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We investigate properties of Newtonian (nonrelativistic) polytropic stars in two different scenarios: on
the one hand in the Starobinsky model in Palatini formalism, and on the other hand in general relativity
assuming that the star contains both ordinary and dark matter. We obtain numerical solutions to the
structure equations, and we show the mass-to-radius profiles of both scenarios in the same figure for
comparison. Our findings show that (a) contrary to the Palatini gravity, where the mass may be an
increasing or decreasing function of the radius depending on the polytropic index, in admixed dark matter
stars the mass is always a decreasing function of the radius, and (b) if the α parameter of the Starobinsky
model is positive the two scenarios give distinct predictions, while if the α parameter is negative, the two
scenarios exhibit similar behavior in the n ¼ 2 case.
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I. INTRODUCTION

Many modern well-established observational data com-
ing from astrophysics and cosmology indicate that the
Universe is expanding at an accelerating rate dominated by
dark energy and dark matter [1]. The concordance cosmo-
logical model, which is based on cold dark matter and a
cosmological constant (ΛCDM), is the most economical
model that successfully describes the structure formation of
the Universe on large (cosmological) scales. The determi-
nation of the particles that play the role of dark matter in the
Universe is one of the biggest challenges of particle physics
and modern cosmology, since the origin and nature of dark
matter still remain unknown.
The ΛCDM model, although very successful in describ-

ing a vast amount of observational data, suffers from the
cosmological constant problem [2]. Therefore, many other
possibilities have been explored over the years, such as
dynamical dark energy models, with a time varying
equation-of-state parameter, or geometrical dark energy
models, where it is assumed that an alternative theory of
gravity modifies Einstein’s general relativity (GR) at
cosmological scales.
Perhaps the simplest choice to describe current cosmic

acceleration without introducing either extra dimensions or
new dynamical fields is to generalize GR in a straightfor-
ward manner, and study fðRÞ theories of gravity [3,4],
where the Ricci scalar R in the Einstein-Hilbert term of GR

is replaced by a generic function. Although nowadays the
main motivation to study fðRÞ theories of gravity is to
explain the undergoing acceleration of the Universe (for a
review on modified theories of gravity and cosmology
see [5]), the astrophysical implications of this class of
theories, too, should be investigated. A simple, well-
motivated, and well-studied fðRÞ theory model in the
literature is the Starobinsky model [6], or R2 model, which
can describe the inflationary Universe [7]. Higher order in
the curvature terms are natural in the Lovelock gravity [8],
and also they appear in the effective equations of string
theory [9].
Any fðRÞ theory of gravity may be studied either in the

usualmetric approach or in the Palatini formalism,where the
connection and the metric tensor are treated as independent
quantities [3]. In this work wework in the Palatini gravity in
the Starobinsky model [6]. For studies in relativistic stars in
R2 gravity see, e.g., [10–16] and references therein, while
for works on polytropic stars in the Palatini gravity see,
e.g., [17–20] and references therein.
Dark matter may be accumulated inside stars and modify

their properties, such as mass-to-radius profiles or the
frequencies of radial and nonradial oscillation modes.
Even if dark matter does not have any direct couplings
to ordinary matter, it may still have a significant impact on
the properties of stars [21–31]. To the best of our knowl-
edge we study for the first time here dark-matter-admixed
low-mass stars (treated as nonrelativistic, Newtonian poly-
tropic stars). Since both dark matter and alternative theories
of gravity are expected to modify properties of stars, we
take the initiative in the present work to compare the

*ilidio.lopes@tecnico.ulisboa.pt
†grigorios.panotopoulos@tecnico.ulisboa.pt

PHYSICAL REVIEW D 99, 103013 (2019)

2470-0010=2019=99(10)=103013(6) 103013-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.103013&domain=pdf&date_stamp=2019-05-23
https://doi.org/10.1103/PhysRevD.99.103013
https://doi.org/10.1103/PhysRevD.99.103013
https://doi.org/10.1103/PhysRevD.99.103013
https://doi.org/10.1103/PhysRevD.99.103013


mass-to-radius profiles of low-mass stars obtained in two
distinct scenarios, namely (i) stars containing only ordinary
matter in Palatini gravity, and (ii) dark-matter-admixed low-
mass in GR. This comparative study will help us to have a
better understanding of how these two distinct scenarios
(modified gravity without dark matter versus dark matter
particles in GR) can be differentiated between them, and in
which cases one solution is more adequate than the other.
Our work is organized as follows: In the next section we

summarize the theoretical framework, while in Sec. III we
show and discuss our results. Finally we conclude our work
in the fourth section.

II. POLYTROPIC STARS IN GR

To set the notation, although it is a textbook knowledge,
let us first briefly summarize how Newtonian (nonrelativ-
istic) polytropic stars are treated in GR assuming an
equation of state (EoS) pðρÞ, with p being the pressure
and ρ being the energy density, of the form

p ¼ Kργ ¼ Kρð1þ1=nÞ; ð1Þ

where K, γ are constants, and polytropic index n ¼
1=ðγ − 1Þ. Under the approximations, ρ ≫ p, m ≫ pr3,
1 ≫ m=r, with mðrÞ being the mass function, the non-
relativistic version of the Tolman-Oppenheimer-Volkoff
equations [32,33] may be combined to derive the Lane-
Emden equation [34]

d
dξ

�
ξ2

dθ
dξ

�
¼ −ξ2θn ð2Þ

for any index n, supplemented with the following two
initial conditions,

θð0Þ ¼ 1; ð3Þ

θ0ð0Þ ¼ 0; ð4Þ

where the primes denote differentiation with respect to ξ.
The new variables (ξ, θ) are related to the original ones

(r, ρ) via ξ ¼ r=a and θn ¼ ρ=ρc, with ρc being the central
energy density, while the constant a is defined to be (setting
Newton’s constant to unity, GN ¼ 1)

a2 ¼ ðnþ 1Þpc

4πρ2c
: ð5Þ

The radius R of the star is determined by the condition
θðξnÞ ¼ 0. Once the root ξn (for a given polytropic index n)
is known, the radius and the mass of the star are computed
by R ¼ aξn with

M ¼ 4πa3ρcJ; ð6Þ

where J is given by

J ≡
Z

ξn

0

z2½θðzÞ�ndz: ð7Þ

Combining the two equations and eliminating the central
energy density we obtain the mass-to-radius profile of the
form MðRÞ ∼ Rðn−3Þ=ðn−1Þ. Clearly, the case n ¼ 3 corre-
sponds to a trivial profile, MðRÞ ¼ constant, and therefore
it is not considered here.
It is known that one can obtain exact analytical solutions

in three cases, for a polytropic index n ¼ 0, 1, 5. In the
latter case there is no finite radius for the star, and therefore
it is not interesting for our study. The first case, n ¼ 0,
corresponds to a uniform density star, ρðrÞ ¼ ρ̄ ¼ constant,
which is not realistic, since both pressure and energy
density should decrease from the center of the star to its
surface. The solution to the Lane-Emden equation is
computed to be θðξÞ ¼ 1 − ξ2=6 with ξ0 ¼

ffiffiffi
6

p
≃ 2.449.

The second case, n ¼ 1, corresponds to an EoS of the form
p ¼ Kρ2, which describes for example bosonic condensed
dark matter [35,36], and the solution is given by θðξÞ ¼
sinðξÞ=ξ with ξ1 ¼ π ≃ 3.142. For completeness we
report the solution for n ¼ 5, which is the following
θðξÞ ¼ ð1þ ξ2=3Þ−1=2, and since it is always positive there
is no root satisfying the equation θðξÞ ¼ 0; therefore
ξ5 ¼ ∞. All three exact solutions are shown in Fig. 1.
Sir A. Eddington pointed out in [37] that ordinary

gaseous stars may be better described using a varying
polytropic index that decreases from a value n2 at the
surface to a value n1 at the center. Although he discussed
the n1 ¼ 1.5 and n2 ¼ 3.5, more recent data and analyses
show that the best fit model for our Sun corresponds to the
values n1 ¼ 1.58 and n2 ¼ 3.94 [38]. Therefore in the
following we consider the fiducial cases n ¼ 2 and n ¼ 4
[39]. These solutions are also shown in Fig. 1.
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FIG. 1. Five solutions (both analytical and numerical) to the
Lane-Emden equation in GR for polytropic indices n ¼ 0 (green
curve), n ¼ 1 (magenta curve), n ¼ 5 (dark blue curve), n ¼ 2
(red curve), and n ¼ 4 (cyan curve).
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For the discussion to follow we find it convenient
to introduce an energy density that corresponds to
a uniform density star with mass M⊙ and radius R⊙,
ρ̄ ¼ 3 M⊙=ð4πR3

⊙Þ, and we express pressure and energy
density in terms of that quantity. It is easy to verify that one
can obtain a solarlike star,with amass of the order of the solar
mass,M ∼M⊙, and a radius of the order of the solar radius,
R ∼ R⊙, if we choose the constantK to beK ¼ kbmρ̄−1=2 for
n ¼ 2 and K ¼ kbmρ̄−1=4 for n ¼ 4, with kbm ¼ 6 × 10−7.
Then the central density of the star is comparable to ρ̄.

III. NEWTONIAN POLYTROPIC STARS
IN NONSTANDARD SCENARIOS

Here we proceed to study Newtonian polytropic stars in
two nonstandard scenarios, namely (a) in GR assuming that
the star contains both ordinary and dark matter, and (b) in
modified gravity. These two classes of models are defined
as follows:
(a) Dark-matter-admixed star: We assume that ordinary

matter [with the baryonic density ρbmðrÞ] is described by
the EoS mentioned in the end of the previous section, while
dark matter [with the dark matter density ρmðrÞ] inside the
star is modeled as a condensate characterized by an EoS of
the form pdm ¼ Kdmρ

2
dm [35,36], for which n ¼ 1. The

constant Kdm is computed in terms of two free parameters
m, l [35,36],

Kdm ¼ 2πl
m3

; ð8Þ

withm being the mass of the dark matter particle, while l is
the scattering length, which determines the two-body self-
interaction cross section, σ ¼ 4πl2, in a cold, dilute boson
gas [35,36]. Self-interacting dark matter is constrained to
take values in the range [40–42]

1.75 × 10−4
cm2

g
<

σ

m
< ð1 − 2Þ cm2

g
: ð9Þ

The two fluids interact through gravity only without
any direct interaction between them. In this case we need
to integrate the structure equations in the two-fluid
formalism [43,44],

m0ðrÞ ¼ 4πr2ðρbmðrÞ þ ρdmðrÞÞ; ð10Þ

p0
bmðrÞ ¼ −

mðrÞρbmðrÞ
r2

; ð11Þ

p0
dmðrÞ ¼ −

mðrÞρdmðrÞ
r2

: ð12Þ

The total mass of the star M has two contributions
M ¼ Mbm þMdm, where the mass of ordinary matter
Mbmð≡MoÞ and the mass of dark matter Mdm are given by

Mbm ¼ 4π

Z
R

0

dr ρbmðrÞr2 ð13Þ

and

Mdm ¼ 4π

Z
R

0

dr ρdmðrÞr2: ð14Þ

Finally, we define the parameter f ≡ pdm
c =pT

c , where pT
c

(≡pbm
c þ pdm

c ) is the total central pressure.
To integrate the system of equations numerically we

need to specify the numerical values of m, l, f, and the
initial conditions. These are (with z ¼ pT

c =ρ̄): ρbmc ¼
ðð1 − fÞz=kbmÞ2=3ρ̄ for ordinary matter when n ¼ 2, ρbmc ¼
ðð1 − fÞz=kbmÞ4=5ρ̄ for ordinary matter when n ¼ 4, and
ρdmc ¼ ðfz=kdmÞ1=2ρ̄ for dark matter. For the f factor we
may use a numerical value in the range used in [23] by us,
where we studied the impact of condensed dark matter on
relativistic compact objects, and therefore in the following
we consider f ¼ 0.08. Finally, we write the constant Kdm

in terms of ρ̄ as follows, Kdm ¼ kdmρ̄−1, and for kdm we
consider a numerical value of the order of kbm,
kdm ¼ 8 × 10−7. This can be achieved by assuming m ¼
2 × 10−4 GeV and l ¼ 0.06 fm, for which the self-
interaction cross section σ=m ¼ 1 cm2=g, which lies within
the observationally allowed range mentioned before.
In Fig. 2 we show the mass-to-radius profiles for dark-

matter-admixed stars for f ¼ 0.08 corresponding to ∼10%
dark matter mass fraction for n ¼ 2 (blue) and n ¼ 4 (red).
Although these two polytropic models have quite distinct
mass-to-radius profiles, in both cases the mass of these stars
decreases as their radius increases. Moreover, the overall
relation mass-to-radius profile is quite distinct of other
compact objects; see, e.g., [16,23].
(b) Palatini gravity: Here we consider the Starobinsky

model [6], Rþ bR2, which can describe inflation without a

FIG. 2. Mass-to-radius profiles (in solar units) for dark-matter-
admixed Newtonian polytropic star with a dark matter fraction
f ¼ 0.08. The blue curve corresponds to n ¼ 2, while the red
curve corresponds to n ¼ 4.

MASS-TO-RADIUS PROFILES OF NEWTONIAN POLYTROPIC … PHYS. REV. D 99, 103013 (2019)

103013-3



scalar field [7]. From a theoretical point of view R2 gravity
is well motivated, since higher order in R terms are natural
in Lovelock theory [8], and also higher order curvature
corrections appear in the low-energy effective equations of

superstring theory [9]. In studying fðRÞ theories of gravity
there are two formalisms, namely, the usual metric
approach and the Palatini formalism [3] where the metric
tensor and the connection are treated as independent
quantities. In the metric formalism there is an additional
degree of freedom, which corresponds to a scalar field in
the Einstein frame. The mass of the scalar field is con-
strained from solar system tests, and it is not allowed to be
very light [45–48]. In the Palatini formalism, however, it is
easier for fðRÞ theories of gravity to pass the solar system
tests [49,50]. Therefore, in the present work we work in the
Palatini formalism, and the parameter b of the Starobinsky
model is a free, unbounded, parameter.
In this case one can obtain a modified Lane-Emden

equation [20] with the same initial conditions as before,

d
dξ

�
ξ2
dθ
dξ

ð1þ2αθnÞþαξ3θ2n
�
¼ ξ2ð−θnþ3αθ2nÞ; ð15Þ

where α ¼ −8πbρc, and it may be either positive or
negative provided that α > −1=2 [20]. Table I and
Fig. 3 gives the properties of polytropic stellar models in
Palatini gravity.

IV. CONCLUSIONS

We have investigated properties of low-mass stars in the
main sequence, treated as Newtonian, nonrelativistic,
polytropic stars, in two different scenarios: On the one
hand in the Starobinsky model in Palatini formalism, and
on the other hand in GR assuming that the star contains
both ordinary and dark matter. We have assumed for
ordinary matter a polytropic index n ¼ 2 and n ¼ 4, while
for dark matter we have assumed n ¼ 1. We have integrated
the equations numerically, and we have shown some
properties of the numerical solutions of the modified
Lane-Emden equation in Table I. In the Palatini gravity
the mass of the star may be a decreasing (cf. Fig. 3) or an
increasing function of its radius depending on the value of
the polytropic index, while in the case of the dark matter
admixed stars our results show that the mass decreases as
the radius increases for both values of the polytropic index
considered here. The mass-to-radius profiles we have
obtained are shown in Fig. 2 for n ¼ 2 (blue) and n ¼ 4
(red). Our findings indicate that if the α parameter of the
Starobinsky model is positive the two scenarios give
distinct predictions, while if the α parameter is negative,
the two scenarios exhibit similar behavior in the n ¼ 2
case.
The significance of the main result obtained in this work

may be summarized as follows: On the one hand, the two
scenarios considered here—modified gravity without dark
matter and dark matter particles in GR—predict quite
distinct mass-radius relations for the same cluster of stars
in the same stage of evolution. On the other hand, it is

FIG. 3. Mass-to-radius profiles (in solar units) of Newtonian
polytropic stars in the two scenarios discussed in the text for
n ¼ 2 (top panel) and n ¼ 4 (bottom panel). The points corre-
spond to the dark matter admixed star with a dark matter fraction
of f ¼ 0.08, while the curves correspond to the Palatini gravity.
From the bottom to the top α ¼ −0.3;−0.2, 0, 0.2, 0.3.

TABLE I. Roots ξnðαÞ and integrals J for different values of
the Starobinsky α parameter and n ¼ 2 or n ¼ 4. The GR value
α ¼ 0 is shown as well for comparison reasons.

Lane-Emden equation in the Palatini gravity

n α ξnðαÞ J

2 0.3 5.40 5.44
� � � 0.2 4.96 4.10
� � � 0.0 4.35 2.41
� � � −0.2 4.11 1.49
� � � −0.3 4.16 1.22
4 0.3 11.57 3.42
� � � 0.2 12.06 2.69
� � � 0 14.97 1.80
� � � −0.2 24.15 1.41
� � � −0.3 32.90 1.36
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possible, at least in principle, to obtain a mass-to-radius
profile using observational data (i.e., mass-radius pairs) of
stars formed in a certain location in the Universe. Then this
mass-radius relation can be used to distinguish between the
two classes of solutions (as shown in Fig. 3). Accordingly,
if the formation of stars occurs in a location of the Universe
that is dominated by dark matter, modified theory of
gravity, or both, this leads to a unique mass-to-radius
profile for a given population of stars. Therefore, if one or
both of such mass-radius relations (with quite distinct
features) are found for groups of stars formed in different
locations of the Universe, this will be a strong clue that

processes could be operating in such locations of the
Universe.
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