboring points. Our ansatz is

Vshort;ij ¼ exp

�
−
ji − jjα
lcorr

α

�
f2σsys;iσsys;j; ð21Þ

where the three parameters lcorr, f, and α describe the
correlation length (in terms of the distance in rigidity-
bins),7 the fraction of the systematic uncertainty which is
correlated, and the shape of the correlation matrix, respec-
tively. Our goal is to determine the three parameters from

the data themselves. In practice, we regard the data as a
realization of the true covariance matrix, and we try to
reconstruct them assuming the above parametrization,
using standard statistical inference. To this end, besides
the covariance matrix, we also need a model of the true
energy spectrum, which we take as a smooth multiply
broken power law with three breaks for the antiproton-to-
proton ratio and the helium flux and four breaks for proton
flux. The parametrization is similar to Eq. (3) but extends to
a higher number of breaks. Then, in principle, our inference
should proceed with a fit of the covariance matrix param-
eters and spectrum parameters together to the observed
data. Here, instead, we apply a simplified two-step
approach. In the first step, we fit the smoothly broken
power law to the data using as χ2 the full systematic
uncertainties assumed to be uncorrelated. In practice, this
step is equivalent to absorbing the long-range correlated
uncertainties into the smooth spectrum, and it is insensitive
to the exact errors used to define the χ2. In the second step
we thus fix the smooth energy spectrum to the one derived
in the above step, and we use the residual with respect to the
data points, x, to constrain the covariance matrix. The log-
likelihood for the parameters lcorr, f, and α is given by

− logðLÞ ¼ 1

2
log ðdet ½Vstat þ Vshortðlcorr; f;αÞ�Þ

þ 1

2
x · ½Vstat þ Vshortðlcorr; f; αÞ�−1 · x

þ const; ð22Þ

where the first term comes from the normalization of the
multivariate Gaussian (in the data) which we use as
likelihood. We checked with a toy Monte Carlo that the
method is self-consistent. To this end, in the Monte Carlo
we choose benchmarks values of lcorr, f, and α, i.e., a
benchmark covariance matrix, and from that we draw
random values of x. We then verify that from the above
likelihood we correctly reconstruct the input values of lcorr,
f, and α within uncertainties.
Figure 9 shows the results of this procedure applied to

proton, helium, and antiproton-over-proton data. The figure
shows the likelihood profiles and the corresponding 1σ to
3σ contours in the frequentist interpretation. As can be
seen, the resulting constraints on the three parameters are
not very strong. In particular, the correlation length lcorr is
not constrained at the 2σ level for all three datasets, whereas
α is constrained to small values for lcorr ≳ 5 and uncon-
strained for smaller correlation lengths. The only well-
constrained quantity is the fraction of the systematic
uncertainty with a small correlation length, f. The fits
converge to f ∼ 0.07 and 0.1 for the proton and helium,
respectively, and f ≲ 0.3 for antiprotons. We note that,
interestingly, the potential correlation of all three datasets
can be described by the same parameters within uncer-
tainties. Experimentally, however, it is unclear if equal

7The ansatz of Eq. (21) assumes that the correlation length
does not depend on the rigidity bin. We notice that the rigidity
binning chosen by the AMS-02 experiment is inversely propor-
tional to the energy resolution of the instrument. So, for example,
an uncertainty in the energy unfolding is expected to be described
by this kind of the covariance matrix.
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systematics properties are expected for the three cases.
Therefore, we will consider the potential correlation inde-
pendently for each CR species in the following.
Given the large uncertainty in the determination of lcorr,

and α, we choose three benchmark cases compatible with
the constraints to study the effects on the fit results in more
detail. Specifically, the benchmark scenarios correspond to
three different fixed values for the correlation length,
lcorr ¼ 0, 5 and 10. Let us first consider the proton and
helium. Figure 9 shows that the values for f and α are
constrained at every fixed value of the correlation length.
Hence, we fix their values to the maximum of the like-
lihood profiles at each lcorr. The exact values are summa-
rized in Table IV. For the antiproton-to-proton ratio the
situation is different for two reasons: First, the number of
data points is smaller compared to the proton and helium
datasets. Secondly, and probably even more importantly,
the size of the statistical uncertainty is significantly larger.
While the proton and helium are clearly dominated by only
systematic uncertainties, the size of systematic and stat-
istical uncertainty is comparable for the p̄=p ratio. As a
result, the best-fit f converges towards 0 and is only
constrained from above, while α is completely uncon-
strained. Since our goal is to study the effect of possible
correlations in the AMS-02 data, choosing f ¼ 0, i.e., the
maximum of the likelihood, is not a good choice. Instead,
to be conservative, we choose the maximum f value
allowed by our constraints. In particular, we choose
f ¼ 0.3, which is approximately the maximum allowed
value at a confidence level of 90%. For α we choose a

representative value of 1. Again, these values are summa-
rized in Table IV.

B. Results

In total, we perform eight fits to investigate the effect of
correlations in the AMS-02 data. They correspond to four
different setups of the uncertainties where each setup is
fitted once with and without DM. Summarizing, the four
setups are the fixed 1% systematic uncertainty without any
correlation of data points and the three different benchmark
scenarios from the data-driven covariance matrix with
correlation lengths 0, 5, and 10. The results of the various
fits are shown in Table V. As for the case in which
we studied the cross sections, we show the residuals of
the antiproton-to-proton ratio in Fig. 10. The shown
uncertainties are the square roots of the diagonal elements
of the covariance matrix and, therefore, some care is
needed when drawing conclusions directly from the
figures in the cases of lcorr ¼ 5 or 10. In general, however,
we can clearly observe that the uncertainties are consid-
erably smaller with respect to the default fit. From a
methodological point of view the smaller uncertainties
result in a more complicated fit. In order to converge, the
new fits require up to 1.8 million MULTINEST likelihood
evaluations using the same configuration as in the default
setup. The fit with fixed systematic uncertainty at 1%
converges to a χ2=dof of 77.4=143 ≈ 0.5. In more detail,
the χ2 of the AMS-02 antiproton-to-proton ratio is 44
which now matches well with the 42 p̄=p data points
included in the fit, and it is thus reasonable also in terms

FIG. 9. Triangle plots for the fit of a covariance matrix to proton, helium, and antiproton-over-proton data.

TABLE IV. Covariance matrices for the different benchmark scenarios. In the case of the proton and helium, we maximize the log-
likelihood in Eq. (22) at fixed lcorr to determine f and α, while, to be conservative, we fix fp̄ to 0.3 and αp̄ to 1.

lcorr ¼ 0 lcorr ¼ 5 lcorr ¼ 10

Dataset p He p̄=p p He p̄=p p He p̄=p
f 0.062 0.080 0.30 0.079 0.103 0.30 0.082 0.101 0.30
α 0.63 0.81 1.00 0.20 0.21 1.00 0.20 0.20 1.00
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of goodness of fit. On the other hand, the χ2’s of the
proton and helium are 8 and 10, respectively, and are still
much smaller than the number of data points, i.e., 50 each.
This hints to the fact that the uncertainty of antiprotons is
estimated reasonably well while the one for the proton and
helium is still overestimated. The effect on the CR
parameter estimation is shown in Fig. 11 (upper left
panel): Compared to our default fit, the size of the
uncertainty contours slightly shrinks. The only further
notable effect is that the Alfvèn velocity is shifted to
slightly larger values, but by less than 1σ. Adding DM in
this scenario improves the fit by a Δχ2 of 30, which would
correspond to evidence of 5.1σ.
The three benchmark scenarios from the data-driven

approach converge to a total χ2’s in the range 250–280,
which is about a factor of 2 larger than the dof of 143.
The χ2’s for p̄=p are in the range 40–70, which, again, is

reasonable in terms of goodness of fit, especially con-
sidering the DM fits, where the χ2’s range shrinks to 40–
50. Instead, the main contribution to the total χ2 comes
from p and He which are in the range 80–100. With an
f ∼ 0.1 for p and He the total error is at the level of
∼0.2%, so these high values of χ2 are probably not
unreasonable since it is unlikely that the accuracy of the
model is at such a high level of precision. Finally, from
the triangle plots in Fig. 11 we see that the size of the
uncertainty contours shrinks significantly with respect to
the default fit, an outcome which is expected given the
smaller error bars.
As already observed in the case of the first method, we

notice a shift of vA to slightly larger values although
compatible at 1–2σ level. Furthermore, there is now a
preference for a small halo height which converges towards

TABLE V. The best-fit parameters of various fits to test the impact of correlated AMS-02 uncertainties. For details refer to Sec. V.

Parameter 1% σsys lcorr ¼ 0 lcorr ¼ 5 lcorr ¼ 10

XS parametrization Param. MW Param. MW Param. MW Param. MW

DM incl. excl. incl. excl. incl. excl. incl. excl.

γ1 1.62þ0.08
−0.10 1.77þ0.02

−0.08 1.65þ0.02
−0.03 1.70þ0.03

−0.05 1.61þ0.10
−0.12 1.72þ0.02

−0.06 1.65þ0.07
−0.11 1.67þ0.03

−0.06

γ1;p 1.70þ0.08
−0.07 1.74þ0.02

−0.07 1.67þ0.01
−0.04 1.66þ0.02

−0.04 1.64þ0.09
−0.13 1.69þ0.02

−0.06 1.66þ0.04
−0.13 1.65þ0.02

−0.06

γ2 2.43þ0.01
−0.01 2.37þ0.02

−0.002 2.42þ0.00
−0.01 2.39þ0.01

−0.00 2.43þ0.00
−0.01 2.40þ0.00

−0.00 2.42þ0.01
−0.01 2.39þ0.01

−0.00

γ2;p 2.47þ0.01
−0.01 2.40þ0.02

−0.001 2.45þ0.00
−0.01 2.41þ0.01

−0.00 2.46þ0.00
−0.02 2.42þ0.00

−0.00 2.45þ0.01
−0.01 2.42þ0.01

−0.00

R0 [MV] 6600þ720
−1090 9180þ50

−1270 6869þ200
−173 7844þ575

−512 6519þ1300
−793 7983þ340

−707 6743þ1103
−743 7290þ262

−582

s0 0.42þ0.03
−0.05 0.32þ0.06

−0.01 0.45þ0.01
−0.01 0.40þ0.02

−0.01 0.47þ0.01
−0.04 0.41þ0.02

−0.01 0.46þ0.02
−0.03 0.41þ0.02

−0.01

D0 ½1028 cm2=s� 2.80þ2.35
−0.85 2.19þ0.36

−0.58 1.99þ0.05
−0.02 1.79þ0.34

−0.013 1.94þ0.22
−0.20 1.90þ0.05

−0.03 1.84þ0.22
−0.02 1.66þ0.25

−0.00

δ 0.36þ0.02
−0.01 0.43þ0.002

−0.02 0.37þ0.01
−0.01 0.42þ0.00

−0.01 0.36þ0.02
−0.00 0.40þ0.00

−0.00 0.37þ0.01
−0.01 0.41þ0.00

−0.01

vA ½km=h� 21.1þ0.4
−3.4 19.6þ1.2

−1.4 21.87þ0.17
−0.17 20.93þ1.50

−0.45 22.23þ1.89
−1.77 22.15þ0.15

−0.93 21.37þ1.51
−0.79 20.25þ1.41

−0.17

v0;c ½km=h� 0.52þ4.62
−0.27 0.06þ0.79

−1.36 0.53þ2.75
−0.27 0.37þ1.51

−0.26 3.69þ10.95
−3.66 0.24þ2.65

−0.21 2.01þ9.99
−1.92 0.25þ3.96

−0.00

zh [kpc] 2.76þ2.68
−0.75 2.72þ0.44

−0.70 2.03þ0.08
−0.00 2.05þ0.41

−0.02 2.00þ0.29
−0.00 2.11þ0.03

−0.01 2.01þ0.12
−0.00 2.02þ0.13

−0.02

logðmDM=½GeV�Þ 1.82þ0.05
−0.02 1.70þ0.04

−0.01 1.74þ0.01
−0.06 1.71þ0.05

−0.06

logðhσvi=½s=cm3�Þ −25.57þ0.26
−0.37 −25.49þ0.07

−0.12 −25.41þ0.10
−0.10 −25.38þ0.05

−0.14

φSM;AMS-02;p;He [MV] 674þ9
−138 738þ58

−39 819þ14
−0 857þ16

−25 839þ20
−43 844þ14

−26 837þ18
−12 832þ26

−2

φSM;AMS-02p̄ [MV] 601þ146
−138 613þ69

−94 741þ71
−81 568þ30

−55 743þ190
−43 534þ57

−26 791þ92
−99 556þ42

−34

χ2AMS-02;p 3.3 7.6 83.5 81.0 74.4 75.9 79.4 84.3

χ2AMS-02;He 7.6 9.8 97.4 98.9 96.5 94.5 96.7 89.7

χ2AMS-02;p̄ 30.3 44.0 52.2 69.2 42.3 50.1 47.4 53.9

χ2Voyager;p 3.4 7.5 8.8 14.7 7.7 9.5 6.8 13.4

χ2Voyager;He 2.1 6.8 7.3 11.4 9.3 10.1 10.4 10.0

χ2φSM
0.6 1.7 0.9 8.8 2.4 10.0 0.6 8.0

χ2=dof 47.4=145 77.4=143 250.0=143 284.1=145 232.6=143 250.2=145 241.3=143 259.3=145

Δχ2 30.0 34.1 17.6 18.0

DM significance 5.1σ 5.5σ 3.8σ 3.8σ
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2 kpc which is the boundary of the fit range. This small
value of zh is disfavored by observations of electron and
positron spectra [85] but still possible. The result also
shows that with very small errors the fit becomes sensitive
to zh even without the use of cosmic clock data like
10Be=9Be. This further stresses the importance of studying
in detail the properties of the data to understand if such
small uncertainties can be used and exploited. All three
benchmarks show evidence for a DM signal. The signifi-
cance depends on the correlation length; namely, the
improvement in the fit quality reaches Δχ2 ¼ 34 (corre-
sponding to 5.5σ) in the case of lcorr ¼ 0, while it drops to
around 18 (3.8σ) for lcorr ¼ 5 and 10.8 Again, the results
with the above different setups and benchmark scenarios
show the importance of modeling correlations correctly.
Depending on the “true” covariance, results may be driven

in different directions, as exemplarily pointed out here for
the case of the potential DM signal. In particular, typically,
we see that the use of covariance improves the significances
and reduces the errors on the estimated parameters, which
indicates that the full potential of the data is not yet
exploited.
The shrinking of the contours with respect to the case in

which the correlation among the data points is neglected is
also observed for the DM mass and velocity-averaged
annihilation cross section. Figure 12 shows the contours of
the benchmark scenarios of 1% fixed systematic uncer-
tainties and lcorr ¼ 5, respectively. In the latter case, the
contour is additionally shifted to slightly smaller values of
the DM mass and to larger hσvi. The contours for lcorr ¼ 0
and 10 are very similar to lcorr ¼ 5. The fact that the
contours do not extent to lower values of hσvi as for the
default fit case is directly related to the preference of
the fit for small zh values, which give a lower DM
signal. Lower values of hσvi in the default fit are,
correspondingly, associated to larger values of zh which
provide an increased normalization of the DM signal. We
remark, nonetheless, that the DM contours of all our fits are

(i)

(ii)

(iii)

(iv)

FIG. 10. Residuals of the antiproton-over-proton ratio for different fit setups for different treatment of systematic uncertainties and its
correlation. The plot on the left-hand side originates from a fit setup without DM while the plot on the right-hand side is the
corresponding setup including DM. From top to bottom the setups are changed compared to our default setup in the following way:
(i) The systematic uncertainty is taken to be uncorrelated 1% of the fluxes (or ratio), (ii) data-driven correlation approach with a
correlation length of lcorr ¼ 0, (iii) lcorr ¼ 5, and (iv) lcorr ¼ 10.

8We checked that these significances do not strongly depend
on the value for zh; e.g., at a fixed value of zh ¼ 4 kpc we get a
Δχ2 of 36, 20, and 21 for the cases of lcorr ¼ 0, 5, and 10,
respectively.
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compatible with each other. We also stress that the contours
are derived for a fixed value of the local DM density of
ρ⊙ ¼ 0.43 GeV=cm3, as mentioned in Sec. II, and that the
additional uncertainty in ρ⊙ (conservatively in the range
0.2–0.7 GeV=cm3 [48]) would contribute to extend to
contours to both smaller and larger values of hσvi.
Furthermore, we note that a combination of cross-

section uncertainties and correlations in the AMS-02 data
does not significantly change the picture. We checked
this by performing a fit taking into account the uncer-
tainties of the cross-section parametrization (following the
joint fit method as introduced in Sec. IV C) as well as
taking into account the 1% uncorrelated uncertainty from
AMS-02. As expected, the resulting fit is very similar to

the one fixing the cross-section parameters to their best-fit
values.
Finally, we remark again that all results of this section

have to be taken with caution. By guessing different
possible scenarios of the AMS-02 uncertainties and its
covariances in data, we demonstrate, merely as a proof of
concept, that correlations in data can impose an important
effect on the results, in particular, on the significance of the
potential DM signal. Nonetheless, we do not deem our four
benchmark scenarios as fully representative of the complete
set of possible covariances in data or to contain the true
covariance matrices. Our main aim is, instead, to show the
importance of these effects in order to trigger further
investigations on the subject, especially from the

FIG. 11. Uncertainty contours (1–3σ) of the propagation parameters corresponding to the four different treatments of systematic
uncertainties and its correlation discussed in Sec. V.

CUOCO, HEISIG, KLAMT, KORSMEIER, and KRÄMER PHYS. REV. D 99, 103014 (2019)

103014-20



experimental collaborations, which, through the knowledge
of the detector, have handles to study this issue more in
detail. As we have shown, a better characterization of the
covariance of the uncertainties can provide much more
constraining power and thus fully exploit the potential of
the experimental data.

VI. CONCLUSION

In this paper we investigated two important sources of
uncertainties in the interpretation of global CR fits to AMS-
02 data: the antiproton production cross section and the
correlations in the experimental data. In particular, we
investigated their impact on the potential dark matter signal
found in previous studies [19–21].
First, we reproduced the findings of [19] in an updated

setup using the most recent cross-section parametrization
from [31] and an improved treatment of solar modulation. In
addition,we studied a possible tension between theAMS-02
and CREAM data at large rigidities by either excluding
CREAM data from the global fit or by taking into account a
possible normalization uncertainty. We found that the
potentialDMsignal persists, althoughwith a slightly smaller
significance of around 3σ (with respect to 4.5σ found in
[19]). The reason for the reduction in significance is mainly
due to the updated antiproton production cross-section
parametrization.
We studied the uncertainties induced by the antiproton

cross-section parametrizations using two approaches. On the
one hand, we described the uncertainties by a covariance
matrix assuming a multivariate Gaussian distribution. On the
other hand, we performed a joint fit of CR and the most
relevant cross-section parameters. We found that both
descriptions lead to comparable results.As the latter approach

reveals, this is due to the absence of strong correlations
between the CR and cross-section parameters. We hence
concluded that neither the results for the CR propagation
parameters nor the significance of the DM signal are strongly
affected by the antiproton cross-section uncertainties.
In all fits the χ2=dof is significantly below one. We

expect this to be a result of neglecting correlations in the
AMS-02 data, which are not provided by the experimental
collaboration. A long-distance correlation (in rigidity bins)
amounts to an overall normalization or tilt of the spectrum,
and it can be absorbed into the fit parameters. Using the
systematic errors as given by AMS-02 and assuming these
to be uncorrelated can, hence, greatly overestimate the
error. We followed different approaches in order to illus-
trate the importance of the knowledge of these correlations.
On the one hand, we simply reduced the uncorrelated error
to 1% assuming the remaining error to be fully correlated
(and absorbed in the overall normalization). As a result the
overall fit quality worsens slightly, however, still providing
χ2=dof well below one. Interestingly, the preference for
DM becomes more significant reaching 5σ. On the other
hand, we followed a data-driven approach, determining the
maximal fraction of a correlated uncertainty for three
choices of the correlation length (in terms of the distance
between rigidity bins), lcorr ¼ 0, 5, 10. Our analysis shows
that only a small fraction of the systematic uncertainty can
be correlated this way, namely, about 10% for the p and He
data and no more than 30% (at 90% C.L.) for the p̄=p data.
The remainder of the systematic uncertainty is compatible
with just an overall shift of the global normalization.
However, the identification of the exact shape of a
covariance matrix from data and a typical correlation
length is not unique. As an illustration and as a proof of
concept, we choose three benchmark scenarios, although
these are not expected to cover the whole ranges of
possibilities. A more realistic characterization of the
uncertainties can only be achieved in the future with further
insight from the AMS-02 detector and analyses. Since the
fraction of short-range correlated uncertainties is very
small, for the moment treating AMS-02 systematic uncer-
tainties as uncorrelated (i.e., statistical) is conservative.
Nonetheless, we have shown that, with a proper treatment
of the uncertainties, the data can be much more con-
straining, both on the determination of propagation param-
eters and on the presence of a signal for DM. In particular,
we find that the significance of a DM annihilation signals
increases up to 5.5σ depending on how we model
the correlation. We thus stress that getting this kind of
insight in the future would be extremely valuable and
would allow one to better exploit the potential of the
experimental data.
Finally, we note that two aspects remain to be studied in

more detail in the future. First, solar modulation is not fully
understood for rigidities below about 5 GV and has to be
investigated using the recently published monthly data of

FIG. 12. Contours of the 1–3σ best fit in the plane of DM mass
and annihilation cross section. We show the result of the default
fit and two benchmark scenarios for the correlations: 1% fixed
systematic uncertainties and lcorr ¼ 5. For comparison we show
the limit for the DM annihilation cross section derived from the
observation of dwarf spheroidal galaxies [81] and the 2σ best-fit
region of the GCE [82].
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AMS-02. In addition, different diffusion models have to be
studied to allow to include other secondary CR data such as
3He, Be, Li and B into our global analysis.
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Note added.—Shortly after this analysis was made public,
Refs. [86,87] appeared on the arXiv discussing similar
subjects. The authors of [86] investigate the impact of cross-
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dependent solar modulation effects on the significance of the
DM signal and arrive at conclusions which are similar to ours.
In [87] the authors exploit machine learning to marginalize
more efficiently over cosmic-ray propagation uncertainties.
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